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ABSTRACT
Network programming languages (NPLs) empower operators to pro-
gram network data planes (NDPs) with unprecedented efficiency.
Currently, various NPLs and NDPs coexist and no one can pre-
vail over others in the short future. Such diversity is raising many
problems including: (1) programs written with different NPLs can
hardly interoperate in the same network, (2) most NPLs are bound
to specific NDPs, hindering their independent evolution, and (3)
compilation techniques cannot be readily reused, resulting in much
wasteful work. These problems are mostly owing to the lack of
modularity in the compilers, where the missing part is an interme-
diate representation (IR) for NPLs. To this end, we propose Network
Transaction Automaton (NTA), a highly-expressive and language-
independent IR, and show it can express semantics of 7 mainstream
NPLs. Then, we design CODER, a modular compiler based on NTA,
which currently supports 2 NPLs and 3 NDPs. Experiments with
real and synthetic network programs show CODER is efficient and
scalable.
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Figure 1: CODER modularizes the compilation into three
stages: front end (FE), middle end (ME), and back end (BE).

1 INTRODUCTION
With the advance of Software Defined Networking (SDN), many
languages (Frenetic [21], Pyretic [32], etc) have been proposed for
programming computer networks. These languages, which we refer
to as network programming languages (NPLs), offer operators with
an unprecedented way to program network data planes (NDPs).
Different from general-purpose languages shipped with controllers
(e.g., Java in Floodlight [6] and Python in Ryu [5]), NPLs provide
high-level constructs that can greatly facilitate composing complex
functions like path selection, monitoring, QoS, etc.

Multiple NPLs and NDPs coexist in modern networks. Recent
surveys [30, 43] report more than 15 NPLs including Pyretic [32],
Merlin [42], SNAP [10], PGA [35], andmore than 10 NDPs including
OpenState [15], NetConf [1], P4 [16]. We believe such diversity in
both NPLs and NDPs will persist in the short future, due to the
following reasons.

First, each of NPLs and NDPs offer different sets of features. For ex-
ample, Merlin can specify a routing path with waypoints [42], while
SNAP can realize a stateful end-to-end monitoring function [10].
These two NPLs are designed for fulfilling different management
demands in the first place, and cannot be simply replaced with one
of them. Another example could be POF [41] and OpenState [15],
where the former extends the match fields of OpenFlow and the
latter supports stateful operations. These two NDPs also cannot be
replaced with each other.

Second, deploying a unified NPL/NDP can be quite risky and costly.
As currently there is not a “perfect” NPL/NDP that can prevail over
others, deploying a unified NPL/NDP is risky: it is very likely we
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need to update it very frequently. Moreover, even recent NDPs like
P4 [16] claim that they outperform the OpenFlow-related ones in
almost all perspectives (programmability, flexibility, forwarding per-
formance, etc), the high cost still obstructs their broad deployment
in the Internet and data centers. Such cost includes not only the
much higher price of the devices, but also the cost for training the
operators, and the potential risks of introducing new vulnerabilities
and bugs.

The long-term coexistence of multiple NPLs and NDPs means
the operators may need to deploy cross-language programs in the
single network, or port programs into heterogeneous data planes.
Unfortunately, existing NPL compilation systems are monolithic
and offer neither of these features. In the following, we first elabo-
rate the problems resulting from the de facto monolithic compilers,
then propose our approach with key contributions highlighted.

1.1 Problems of Monolithic Compilation
Existing NPL compilers translate programs all the way to a specific
NDP, as shown in Figure 1a. Such monolithic approach can raise
many problems when handling the coexistence of multiple NPLs
and NDPs.
Cross-language programs cannot interoperate. Due to the di-
versity of NPLs, the operator may have to run cross-language pro-
grams for having all their merits, which is realized by the pro-
gram composition technique. The correct compositions require to
retain complete semantics from all programs, which however is
only achievable in single-language programs [10, 12, 32, 35, 44],
because none of them can be aware of others’ semantics. For cross-
language programs, the only possible way is to merge the NDP
configurations (e.g., OpenFlow rules) that are compiled individually
from their own NPL compilers. However, this cannot be achieved in
a safe way due to the rule conflicts. Consider two simple programs,
one sets a waypoint 𝐵, and the other wants to count the packet in an
end-to-end way. The individual compilers may interpret these two
intents to two paths, 𝐴→ 𝐵 → 𝐷 , and 𝐴→ 𝐶 → 𝐷 , respectively.
These two paths raise a rule conflicts in𝐴, and cannot be merged or
overwritten directly, because 𝐵 is a waypoint of the first program,
and 𝐶 could be the counting switch of the second program.

CoVisor [27] addresses this problem by assuming all the rules
are either (1) compatible, e.g., a forwarding rule and a counting rule
can naturally operate on the same traffic, or (2) manually priori-
tized , e.g., a forwarding rule from a firewall program can overwrite
another forwarding rule from a routing program. However, most
programs would generate the forwarding rules, which can be in-
compatible for the same traffic. Moreover, even the operators can
manually prioritize all the programs, the overwriting operation can
only provide limited composition ability, e.g., it cannot generate a
possible new solution like 𝐴→ 𝐵 → 𝐶 → 𝐷 . Finally, CoVisor will
fail on merging different NDP configurations.
NPLs and NDPs cannot independently evolve. As current NPL
compilers compile the program all the way down to a specific
NDP, it is costly for an NPL compiler to support every NDP, es-
pecially a new one. Similarly, NDPs are also evolving for serving
complex operations: e.g., fine-grained flow control, stateful opera-
tions. However, existing NPLs barely support the newly designed
NDPs, because of the out-of-date abstractions they rely on, e.g.,

many NPLs [21, 39, 40] are built upon the NetCore abstractions [31],
which does not support stateful operation. This close binding be-
tween NPLs and NDPs greatly hinders their independent evolution.
Compilation modules cannot be reused. Since each NPL com-
piler only concerns its own high-level constructs and semantics,
the compilation techniques they employ are not reusable for other
NPLs. For example, FatTire focuses on finding the backup rules
on the topology, thus a breadth-first searching is used [39]; while
SNAP must solve the variable placement, which conducts a jointly
decision problem of mixed integer liner program (MILP) [10]. As
a result, the NPL designer has to implement the full compilation
process.

1.2 Our Approach and Contributions
To break the monolith above, we intuitively draw an analogy with
the successful PC compiler, which also compiles the programs writ-
ten in high-level languages (e.g., C) into low-level instructions (e.g.,
assembly). One critical missing part of the NPL compiler is that
PC compilers firstly compile the source code to an intermediate
representation (IR), before further translating it to target code. To
this end, we propose network COmpiler Design with intermediatE
Representation (CODER), which introduces the IR concept into net-
work compiler, and modularizes the compilation into three stages
(Figure 1b): a set of front ends translate cross-language programs
into a unified IR, a middle end conducts compositions, and a set of
back ends translate the IR into various NDP configurations.

By decoupling the NPLs and NDPs, the aforementioned problems
can be naturally addressed: (1) the programs are compiled into the
IR that retains all intents, which can be composed and compiled
into NDP configurations without causing any conflicts; (2) a new
NPL only needs to implement a thin front end for supporting all
NDPs, and a new NDP can implement a lightweight back end for
supporting all NPLs; and (3) IR sets a unified playground of the
compilation, so that most compilation techniques can be reused.

Based on this basic idea, we present the challenges of realizing
CODER, and state our research contributions.
Contribution 1: An expressive and unified IR (§3.1). The key
to make the compiler modular is an expressive IR that can fully
cover the semantics of NPLs. However, The heterogeneous con-
structs employed in NPLs make this design difficult. For example,
Merlin uses automaton to express the path waypoints but with-
out any stateful semantics [42]; SNAP supports stateful operations
using one-big-switch abstraction that has no internal path informa-
tion [10]. These constructs are fundamentally different for serving
various NPL features. Hence, it is not possible to create a proper
IR by simply reusing, merging, or extending the existing heteroge-
neous representations.

CODER introduces Network Transaction Automaton (NTA), a new
automaton that can express the semantics of existing (and possibly
future) NPLs. The key difference of NTA is that we incorporate
network resources and state variables into its transitions. This
enables NTA to express not only path constraints, but also resource
constraints and stateful operations, in a fine-grained, hop-by-hop
way (see §3.2).
Contribution 2: Compositions without semantics loss (§3.3).
Even having an expressive IR, the composition operations on it
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are still undefined. We notice that the conventional techniques
e.g., composition of deterministic finite automaton, forwarding
diagram [10], policy graph [35], one-big-switch [27, 32], cannot be
directly reused for this newly designed representation.

CODER designs a set of composition operators that respect the
physical meanings of each element in the transition, so that NTAs
can be composed without any semantics loss.
Contribution 3: Efficient and scalable compilation (§3.4).Con-
sidering the rich semantics the desired IR supports, conducting an
optimization problem could be a package solution for compilation.
However, creating and solving MILP could be very time-consuming,
as the #constraints of MILP would exponentially grow with com-
plexity of intents. What is worse, though many MILP solvers can
leverage multiple CPUs [3, 7], they do not guarantee a perfor-
mance boost, due to the large overhead of synchronization and
timing [29, 38].

CODER applies a series of heuristics to greatly reduce the prob-
lem scale, and make the solving process highly parallel. We then
formulate a much smaller MILP, which can be solved in moderate
time even for a large network.

Our case study and evaluation show that NTA can express se-
mantics of 7 mainstream NPLs, and can be compiled into 3 different
NDPs (§4); the prototype of CODER is efficient in compilation: 4×
faster than the state of the art (§5).

2 CODER OVERVIEW
In this section, we will first take a glance at the proposed IR in
CODER, and then use a concrete example to walk through the
whole compilation process.

2.1 A First Look at the IR
Our design of IR is based on the following two observations. First,
we observe that the semantics of existing NPLs can be grouped into
three classes: (P1) path control with waypoints, e.g., traversing a
firewall, (P2) path control with resource constraint, e.g., bandwidth
reservation, and (P3) stateful packet manipulation with variables
persistent on NDP, e.g., counting all SSH packets at some switch.
Second, we observe that operators expect to specify the above
semantics in the finest grain, i.e., hop-by-hop. A representation
combining above two features could provide an unprecedented ex-
pressiveness e.g., traversing the firewall before counting the packets,
reserving less bandwidth after traversing a load balancer, which
cannot be realized by any existing NPL. This ensures the high
compatibility for future NPLs.

With the above observations, we show how to design an IR for
NPLs. Firstly, we note that the Deterministic Finite Automaton
(DFA) is a good starting point, as it can easily represent the path
control semantics of (P1): proceeding a transition corresponds to
the action of forwarding to a next hop. Secondly, to express the
resource constraints of (P2), we add resource consumption actions
into DFA transitions: proceeding a transition will consume the spec-
ified resources at the current switch. Then, resource constraints like
reserving an end-to-end bandwidth can be expressed by adding
the bandwidth consumption into each DFA transition. Finally, for
expressing the stateful operations in (P3), we embed variable opera-
tions, i.e., checking and updating variables, into DFA transitions, so

that the stateful manipulation can be assigned to specific switches.
Putting the above together, to distinguish from traditional DFA, we
refer to a transition in our new automaton as a network transaction,
which is an atomic set of operations including forwarding to a next
hop, consuming specified resources, and checking and updating
variables. Then, we refer to our new automaton equipped with such
transitions as Network Transaction Automaton (NTA).

2.2 A Walk-through Example
Now we walk through the compilation process of CODER using
two real programs written in Merlin and SNAP.
Using NTA to express programs. Figure 2a shows a Merlin pol-
icy [42], which specifies a waypoint 𝐵 for packets sent from ip1 to
ip2, while consuming 100MB/s bandwidth along the above path.
Figure 2c is the corresponding NTA for this policy. Note that this
NTA binds to a certain packet class srcip=ip1&dstip=ip2, imply-
ing the NTA only deals with packets sent from ip1 to ip2. Each
transition in the NTA carries a three-tuple, in the order of next
hop, resource consumption, and variable operation. This NTA has
a start state (node 0) indicating the packet is entering the network,
and an end state (node 3) indicating the packet has left the net-
work. The loops on node 1 and 2 along with the transition 1→ 2
realize the waypointing and NTA explicitly uses e to denote the
destination host in transition 2→ 3. bw is a 2-dimensional array
indicating the available bandwidth of each link, The consumption
r1: bw[ℎ′][ℎ]◁100MB/s means that a bandwidth of 100MB/s is
consumed on the link from the current switch ℎ′ to the next hop
ℎ. Since 𝑟1 appears in all transitions (except those connect to start
and end nodes), this NTA reserves 100MB/s for the end-to-end
connection.

Figure 2b shows a SNAP program [10], which counts the first
1000 packets sent from ip1 to ip2 to ensure the two hosts are prop-
erly connected. Instead of a single NTA, this program corresponds
to a NTA group, as shown in Figure 2d and 2e, which maps to the
two network transaction spaces, i.e., counting+routing (g1), and
routing only (!g1). Since compiling an NTA will generate one trans-
action sequence, we need to express all possible variable checking
results using a group of NTAs. Note that this is an end-to-end
counting program, so NTAs should consider all possible locations
triggering the counting operation, i.e., in middle of the network
(transition 1→ 2), or at the last hop (transition 1→ 3).
Composing programs at NTA. Since NTA is language-agnostic
and has the complete semantics from the programs, it is a sweet
spot to compose cross-language programs without causing conflicts.
CODER achieves the composition of two programs by product-
intersecting their respective NTAs or NTA groups (see §3.3).

In our case, the composition of the two example programs is
a new NTA group consisting of the intersection of Figure 2c and
2d, and the intersection of Figure 2c and 2e. The former is shown
in Figure 2f, where num_pkt is checked and updated exactly once
along the path traversing 𝐵. The other NTA is much the same with
Figure 2f except (g1,u1) is replaced with !g1. The composite seman-
tics can be stated as “forwarding the packet class with 100MB/s
bandwidth while traversing 𝐵, and counting the first 1000 of them”.
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(b) A SNAP program that counts the first
1000 packets sent from ip1 to ip2 using a
network variable num_pkt.
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Figure 2: The compilation process in CODER. (a)–(b): Two programs written in Merlin and SNAP; (c): NTA for Merlin policy;
(d)–(e): NTA group for SNAP program; (f)–(g): Composed NTA group; (h): A simple network with 125MB/s bandwidth per link.

Compiling NTAs. CODER compiles the NTAs in two steps: (1)
generating a valid transaction sequence, and (2) mapping each
transaction in the sequence into NDP configurations.

The first step is challenging: to find a valid transaction sequence,
CODER needs to consider three types of constraints: (1) path con-
straints: the pathmust traverse the specified waypoints; (2) resource
constraints: the resource consumption should not exceed the avail-
able resource, e.g., path 𝐴 → 𝐵 → 𝐷 in Figure 2h is invalid for
Figure 2c if another NTA consumes 50MB/s bandwidth on link
(𝐴, 𝐵); (3) consistency constraints: the same variable should be
operated at the same switch in order to avoid synchronization,
e.g., Figure 2d and 2e must check and update num_pkt at the same
switch. Finding a feasible solution for above constraints might take
long time with complex NTA and/or large topology. Fortunately,
this step is NDP-independent, thus can be reused for all NDPs. In
other words, the factual back-end contains only the second step,
which is relatively straightforward and can be easily adopted for a
new NDP.

To accelerate the first step, CODER applies a series of heuristics
instead of directly creating a large MILP, e.g., path selection and
clustering. These heuristics can significantly reduce the problem
scale, and more importantly, make the problem solvable in parallel.

3 DESIGN OF CODER
In this section, we detail the design of CODER. Specifically, we first
formally define NTA (§3.1), and show how NTA can express various
semantics (§3.2). Next, we present the middle end that composes
multiple NTAs (§3.3), and the back end that efficiently enforces
NTAs in the NDP (§3.4).

3.1 Network Transaction Automaton
Network transaction. A network transaction is a three-tuple,
ℎ 𝑟 𝑑 , where ℎ is the next hop to be forwarded, 𝑟 is the con-
sumption of the network resources, and 𝑑 is a stateful operation
that first checks the variables against a set of predicates, namely

guard, and then modifies the variables with a set of operations,
namely update.
Network transaction automaton. A network transaction au-
tomaton (NTA) is defined as a 5-tuple (Σ, 𝑄, 𝑞0, 𝑎,T), where Σ is
the set of all possible network transactions, 𝑄 is the set of NTA
nodes, 𝑞0 ∈ 𝑄 is the start node, 𝑎 ∈ 𝑄 is the end node, and T is the
set of transitions. Each transition 𝑡 ∈ T is a 3-tuple (𝑞, 𝜎, 𝑞′), where
𝑞 and 𝑞′ are the NTA nodes, and 𝜎 ∈ Σ is the network transaction.

As an analog, NTA can be viewed as the “language” for specify-
ing network transaction sequences that comply with the program
intent, and the compilation of NTA is to produce one “sentence”
under the constraints of network topology, network resources, and
variable consistency.
Elements in NTA. NTA involves four major elements: the next
hop, the resource, the variable, and the packet class.

The next hop represents the forwarding target(s). The operator
can specify “any switch”with “dot”, a specific switch if it is known to
her, e.g., switch 𝐵, or a kind of switches with a mnemonic, e.g., 𝐷𝑃𝐼 ,
which can be replaced by real switches according to the network
configurations in the back end.

The resource represents the static constraints of the network,
e.g., link bandwidth bw in Figure 2c, which are shared by all NTAs.
Resources are non-negative, so CODER must respect this nature
through the compilation, by considering all consumptions on the
same resource. The consumptions are enforced off-line using spe-
cific configurations, e.g., meter action in switch for reserving band-
width. In other words, the on-line processing is irrelevant to the
resources.

The variable records the network states, which is persistent on
the data plane switch [10], e.g., num_pkt in Figure 2d and 2e. The
guard and update of variables will be translated into matching
fields and actions in data plane rules, respectively. There could be
different network transaction spaces depending on the results of
variable guard, so a group of NTAs will be generated to handle each
of them, as shown in Figure 2d and 2e. In contrast of resources,
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Figure 3: TheNTA that constrains the utilization of switches.
nf is the resource array of each switch’s flow entry capacity.

CODER does not care about how to check and update the variable,
but only where to perform it for consistency concerns.

The packet class binding to the NTA is a packet header filter.
The filter must specify the source and destination IP addresses, be-
cause they determine the concrete entrance and exit in the network.
Additionally, the filter must be assigned statically, i.e., it can/will
be checked at every switch along the routing path. On the other
hand, the header filter that depends on a variable will be treated
as a variable guard. For example, if susp is variable stored at a
certain switch, srcip=susp is a variable guard, because the source
IP address must be checked at the same switch with susp.

NTAs from the same group specify different transaction spaces
for the same packet class, while NTAs from different groups should
have orthogonal packet class; otherwise the overlapped part should
be composed in the middle end.

3.2 Front End: Expressiveness of NTA
Due to the simplicity of NTA, the front end of CODER is quite
thin and easy to implement (see §4.2). Instead, the major concern is
whether the NTA is expressive enough to cover the NPL semantics.
A recent survey classifies those semantics into three catalogs [43]:
(1) traffic engineering that optimizes the routing paths, e.g., way-
pointing [36], QoS [42], failure tolerance [39]; (2) virtualization that
abstracts a much simpler virtual topology for the operators [9, 10];
and (3) monitoring that collects the telemetry data, e.g., #packets
traversing the network [32, 34]. In the following, we show NTA is
capable for expressing these and even more complex semantics. We
omit the binding packet class in all following examples.
Traffic Engineering (TE) includes waypointing, QoS, and failure
tolerance. First, due to its DFA form, NTAnaturally supports all path
requirements compliant with regular grammar for waypointing. For
QoS, NTA can express the constraints of network resources using
consumptions, e.g., Merlin’s NTA in Figure 2c. For fault tolerance,
NTA can tolerate 𝑘 link failures in two ways: (1) finding 𝑘 disjointed
paths for each packet class by setting a mutex resource of each link;
or (2) finding C𝑘

𝑛 paths for each packet class (𝑛 is #links), by taking
out 𝑘 links from the topology, i.e., initializing a zero resource for
those links (see §4.1). Figure 3 illustrates another NTA for TE: each
switch can install rules for at most 100 flows. This semantics can be
used to balance the flow table utilization of switches. Specifically,
nf is a map of resources, which represents the capacity of switches.
NTA initializes each element of nf to be 100 and consumes it along
the path, which constrains the number of installed flows.
Virtualization (VT) hides the low-level network details, so that
programmers can install the micro-flow rules on a higher-level
abstraction. There are typically two kinds of VT: one-to-many and
many-to-one. For the first, since NTA nodes also have a one-to-
many correspondence to the switches, NTA can directly use .*
transitions to support such virtualization. For example, node 1 in

0 1 2 3
•

•

• g𝑐 ,{u𝑐 ,uℎ}

• g𝑐 ,{u𝑐 ,uℎ}

•

𝑒

(a)

(b) A similar NTA by replacing (gℎ ,{u𝑐 ,uℎ}) with (!gℎ ,u𝑐 )

Abbreviations:

g𝑐 : hhc[srcip]=thres

u𝑐 : hhc[srcip]++

uℎ : hhr[srcip]←True

Figure 4: The NTA group for heavy-hitter-detection seman-
tics, which counts #flows sent from a certain IP, and tags it
as a heavy hitter if the counter reaches a threshold.

Figure 2d maps to the one-big-virtual-switch that performs the
counting task. For the many-to-one VT, the mappings are explicitly
specified by the operators [27], so NTA can leverage the devirtual-
ized result from the native compilers, i.e., network transaction at a
certain switch, and maps an NTA node to that switch.
Monitoring (MT) records and updates network statistics, e.g.,
#packets of a matching flow. NTA supports such stateful semantics
using network variables. Consider a heavy-hitter-detection seman-
tics which identifies the hosts establishing too many flows, this
semantics maps to two transaction spaces, and is addressed by the
two NTAs in Figure 4: Figure 4a counts (u𝑐 ) and tags the flow (uℎ),
by assuming the guard of threshold succeeds (g𝑐 ); Figure 4b han-
dles the negative results (!g𝑐 ) which counts the flow only. Here,
the NTAs bind to all pairwise packet classes with tcp.flags=SYN,
which can be extracted by a programmable parser [16].
Complex semantics. Thanks to the hop-by-hop expressiveness,
NTA can represent the combination of above semantics. For ex-
ample, we could fix where to count the packets in Figure 2d by
setting a waypoint. Moreover, we could concatenate Figure 2d with
Figure 2c , which produces a new semantics: the first 1000 packets
must traverse 𝐵 (see Figure 5 in §3.3). These semantics, where the
stateful operation depends on path, or the path depends on stateful
contexts (the value of num_pkt), cannot be expressed by either the
one-big-switch abstraction [10] or regular expression [42].

3.3 Middle End: Modular Compositions
At the middle end, CODER can manipulate NTAs in a language-
independent way. We currently focus on program composition, one
of the most needed features. For simplicity of presentation, in the
following we just consider how to compose two NTAs. Composition
of two groups of NTAs can be viewed as a product composition of
eachNTA in the groups. Let the twoNTAs be𝑛1 and𝑛2, and CODER
aims to offer the following three types of program compositions.

• Parallel composition (+) produces an NTA that accepts𝑛1 and
𝑛2 simultaneously. This is perhaps the most important type
of composition, since it enables cross-language programs to
manipulate the same traffic.
• Sequential composition (>>) produces an NTA that performs
𝑛1 and 𝑛2 sequentially. This composition can be used when
one program is triggered by another, e.g., counting the suspi-
cious flows identified by a firewall.
• Either-or composition (△) produces an NTA that performs
exactly one of 𝑛1 and 𝑛2. This is useful for load-balancing
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Figure 5: Sequential composition (Figure 2d>>Figure 2c).

traffic among identical network functions, e.g., traversing
one of multiple firewalls.

The theoretical basis of above composition is the operations on
automaton, e.g., concatenation and intersection. However, due to the
resource and stateful elements carried in NTA transitions, directly
applying the conventional operations will result in semantic loss.
In the following, we customize three operations of NTA, which can
be used to realize the above compositions without semantic loss.
Intersection. CODER adopts the Cartesian production for inter-
secting two NTAs, which realizes the parallel composition. In a
nutshell, the node set of the intersected NTA is the product of the
nodes in 𝑛1 and 𝑛2, i.e., 𝑄1 × 𝑄2. Next, for the new start node
(𝑞1,0, 𝑞2,0), CODER tries to produce a new transition by merging
transitions starting from 𝑞1,0 and 𝑞2,0, and the process iterates for
other nodes, as detailed below.

We say two transitions can be merged, if they carry the same
next hop, or at least one of them has a next hop of “dot”. The
merged transition will carry the same or the non-dot next hop.
For the stateful operations, the guard in the merged transition
is the intersection of the original guards, i.e., g3=g1&g2, and the
update is the union of the original updates, i.e., u3=u1∪u2. For
resource consumptions on the different resources, we retain both of
them; for those consuming the same resources, we use the largest
consumption to overwrite others. For example, consider two NTAs
reserving different bandwidth for the same packet class, say 10MB/s
and 20MB/s, respectively. The parallel composed NTA should not
consume 30MB/s, because 20MB/s bandwidth has already satisfied
the semantics of both original NTAs. This principle can be expanded
to other resources, e.g., switch flow entries.
Concatenation. The sequential composition can be viewed as
the concatenation of two NTAs. The major difference between
concatenating two NTAs and concatenating DFAs is that the start
node and end node in NTA map to the network states that the
packets are not inside the network. As a result, the concatenated
NTA should not include the end node of the left operand and the
start node of the right operand.

In detail, for concatenating 𝑛1 and 𝑛2, CODER removes the end
node 𝑎1 in 𝑛1 and the start node 𝑞2,0 in 𝑛2. Next, for all transitions
pointing to 𝑎1, CODER replaces 𝑒 in the next hop field with (•), and
product-merges them with the transitions starting from 𝑞2,0. Since
the modified transitions must have a dot next hop, the merging is
ensured to be successful.

For example, when concatenating Figure 2d (𝑛1) with Figure 2c
(𝑛2), node 3 in 𝑛1 and node 0 in 𝑛2 will be removed. Transition
1→3 in 𝑛1 will be modified as • g1,u1 , and then be merged
with transition 0→2 in 𝑛2, producing a new transition 𝐵 g1,u1

from node 1 in 𝑛1 to node 2 in 𝑛2. By product merging all the
end transitions in 𝑛1 with the start transitions in 𝑛2, we obtain
a concatenated NTA shown in Figure 5. Note that this process
may produce a non-deterministic NTA, and we can reduce it using
conventional technique.
Symmetric difference. This operation maps to the either-or com-
position, which is quite simple, as we just merge the start nodes
and the end nodes of two NTAs, and reduce the composed NTA if
necessary.

3.4 Back End: Enforce NTA into Data Plane
The back end of CODER translates the set of NTAs into rules that
can be installed in the NDP. Typically, such translation can be for-
mulated as the multi-commodity flow problem (MCFP), which is to
find a proper set of links that can form a complete path for each flow,
while satisfying the bandwidth constraints. Many approximation
and specialized algorithms are proposed to handle this well-known
NP-complete problem [17, 18], which, however, cannot be directly
adopted by the back end of CODER. The major reason is that the
MCFP must be solved on the graph generated by the product of
NTA and the topology (see Step 1 in the following), which is usually
quite huge. As a result, solving the MCFP, even for a small topology,
can take unacceptable time. In this section, we propose a set of
heuristics to conquer the complexity of this process, making the
back end scalable for the complex NTA and/or large topologies.

Let 𝑁 be the set of all NTAs, in the following we show how the
back end generates the NDP rules in four steps and reacts to the
network changes.
Step 1: Constructing path graph. This step aims to construct a
path graph G𝑢 for each 𝑛𝑢 ∈ 𝑁 , A path graph is a digraph where
each path corresponds to a sequence of network transactions that
respect the forwarding requirements in 𝑛𝑢 , e.g., the source/destina-
tion and the waypoints. Specifically, the construction takes places
in two stages.

(1) Transforming NTA into NFA. First, we denote the transition
ℎ 𝑟 𝑑 as ℎ𝑟𝑑 . In this way, we can obtain a DFA where transitions
are triggered only by ℎ. Then, we further transform this DFA into
a Nondeterministic Finite Automaton (NFA) M𝑢 , by expanding
all possible ℎ. For example, the left part of Figure 6 shows the
NFA for the NTA in Figure 2f, where the • (dot) transitions are
expanded to all switches in the physical network. To save space,
we introduce some shorthand (e.g., 𝐴1 is the shorthand for 𝐴𝑟1 ).
Note that transition 0→1 and 0→3 in Figure 2f are specialized to
𝐴𝑁 , since in this stage we have known that ip1 connects to 𝐴.

(2) Mapping the NFA to physical network. Let 𝐿 denote the set of
switches in physical network, and Q𝑢 denote the set of nodes in
M𝑢 . Then, the set of nodes in G𝑢 is the Cartesian product 𝐿 × Q𝑢 ,
and each node is a pair (𝑥,𝑦) where 𝑥 is a physical switch and 𝑦 is
a transition in the NFA. Let 𝑇 be an operator that extracts ℎ from
a transition inM𝑢 , i.e., 𝑇 (ℎ𝑟𝑑 ) = ℎ. Then, there is an edge from
(𝑎, 𝑞) to (𝑏, 𝑞′) in G𝑢 iff: (1) (𝑇 (𝑎),𝑇 (𝑏)) is a link in 𝐿, and (2) (𝑞, 𝑞′)
is a valid transition ofM𝑢 when processing 𝑏. It is easy to verify
that paths in G𝑢 are real paths in physical network, which satisfy
the waypoint constraints. In addition, G𝑢 retains the resource and
variable information of 𝑛𝑢 , since each node in G𝑢 can map back to
a transition in 𝑛𝑢 .
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Figure 6: The path graph constructed by theNTA in Figure 2f
and the topology in Figure 2h (directed arrows are omitted).
The thick path illustrates a path candidate.

The right side of Figure 6 is the path graph for the example, and
the thick line 𝑆 → 𝐴𝑁 → 𝐵2 → 𝐷1 → 𝑒1 shows a candidate path:
𝐴→ 𝐵 → 𝐷 with the counting action performed at 𝐵.
Step 2: Reducing problem size in parallel. As mentioned ear-
lier, having all path graphs, a straightforward method is to con-
duct an MILP that respectively captures the MCFP for each G𝑢 ,
with constraints on basic routing, resource invariant, and variable
consistency. However, this MILP could be too large to be solved
within acceptable time, e.g., over 30 minutes for solving Figure 6
(4 switches). CODER applies a series of heuristics that can fast
prune the infeasible solutions, before feeding them to MILP. These
heuristics can be easily parallelized, so that can benefit from the
multiple CPUs.

(1) Generating path candidates. CODER enumerates all simple
paths (i.e., no loops) for each path graph in parallel. We can use A∗
heuristic to further cut off the paths with too many hops that are
not usable in practice. Each path graph will select exactly one path
to form a feasible solution.

(2) Analyzing variable consistency.The dependent variables should
be placed at the same switches; otherwise, multiple switches will
have to synchronize the values of dependent varibles through the
packets or the centralized controller, both of which would incur
large overhead in runtime. Instead of directly feeding all paths
to MILP and finding a combination that respects the varible con-
sistency, CODER prunes the invalid variable placements on the
candidate paths beforehand.

Considering two path graphs G1 and G2, one is the for the
counting case shown in Figure 6, and the other is the non-counting
path graph. G2 is very similar to G1 by replacing (𝐴|𝐵 |𝐶 |𝐷)2 with
(𝐴|𝐵 |𝐶 |𝐷)3, which stands for (𝐴|𝐵 |𝐶 |𝐷)𝑑2𝑟1 (𝑑2 =!𝑔1). We can
easily find two path candidates from G1, 𝑝1 : 𝐴𝑁 → 𝐵2 → 𝐷1 and
𝑝2 : 𝐴𝑁 → 𝐵1 → 𝐶2 → 𝐷1. Similarly, we have two candidates
from G2, 𝑝3 : 𝐴𝑁 → 𝐵3 → 𝐷1 and 𝑝4 : 𝐴𝑁 → 𝐵1 → 𝐶3 → 𝐷1.

Straightforward MILP will put these four paths together, and try
to find out a feasible combination. However, it is obvious that both
𝑝1 and 𝑝3 put the variable in 𝐵, while 𝑝2 and 𝑝4 check the variable

Table 1: Variables involved in MILP.

Variable Description

G𝑢 path graphs
𝑝𝑖 , 𝑝 𝑗 paths in a path cluster
𝑄𝑖𝑢 1 if 𝑝𝑖 is from G𝑢 , 0 otherwise
𝐶𝑘 the capacity of network resource 𝑘
𝑅𝑖𝑘 the consumption on resource 𝑘 if 𝑝𝑖 selected

𝑂𝑖𝑛𝑚𝑎
1 if 𝑝𝑖 matches𝑚 (packet class+variable guard) and performs
𝑎 (forwarding+variable update) at switch 𝑛, 0 otherwise

𝐻𝑖 1 if 𝑝𝑖 is selected, 0 otherwise

Table 2: Constraints of the MILP.

Basic Routing Distinguishable Operations∑
𝑖 𝑄𝑖𝑢𝐻𝑖 = 1 ∀𝑛 ∈ all switches. ∀𝑖, 𝑗 .∀𝑚.∀𝑎.

Resource Invariants if 𝐻𝑖 = 𝐻 𝑗 = 1

∀𝑘.∑𝑖 𝑅𝑖𝑘𝐻𝑖 ≤ 𝐶𝑘 𝑂𝑖𝑛𝑚𝑎 = 𝑂 𝑗𝑛𝑚𝑎

guard in𝐶 . In other words, it is no way that 𝑝1 and 𝑝4 can work out
a solution, due to the broken consistency. Hence, CODER clusters
these paths by the positions they put the variables, which generates
a set of path clusters, each of which ensures the variable consistency.
CODER applies a divide-and-conquer strategy for this process, i.e.,
recursively merging the sub-clusters, which can be easily paral-
lelized. Moreover, CODER can cut off the paths from the same path
graph in the cluster; SOL reports that 5 paths for each packet class
is sufficient for respecting only resource requirements [25].

We can respectively create one MILP for each path cluster, then
solve these MILPs in parallel, and shut the whole process as soon
as one of them finds a feasible solution.
Step 3: Creating and solving MILP. An MILP for a path cluster
takes two inputs: the path cluster 𝑃 , and the resource capacity
𝐶 = {𝐶1, . . . ,𝐶𝑘 } for 𝑘 types of resources. It outputs a set of 0–1
variable 𝐻𝑖 that indicates whether 𝑝𝑖 ∈ 𝑃 is selected. With the
variables defined in Table 1, we explain the constraints on this
problem shown in Table 2.

(1) Basic routing. To ensure the connectivity for each packet class,
we select exactly one path from each path graph.

(2) Resource invariant. Each path 𝑝𝑖 ∈ 𝑃 can consume a set of the
network resources. Since the network resources are immutable and
shared by all programs, we can calculate the total impact for 𝑘 types
of resources by accumulating the consumptions along 𝑝𝑖 , denoted as
𝑅𝑖 = {𝑅𝑖1, . . . , 𝑅𝑖𝑘 }. The constraint is to ensure that, after applying
𝑅𝑖 for each selected 𝑝𝑖 , each element in 𝐶 is non-negative.

(3) Distinguishable operations. Considering another path candi-
date 𝑝5 from G2, 𝐴𝑁 → 𝐶1 → 𝐵3 → 𝐷1, 𝑝1 and 𝑝5 comply with
the variable consistency (checking num_pkt at 𝐵), but will confuse
𝐴, as it does not know where to forward the packet (𝐵 or𝐶). We call
it an “indistinguishable case”, and eliminate such cases by adding
the following constraints: the selected paths must ensure that each
switch 𝑛 takes the same operations 𝑎 (i.e., forwarding+variable
update) for the same matching field𝑚 (i.e., packet class+variable
guard).
Step 4: Generating NDP configuration. The final step in the
back end is to enforce the selected paths, i.e., network transaction
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sequences, into the NDP. To be specific, two kinds of configurations
will be generated:

(1) Switch rules.Most NDPs support the MatchAction rule, where
Match is the matching fields, mapping to packet class+variable
guard, and Action is to manipulate the packets and network-wide
variables with forwarding+variable update. All the four elements
are easy to obtain from the network transaction sequences.

(2) Configurations consuming network resources. We pre-define a
set of configuration templates to enforce the resource consumption.
For example, for bandwidth, we can define a meter action in the
switch, or interpret it into tc policies in the hosts. Some resources
are naturally consumed, e.g., the flow table entries are consumed
by installing the rules.

This step is the only data-plane-dependent process in the back
end that should be modified when porting programs to a new NDP.
Actually, the modification is quite trivial, since given the concrete
routing path and state mappings, this module only needs to handle
the syntaxes of the target instruction.
Reacting to network changes. A full recompilation for for each
network change (a link failure, a new NTA, etc) is time-consuming.
CODER uses simple heuristics to mitigate such overhead.

First, CODER collects the impacted packet classes from the net-
work changes, e.g., a link failure. Next, CODER re-compiles their
NTAs with following heuristics: (1) remove the network resource
consumed by the non-impacted NTAs; (2) only solve the path cluster
that has the same variable placement with the non-impacted NTAs.
If the network resources are relatively sufficient, these heuristics
can significantly cut the overhead of obtaining new solution (see
§5.2); otherwise, CODER will fully re-compile all the NTAs.

4 CODER IN ACTION
In this section, we demonstrate the expressiveness of NTA for 7
mainstream NPLs (§4.1). Then we present some key designs in
CODER that make it practical (§4.2). We finally discuss another
application, i.e., network verification, upon CODER (§4.3).

4.1 Expressiveness for Diverse NPLs
Real programs fromMerlin and SNAP.We collect 14 programs
previously implemented by Merlin [4] and SNAP [2], as listed in
Table 3. The front ends of CODER can successfully translate all
these programs into NTAs, meaning that NTA can indeed cover
the semantics of these two languages.
Pyretic [32] generalizes the abstractions from NetCore [31], and
offers a virtual topology construct. As discussed in §3.2, NTA can
express such semantics by using .* transitions to connect the nodes
that map to the virtual switches.
FlowLog [34] offers a SQL-like query syntax to manipulate packets
using the states stored in the controller. We successfully express this
semantics by mapping the database table/entry used by FlowLog
into network variables in NTA, so that such manipulation can take
place in the NDP.
FatTire [39] introduces a fault-tolerance semantics that can toler-
ate 𝑘 link failures. As described in §3.2, there are two realizations
for this semantics, and we adopt the first one, i.e., finding 𝑘 + 1
disjointed paths. Specifically, CODER places a variable fail in the

Table 3: Real programs from Merlin (1-4) and SNAP (5-14)

1
2
3
4

defense (two sequential firewalls with bandwidth reservation)
iot (security policy for IoT device)
min (reserve minimum bandwidth)
isolation (isolate two flows)

5
6
7
8
9
10
11
12
13
14

many-ip-domains (count #domain per IP)
many-domain-ips (count #IP per domain)
stateful-firewall (only establish certain connections)
DNS-tunnel-detect (detect DNS tunneling)
ftp-monitoring (count the FTP data traffic)
heavy-hitter-detection (as shown in Figure 4)
selective-packet-dropping (drop B frames in MPEG streams)
sample-small (sample small flow)
sample-medium (sample medium flow)
sample-large (sample large flow)

ingress switch, ranging from 0 (primary path) to 𝑘 (𝑘th backup
path). Then CODER generates 𝑘 + 1 NTAs for each value of fail.
Each transition of the NTA consumes a mutex resource allocated
for the corresponding link. Compiling those NTAs will result in
𝑘 + 1 disjointed paths, and the controller can switch to 𝑖th backup
path by setting fail to 𝑖 .
NetKAT [9] provides a sound and complete set of semantics in-
cluding path selection and virtual topology, which have already been
covered by NTA. Thus, NetKAT programs can be readily translated
into NTA.
PGA [35] allows operators to draw the policy graphs for different
applications separately, and automatically compose them. Since
there are only path constraints, it is easy to translate a policy graph
into an NTA.

We summarize the features of aboveNPLs in Table 4, and find that
no NPL supports all features. This possibly confirms the necessity
of running cross-language programs in the same network. We also
present the corresponding NTA for a snippet of each NPL, and
conclude that NTA can express all semantics of those NPLs to
aggregate their respective features.

4.2 Prototype Implementation
We implement CODER with ∼3K lines of code (LOC) in Python/-
Cython, including two front ends for Merlin and SNAP, a middle
end that supports three types of composition, and two back ends for
OpenState [15] and NetASM [33]. We use the Gurobi optimizer [7]
to solve the MILP shown in Table 2. We highlight the key imple-
mentations in CODER in the following.
APIs. CODER poses a set of APIs to manipulate NTA for NPL
designers and compiler users. The following defines an NTA with
two transitions in Figure 2f, i.e., node 1 loop, transition 1→4. It then
composes and compiles the NTA.

nta , (n0 ,n1,n2,n3,n4,n5) = NTA.with_states (6)

nta[n1].on(None , None , any_switch , bw *100). to(n1)

.on(np >1000 , np <<np+1, B, bw *100). to(n4)

# parallel composition

new_nta = old_nta + nta

# compile NTA on the given topology and resource

problem = new_nta @ topo @ resource

solution = problem.solve()

rules = solution.gen("OpenFlow")
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Table 4: Features, snippets and NTAs for NPLs

NPL TE VT MT CP Snippets Corresponding NTA

Pyretic
√ √ √ (match(dstip=’10.0.0.1’) » fwd(6))

route traffic with dstip 10.0.0.1 to virtual port 6

0 1 2

PC: srcip=any&dstip=10.0.0.1

•

•

𝑒

Flowlog
√ √

ON packet_in(p) WHERE p.nwPort = 23:
INSERT (p.nwSrc) INTO blacklist;

block sender’s IP if its TCP port is 23.

0 1 2 3

PC: srcip=any&dstip=any&port=23

u: blacklist[srcip]←True b: a black hole (drop)

•

•

• u

𝑏 u

•

𝑏

FatTire
√ √ tpDst = 22 ⇒ [.*] with 1

specify a tolerance level for secure traffic.

0 1 2 3

The other NTA is very similar by replacing !fail with fail

PC: srcip=any&dstip=any&dstport=22

r1: mutex[srcip][dstip][ℎ
′][ℎ]◁1

• • r1 !fail

• r1

𝑒

NetKAT
√ √ √ (if (dstip=’10.0.0.1’) then pt←6)

route traffic with dstip 10.0.0.1 to virtual port 6 same with the NTA of Pyretic snippet

PGA
√ √ Nml DPI DNS

53

route Nml’s DNS traffic to DNS traversing DPI

0 1 2 3

PC: srcip=Nml&dstip=any&dstport=53

•

•

𝐷𝑃𝐼

•

𝑒

Merlin
√

see Figure 2a see Figure 2c
SNAP

√ √ √
see Figure 2b see Figure 2d

Abbreviations: TE: traffic engineering, VT : virtual topology, MT : monitoring, CP : composition, PC: packet class

Parallel acceleration. Our prototype maximally parallelizes the
back end, including path graph construction (parallel for all NTAs),
path generation (parallel for all path graphs), path clustering (divide
and conquer for all paths), and MILP creation and solving (parallel
for all path clusters).
Development efforts. For supporting a new NPL, we report that
(1) the font end for Merlin takes ∼50 LOC, while the native compiler
of Merlin has ∼6K LOC; (2) the front end for SNAP takes ∼80 LOC,
while the native compiler of SNAP’s compiler has ∼5K LOC. These
results show that with CODER, NPL developers can focus on the
design of syntaxes, instead of how to enforce them.

For porting programs into another NDP, one can simply mod-
ify the last module of the back end, as the generated transaction
sequences can be reused. This process is quite lightweight, e.g.,
producing OpenState rules takes ∼100 LOC.
Reference design: SNAP’s front end. The SNAP compiler firstly
translates its programs into the extended forwarding diagram (xFDD).

Thus, it could be a sweet spot to translate xFDD, instead of the orig-
inal SNAP program, into NTA.

An xFDD is defined as either a branch (𝑡?𝑑1 : 𝑑2) (𝑡 is a test,
𝑑1/𝑑2 is xFDD), or an action set. In brief, xFDD processes a packet
from the root node to a leaf node, denoted as “if 𝑡1&...&𝑡𝑚 then
𝑎𝑠”, where 𝑡𝑖 is the test (or its inverter) along the above path, and
𝑎𝑠 is the action set in the leaf node. We split the xFDD by the tests
on packet class, and view the rest tests as a set of guards, and the
actions as a set of updates.

Next, we decide the order of triggering the guard and update func-
tions, which is related to the variable dependencies in xFDD [10].
To be specific, xFDD poses three types of dependencies between
two variables 𝑠 and 𝑡 : (1) (𝑠, 𝑡) ∈ 𝑡𝑖𝑒𝑑 , if 𝑠 and 𝑡 must be placed in
the same switch, (2) (𝑠, 𝑡) ∈ 𝑑𝑒𝑝𝑠 , if 𝑠 must be operated before 𝑡 ,
and (3) 𝑠 and 𝑡 are not dependent, if they are in different strongly
connected components in xFDD. The front end handles these de-
pendencies as follows: if (𝑠, 𝑡) ∈ 𝑡𝑖𝑒𝑑 , the operations on 𝑠 and 𝑡
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should be carried by the same transition; if (𝑠, 𝑡) ∈ 𝑑𝑒𝑝𝑠 , the oper-
ations on 𝑠 should precede these operations for 𝑡 ; if 𝑠 and 𝑡 have
no dependency, they should be put into separated NTAs, and be
parallel composed afterwards.

Specifically, a sequence of NTA nodes are linearly connected,
and each transition between them carries a set of variables that
belongs to 𝑡𝑖𝑒𝑑 , in the order inferred from 𝑑𝑒𝑝𝑠 . Next, the front end
adds a “dot” loop for each node, and finalizes the NTA by appending
the start and end node.
Reference design: OpenState’s back end. OpenState tracks the
user-defined states by proposing the eXtended Finite State Machine
(XFSM) [15]. For each incoming packet, the OpenState switch will
first look up the current variable for this packet in the state table,
then trigger an XFSM transition in the XFSM table, and finally
update the state table accordingly.

We refer a row in XFSM table as an OpenState rule, which con-
sists of four columns: (C1) a state provided as a user-defined la-
bel, (C2) an event expressed as an OpenFlow match, (C3) a list of
OpenFlow actions, and (C4) a next-state label. It is straightforward
for mapping a network transaction to an OpenState rule: variable
guard→C1, packet class→C2, forwarding to next hop→C3, and
variable update→C4.

4.3 Network Verification upon CODER
In §3.3, we present the most desired transformation in the middle
end, i.e., composition. In fact, given the complete semantics main-
tained in NTA, the middle end can conduct more optimizations and
applications. Here we consider the network verification as another
typical example.

Traditionally, the network verifier checks the correctness and
consistency of and between the control plane (e.g., OSPF and BGP
configuration) [13, 20, 23] and data plane (e.g., access control list,
forwarding table) [46, 47]. In the context of NPL and NDP, the data
plane verification is to check whether the current NDP configu-
ration complies with the high-level intent, and the control plane
verification is to check whether the NPL programs can be executed
without violating the network invariants. CODER can help realizing
both of those verification needs. Specifically, CODER inputs the
NPL programs, and tries to compose and compile them according
to the network configurations, e.g., topologies and resources. Then,
we can verify the following network properties.
Do NDP configurations comply with the high-level intents?
Given the NDP configurations, the operators want to ensure they
are consistent with the high-level intents. Previously this demands
the operators to provide a set of unified policy representations
for all intents [47], which is a considerable burden. On the other
hand, the NTA in CODER naturally reveals the high-level intent,
and can be easily verified against the data plane configurations.
Recall that NTA is the “language” of the legal sequences of network
transactions. As a result, the verification process is to transform
the NDP configurations into a sequence of network transactions,
and then match it with the NTA. If the sequence is accepted, then
the configurations comply with the high-level intent.
Do NPL programs violate the network invariants? After writ-
ing the NPL programs, the operators may be concerned by the
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correctness of the programs, i.e., will they violate the network in-
variants like reachability? This concern is unnecessary when there
is only one program, as most NPLs do not allow the operators to
specify an intent with a loop or blackhole. However, when there
are multiple programs, potentially written in different NPLs, the
conflicts may lead to a violation of the network invariant. With
CODER, the operators can verify the invariants by simply compil-
ing the composite NTAs of all programs. And if CODER can find a
feasible solution, it means that the programs are compatible and
the network invariants can be assured.

5 PERFORMANCE EVALUATION
This section evaluates the performance of CODER. For front ends,
we observe the translation for each program in Table 3 finishes
within 100ms, which is fast enough for common usage. As such,
we only test the performance of the middle and back end, i.e., com-
posing NTAs and producing transaction sequences. Experiments
are performed on a machine with dual 20-core Intel Xeon 2.2GHz
CPUs and 192GB memory.

5.1 Middle End
Since there are only a small number of real programs available to
us, we synthesize more NTAs to test the composition performance
in the middle end. We observe that the NTAs for real programs
are relatively small: for programs in Table 3, each NTA has ∼4
nodes and ∼7 transitions on average. Thus, the number of nodes
and transitions in our synthesized NTAs are set to 4–10 and 5–
15, respectively. Since sequential and either-or compositions only
operate the start and end nodes, their running time is independent
of NTA sizes, and very fast (within 1ms for two large NTAs). Figure 7
only reports the running time for parallel composition of NTAs,
with the number of NTAs varying from 2 to 300.

5.2 Back End
When evaluating the back end, we are interested in answering the
following two questions: (1) will the running time scale with the
network size, #packet classes, and NTA complexity? (2) can CODER
efficiently react to network changes?
Settings. Our experiments use the topologies from SNAP [2], as
shown in the left part of Table 5. Here, “demand” refers to the end-
to-end bandwidth requirement for a packet class. Therefore, in the
following we will use #demands and #packet classes interchange-
ably. For NTA, we use dns-defense, the parallel composition of
defense and DNS-tunnel-detect in Table 3, which specifies two
random waypoints, consumptions on one resource, and three vari-
ables. We apply dns-defense to 10% of all packet classes in each
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Table 5: Compiling dns-defense on collected topologies

topo. #sw #edges #demands P1 P2 P3 P4 total

Stanford 26 92 20736 0.44s 0.40s 0.73s 24.82s 26.39s
Berkeley 25 96 34225 3.37s 1.38s 1.57s 36.13s 42.45s
Purdue 98 232 24336 1.54s 0.33s 1.36s 37.79s 41.02s

AS 1755 87 322 3600 0.59s 0.54s 1.10s 8.96s 11.19s
AS 1221 104 302 5184 0.79s 1.19s 1.17s 11.95s 15.10s
AS 6461 138 744 9216 2.79s 27.34s 8.79s 26.07s 64.89s
AS 3257 161 656 12544 4.03s 21.70s 12.24s 46.82s 84.79s

P1: path graphs construction, P2: path candidates generation,
P3: path clustering, P4: MILP creation and solving

topology, and just assure the basic routing and the bandwidth reser-
vation for other packet classes. Applying the policy to more packet
classes is possible while it is uncommon to route all packet classes
through a single switch (for variable consistency), and there may
not be a solution. By using 10% of packet classes, we can guaran-
tee that there is at least one solution for the selected waypoints
and packet classes. We apply an adaptive threshold in the path
generation process, by only collecting paths with no more than
𝑠𝑡𝑝 +3 hops for each path graph, where 𝑠𝑡𝑝 is the length of shortest
path. In each path cluster, we randomly select 10 paths from the
same path graph to reduce the MILP size (we used experiments to
validate that 10 paths suffice for obtaining a solution, and a similar
phenomenon is reported in SOL [25]).
Breakdown of compilation time. Table 5 reports a breakdown
of compilation time of dns-defense. where we can see the total
compilation time is within 100s for all topologies. As a compari-
son, SNAP consumes 380s for compiling dns-tunnel-detect (i.e.,
dns-defense without waypoints) on AS 3257. In addition, due to
the parallelism in the back end, the speed of each phase grows
linearly with the #cores, which is not possible for pure MILP ap-
proaches [10, 42]. CODER will get faster if more packet classes
are involved in the stateful policies. This is because more stateful
packet classes will lead to more and much smaller path sets, which
actually accelerates the problem solving.
The impact of topology size and #packet classes. The running
time of back end will be impacted by the #packet classes which de-
termines the #path graphs, and the topology size which determines
the size of each path graph. We synthesize 5 topologies with 10–250
switches using IGen [37], and randomly generate 100–10K packet
classes. Figure 8 shows the compilation time, where we can see
the time grows linearly with the #packet classes but exponentially
with the topology size. Again we argue that the parallel feature
in CODER’s back end can largely tame the overhead explosion;
deploying a 10-server cluster can bring a reduction of one magni-
tude of the compilation time. Besides, we can apply other heuristic
parameter to control the problem size, e.g., the cutoff threshold
in path generation and clustering. Moreover, the full-compilation
only happens in bootstrap stage, and we can apply the proposed
heuristics when handling continuous network changes (see the last
experiment).
The impact of NTA complexity. As the real programs in Table 3
are relatively small, we synthesize a large NTA by either-or com-
posing dns-defense with itself. Since we deliberately choose not
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to merge equivalent nodes, the size of path graph grows exponen-
tially. Figure 9 shows a quite stable compilation time for the campus
topologies. The reason is that in each path cluster, we cut off the
paths from the same path graph to a fixed number of 10, so the
MILP size is stable no matter how complex the path graph is. Note
that in practice, compositions will not significantly enlarge the path
graph since equivalent nodes can be merged. As a reference, the
path graph created by parallel composing all programs in Table 3
on Stanford topology has 8K nodes and 42K edges, while the 50-
either-or-composed dns-defense produces a path graph with 12K
nodes and 60K edges on Stanford topology, which can be solved
within 50s. This means CODER can compile NTAs of real programs
in moderate time.
Reacting to network changes. In cases of network updates like
link failures, CODER only needs to re-compile the NTA for impacted
packet classes. Thus, the recompilation overhead depends only on
#impacted packet classes. Here, we use the NTA of dns-defense
on the IGen 80-switch topology with 10K demands, and after com-
puting a solution, we randomly fail one of the links. We observe
that one link failure can impact 93 packet classes on average, and
Figure 10 reports that CODER can re-compile the NTA within 1.6s
for all cases. This means that CODER can fast react to network
changes with incremental compilation.

6 LIMITATIONS AND DISCUSSION
Completeness and correctness NTA aims to be full-expressive
for all NPLs, which is extremely difficult, if not impossible, to
achieve. For example, currently NTA cannot express a few complex
semantics, e.g., multi-casting, bandwidth negotiation [42], latency
minimization [24]. We would explore the enhancement of NTA’s
expressiveness in our future work, and here we discuss one typical
semantics, multi-casting, in detail. Currently we restrict NTA to be
deterministic, i.e., the packet can only be processed by one switch
at the same time. As a result, NTA cannot express multi-casting
actions, since they would activate multiple transitions for the same
packet. Surely we can transform the non-deterministic NTA into
a deterministic one, but such process would break the mapping
between NTA nodes and the physical switches.

On the other hand, the correctness of the compilation process in
CODER can be easily verified, as the composition handles the phys-
ical meanings of the NTA transitions, and the back-end compilation
is well described with an MILP.
The optimality of compilation. The different compilation tech-
niques used in the compiler may impact the optimality of the output
solution, e.g., the average number of hops for each flow, the total
number of data plane rules, the usable bandwidth of each link. In
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general, the heuristics used in CODER narrow the solution space
for better compilation speed, thus might lower the optimality of the
final output. However, we argue that if those metrics are critical to
the operators, it could be easy to add them into the constraints/ob-
jectives of the MILP, which will ensure the generated solution can
meet the requirements. In sum, this is a trade-off between the com-
pilation speed and optimality of the solution, and CODER actually
offers such flexibility to the developers and operators.
Per-packet stateful processing. The variable NTA employs is
persistent at the NDP switch, while there exists the per-packet vari-
able that traverses the network with the packet, e.g., FlowTags [19].
NTA can support such variables by loosing the constraint of placing
them; only variables for the same packet class should be placed at
the same switch.
Too many variable guards. The #guard results determine #NTAs
in an NTA group. Due to the product-composition effect, the #NTAs
could quickly grow to an unacceptable number if too many variable
guards are involved. However, we note that multiple NTAs are
necessary, only if the routing paths or resource consumptions vary
to the guard results; otherwise, we need not create the second NTA,
but just reuse the variable placement in the first one. For example,
Figure 2d and 2e correspond to the same routing path, so we can
just create and compile the former one, and place !g1 at the same
switch with g1. Currently, most stateful semantics are in an end-
to-end way, which means they will not create extra NTAs. In this
way, we believe the risk of explosive #NTAs is minor.

7 RELATEDWORK
NPLs use formal representations to carry their semantics. NetKAT [9,
22] is the first to use regular expressions for describing the end-to-
end network behaviors, which is based on Kleene algebra with Tests
(KAT) and make the network semantics sound and complete. Mer-
lin [42] also express the path requirements with regular grammar,
and extends them with bandwidth requirements. Kinetic [28] uses
Finite State Machine to capture the dynamic semantics of network.
SNAP [10], based on the one-big-switch model, uses the xFDD to
express the stateful end-to-end network behaviors. While these
representations are expressive for specific programming purposes,
the proposed NTA draws most of their merits, making it suitable
for serving as the IR for NPLs.

Specifically, NTA can fully cover a broad range of semantics in
previous NPLs, including forwarding the packets [21, 32], reserving
the resource [39, 42], and stateful operations [10]. Apart from the
above static semantics, there also exists the dynamic semantics
that negotiate the packet behaviors and/or network resource in the
runtime, e.g., bandwidth adjusting [42], latency minimization [26].
Currently, NTA cannot express those dynamic semantics (§6).
Program interoperation, i.e., running cross-language programs
in a single network, is a highly desired feature, which previously
is only achievable for the programs written in the same NPL [10,
12, 32, 35, 44]. CoVisor tries to compose the NDP rules compiled
from programs written with different NPLs [27]. However, due to
semantics loss in NDP rules, it can only merge the actions from
compatible rules (e.g., a forwarding rule and a counting rule), or
overwrite others with the highest-priority rule. Unlike the above
approaches, CODER composes the programs at the IR level. Since

NTAs retain the original intents of the programs, the composition
will not lose any of the semantics. There are approaches to compose
the dynamic semantics [11, 24], and CODER currently does not
support this feature as NTA cannot express those semantics.
Extended automata are proposed for different purposes, e.g., timed
automaton for modeling real time systems [14], and cost automaton
for advanced routing [8]. The proposed NTA extends DFA into from
another perspective, i.e., mapping the nodes and transitions into
switches and actions, which makes it expressive for networking
scenarios.
Target-independent compilation in previous works mainly fo-
cuses on NDP [16, 33, 45], which starts from the low level (e.g.,
OpenFlow rule) to produce an even lower-level representation (e.g.,
TCAM entry), while CODER aims to set a middle representation be-
tween the high level (NPL) and low level (NDP). SOL [25] proposes
a set of APIs to realize varied optimization objectives to unify the
compilation process from the language level, which does not sup-
port other NPLs, making it actually another NPL. In contrast, the
front ends in CODER are lightweight, so diverse NPLs can be easily
translated into the unified NTAs, where the compilation modules
are reused.

8 CONCLUSION
This paper motivated the need to modularize the compiler of net-
work programming languages with Intermediate Representation
(IR). We proposed such an IR based on NTA, and designed a modular
compiler named CODER. We prototyped CODER and evaluated it
with real and synthetic programs on various networks. The results
showed that CODER is both efficient and scalable in compiling
network programs. We note that although CODER might not be
the silver bullet for serving all the NPLs and NDPs, there still exists
lots of value in looking for a proper IR to modularize the compiler,
where CODER with NTA can be seen as the first step.
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