
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Compiling Cross-Language Network Programs
Into Hybrid Data Plane

Hao Li , Peng Zhang , Guangda Sun, Wanyue Cao, Chengchen Hu, Member, IEEE,

Danfeng Shan , Member, IEEE, Tian Pan , and Qiang Fu

Abstract— Network programming languages (NPLs) empower
operators to program network data planes (NDPs) with unprece-
dented efficiency. Currently, various NPLs and NDPs coexist and
no one can prevail over others in the short future. Such diversity
is raising many problems including: (1) programs written with
different NPLs can hardly interoperate in the same network,
(2) most NPLs are bound to specific NDPs, hindering their
independent evolution, and (3) compilation techniques cannot be
readily reused, resulting in much wasteful work. These problems
are mostly owing to the lack of modularity in the compilers,
where the missing part is an intermediate representation (IR) for
NPLs. To this end, we propose Network Transaction Automaton
(NTA), a highly-expressive and language-independent IR, and
show it can express semantics of 7 mainstream NPLs. Then,
we design CODER, a modular compiler based on NTA, which
currently supports 2 NPLs and 3 NDPs. Experiments with real
and synthetic programs show CODER can correctly compile
those programs for real networks within moderate time.

Index Terms— Network programming language, intermediate
representation, software defined networks, hybrid data plane.

I. INTRODUCTION

W ITH the advance of Software Defined Networking
(SDN), many languages (Frenetic [2], Pyretic [3], etc)

have been proposed for programming computer networks.
While the network data plane (NDP) protocols like Open-
Flow and P4 program the single switch, these languages,
referred as network programming languages (NPLs) aim to
compose the network-wide behaviors, which offer operators

Manuscript received December 17, 2020; revised August 14, 2021 and
November 23, 2021; accepted November 23, 2021; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor F. Dressler. This work was sup-
ported in part by the National Natural Science Foundation of China under
Grant 62172323 and Grant 61902307 and in part by the Fundamental Research
Funds for the Central Universities. The preliminary version of this paper is
published in [1] [DOI: 10.1145/3386367.3432063]. (Corresponding author:
Peng Zhang.)

Hao Li, Peng Zhang, Wanyue Cao, and Danfeng Shan are with the
School of Computer Science and Technology, Xi’an Jiaotong University,
Xi’an 710049, China (e-mail: hao.li@xjtu.edu.cn; p-zhang@xjtu.edu.cn;
wanyuecao@stu.xjtu.edu.cn; dfshan@xjtu.edu.cn).

Guangda Sun was with the School of Computer Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China. He is now with the Depart-
ment of Computer Science, National University of Singapore, Singapore
119077 (e-mail: sung@comp.nus.edu.sg).

Chengchen Hu is with NIO Inc., Shanghai 201804, China (e-mail:
huc@ieee.org).

Tian Pan is with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Beijing
100876, China (e-mail: pan@bupt.edu.cn).

Qiang Fu is with the School of Computing Technologies, RMIT University,
Melbourne, VIC 3000, Australia (e-mail: qiang.fu@rmit.edu.au).

Digital Object Identifier 10.1109/TNET.2021.3132303

with an unprecedented way to program NDPs. Different from
general-purpose languages shipped with controllers (e.g., Java
in Floodlight [4] and Python in Ryu [5]), NPLs provide
high-level constructs that can greatly facilitate composing
complex functions like path selection, monitoring, QoS, etc.

Multiple NPLs and NDPs coexist in modern networks.
Recent surveys [6], [7] report more than 15 NPLs including
Pyretic [3], Merlin [8], SNAP [9], PGA [10], and more than 10
NDPs including OpenState [11], NetConf [12], P4 [13].
We believe such diversity in both NPLs and NDPs will persist
in the short future, due to the following reasons.

First, each of NPLs and NDPs offer different sets of fea-
tures. For example, Merlin can specify a routing path with
waypoints [8], while SNAP can realize a stateful monitoring
function [9]. These two NPLs are designed for different man-
agement tasks in the first place, and cannot be simply replaced
with one of them. Another example could be POF [14] and
OpenState [11], where the former extends the match fields of
OpenFlow and the latter supports stateful operations. These
two NDPs also cannot be replaced with each other.

Second, deploying a unified NPL/NDP can be risky and
costly. As currently there is not a “perfect” NPL/NDP that can
prevail over others, deploying a unified NPL/NDP is risky: it
is very likely we need to update it very frequently. Moreover,
even recent NDPs like P4 [13] claim that they outperform the
OpenFlow-related ones in almost all perspectives (programma-
bility, flexibility, forwarding performance, etc), the high cost
still obstructs their broad deployment in the Internet and data
centers. Such cost includes not only the much higher price of
the devices, but also the cost for training the operators, and
the potential risks of introducing new vulnerabilities and bugs.

The long-term coexistence of multiple NPLs and NDPs
means the operators may need to deploy cross-language pro-
grams in the single network, port programs into different
data planes, or even more complex – run cross-language
programs on a hybrid data plane that consists of heterogeneous
devices. Unfortunately, existing NPL compilation systems are
monolithic and offer neither of these features. In the following,
we first elaborate the problems resulting from the de facto
monolithic compilers, then propose our approach with key
contributions highlighted.

A. Problems of Monolithic Compilation

Existing NPL compilers translate programs all the way to a
specific NDP, as shown in Fig. 1a. Such monolithic approach

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8776-6911
https://orcid.org/0000-0001-7721-2675
https://orcid.org/0000-0003-0852-5955
https://orcid.org/0000-0001-7718-0669

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. CODER modularizes the compilation into three stages: front end
(FE), middle end (ME), and back end (BE).

can raise many problems when handling the coexistence of
multiple NPLs and NDPs.

Cross-language programs cannot interoperate. Due to the
diversity of NPLs, the operator may have to run cross-language
programs for having all their merits, which is realized by
the program composition technique. The correct compositions
require to retain complete semantics from all programs, which
however is only achievable in single-language programs [3],
[9], [10], [15], [16], because none of them can be aware of oth-
ers’ semantics. For cross-language programs, the only possible
way is to merge the NDP configurations (e.g., OpenFlow rules)
that are compiled individually from their own NPL compilers.
However, this cannot be achieved in a safe way due to the rule
conflicts. Consider two simple programs, one sets a waypoint
B, and the other wants to count the packet in an end-to-end
way. Their compilers may interpret these two intents to two
paths, A → B → D, and A → C → D, respectively. These
two paths raise a rule conflicts in A, and cannot be merged
or overwritten directly, because B is a waypoint of the first
program, and C could be the counting switch of the second.

CoVisor [17] addresses this problem by assuming all the
rules are either (1) compatible, e.g., a forwarding rule and
a counting rule can naturally operate on the same traffic,
or (2) manually prioritized, e.g., a forwarding rule from a
firewall program can overwrite another forwarding rule from
a routing program. However, most programs would generate
the forwarding rules, which can be incompatible for the same
traffic. Moreover, even the operators can manually prioritize
all the programs, the overwriting operation can only provide
limited composition ability, e.g., it cannot generate a possible
new solution like A → B → C → D. Finally, CoVisor will
fail on merging different NDP configurations.

NPLs and NDPs cannot independently evolve. As current
NPL compilers compile the program all the way down to a
specific NDP, it is costly for an NPL compiler to support every
NDP, especially a new one. Similarly, NDPs are also evolving
for serving complex operations: e.g., fine-grained flow control,
stateful operations. However, existing NPLs barely support the
newly designed NDPs, because of the out-of-date abstractions
they rely on, e.g., many NPLs [2], [18], [19] are built upon
the NetCore abstractions [20], which does not support stateful
operation. This close binding between NPLs and NDPs greatly
hinders their independent evolution.

Compilation modules cannot be reused. Since each NPL
compiler only concerns its own high-level constructs and
semantics, the compilation techniques they employ are not
reusable for other NPLs. For example, FatTire focuses on
finding the backup rules on the topology, thus a breadth-first
searching is used [18]; while SNAP must solve the variable
placement, which conducts a jointly decision problem of
mixed integer liner program (MILP) [9]. As a result, the NPL
designer has to implement the full compilation process.

Hybrid data plane cannot be managed uniformly. Sim-
ilarly to the reason that cross-language programs could be
deployed for drawing all of their merits, the network operators
might deploy data plane devices that following different NDP
standards in a single network [21]. This is quite reasonable,
as the operators would incrementally deploy new devices in
their networks, and expect they can work seamlessly with the
existing ones, especially from the perspectives of management.
However, since current NPL compilers only support a single
specific NDP, none of NPLs can program a hybrid data plane.

B. Our Approach and Contributions

To break the monolith above, we intuitively draw an analogy
with the successful PC compiler, which also compiles the pro-
grams written in high-level languages (e.g., C) into low-level
instructions (e.g., assembly). One critical missing part of the
NPL compiler is that PC compilers firstly compile the source
code to an intermediate representation (IR), before further
translating it to target code. To this end, we propose network
COmpiler Design with intermediatE Representation (CODER),
which introduces the IR concept into network compiler, and
modularizes the compilation into three stages (Figure 1): a set
of front ends translate cross-language programs into a unified
IR, a middle end conducts compositions, and a set of back
ends translate the IR into various NDP configurations.

By decoupling the NPLs and NDPs, the aforementioned
problems can be naturally addressed: (1) the programs are
compiled into the IR that retains all intents, which can be
composed and compiled into NDP configurations without
causing any conflicts; (2) a new NPL only needs to implement
a thin front end for supporting all NDPs, and a new NDP can
implement a lightweight back end for supporting all NPLs;
and (3) IR sets a unified playground of the compilation, so that
most existing compilation techniques can be reused, and new
techniques like hybrid-data-plane support can be developed
based on the unified IR.

Based on this basic idea, we present the challenges of
realizing CODER, and state our research contributions.

Contribution 1: An expressive and unified IR
(Section III-A). The key to make the compiler modular
is an expressive IR that can fully cover the semantics of
NPLs. However, The heterogeneous constructs employed in
NPLs make this design difficult. For example, Merlin uses
automaton to express the path waypoints but without any
stateful semantics [8]; SNAP supports stateful operations
using one-big-switch abstraction that has no internal path
information [9]. These constructs are fundamentally different
for serving various NPL features. Hence, it is not possible to

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: COMPILING CROSS-LANGUAGE NETWORK PROGRAMS INTO HYBRID DATA PLANE 3

create a proper IR by simply reusing, merging, or extending
the existing heterogeneous representations.

CODER introduces Network Transaction Automaton (NTA),
a new automaton that can express the semantics of exist-
ing (and possibly future) NPLs. The key difference of
NTA is that we incorporate network resources and state
variables into its transitions. This enables NTA to express
not only path constraints, but also resource constraints
and stateful operations, in a fine-grained, hop-by-hop way
(see Section III-B).

Contribution 2: Compositions without semantics loss
(Section III-C). Even having an expressive IR, the com-
position operations on it are still undefined. We notice that
the conventional techniques e.g., composition of deterministic
finite automaton, forwarding diagram [9], policy graph [10],
one-big-switch [3], [17], cannot be directly reused for this
newly designed representation.

CODER designs a set of composition operators that respect
the physical meanings of each element in the transition, so
that NTAs can be composed without any semantics loss.

Contribution 3: Practical and feasible compilation
(Section III-D). A mature solution for compiling the rich
semantics supported by the desired IR is to conduct an
optimization problem. However, creating and solving MILP
could be very time-consuming, as the number of constraints
of MILP would exponentially grow with complexity of intents.
What is worse, though many MILP solvers can leverage
multiple CPUs [22], [23], they do not guarantee a performance
boost, due to the large overhead of synchronization and
timing [24], [25].

CODER applies a series of heuristics to greatly reduce
the problem scale, and make the solving process highly
parallel. We then formulate a much smaller MILP, which
can be solved in moderate time even for a large network.
Note that mapping the complex intents into the large net-
works is an extremely difficult problem, and CODER’s goal
is not to fundamentally conquer such problem, instead, its
focus is to make the compilation much more feasible (i.e.,
can finish within moderate time) for real intents in real
topology.

Contribution 4: Unified compilation for hybrid data
plane (Section III-E). The major challenge for program-
ming the hybrid data plane is the lack of the semantics of
different NDPs, i.e., what capabilities do they enable for
processing the packets. For example, OpenFlow can read
limited fields of packets, while P4 can extract arbitrary
fields; the compiler has to know such capability difference to
properly decompose the high-level intent into heterogeneous
devices.

We propose a simple abstraction to describe the capability
of different NDP standards. CODER then modifies its back
end based on the abstraction, and compiles the IR code into
the hybrid data plane, such that each device is capable for
performing the actions assigned to it.

Our case study and evaluations show that NTA can express
semantics of 7 mainstream NPLs, and can be compiled into
3 different NDPs (Section IV); and the compilation of CODER
is 4× faster than the state of the art (Section V).

II. CODER OVERVIEW

In this section, we will first take a glance at the proposed IR
in CODER, and then use a concrete example to walk through
the whole compilation process.

A. A First Look at the IR

Our design of IR is based on the following two observations.
First, we observe that the semantics of existing NPLs can be
grouped into three classes: (P1) path control with waypoints,
e.g., traversing a firewall, (P2) path control with resource
constraint, e.g., bandwidth reservation, and (P3) stateful packet
manipulation with variables persistent on NDP, e.g., counting
all SSH packets at some switch. Second, we observe that
operators expect to specify the above semantics in the finest
grain, i.e., hop-by-hop. A representation combining above two
features could provide an unprecedented expressiveness e.g.,
traversing the firewall before counting the packets, reserving
less bandwidth after traversing a load balancer, which cannot
be realized by any existing NPL. This ensures the high
compatibility for future NPLs.

With the above observations, we show how to design an
IR for NPLs. Firstly, we note that the Deterministic Finite
Automaton (DFA) is a good starting point, as it can easily
represent the path control semantics of (P1): proceeding a
transition corresponds to the action of forwarding to a next
hop. Secondly, to express the resource constraints of (P2),
we add resource consumption actions into DFA transitions:
proceeding a transition will consume the specified resources
at the current switch. Then, resource constraints like reserving
an end-to-end bandwidth can be expressed by adding the
bandwidth consumption into each DFA transition. Finally, for
expressing the stateful operations in (P3), we embed variable
operations, i.e., checking and updating variables, into DFA
transitions, so that the stateful manipulation can be assigned
to specific switches. Putting the above together, to distinguish
from traditional DFA, we refer to a transition in our new
automaton as a network transaction, which is an atomic set
of operations including forwarding to a next hop, consuming
specified resources, and checking and updating variables.
Then, we refer to our new automaton equipped with such
transitions as Network Transaction Automaton (NTA).

B. A Walk-Through Example

Now we walk through the compilation process of CODER
using two real programs written in Merlin and SNAP.

Using NTA to express programs. Fig. 2a shows a Merlin
policy [8], which specifies a waypoint B for packets sent
from ip1 to ip2, while consuming 100MB/s bandwidth along
the above path. Fig. 2c is the corresponding NTA for this
policy. Note that this NTA binds to a certain packet class
srcip=ip1&dstip=ip2, implying the NTA only deals with
packets sent from ip1 to ip2. Each transition in the NTA
carries a three-tuple, in the order of next hop, resource
consumption, and variable operation. This NTA has a start
state (node 0) indicating the packet is entering the network,
and an end state (node 3) indicating the packet has left the

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. The compilation process in CODER. (a)–(b): Two programs written in Merlin and SNAP; (c): NTA for Merlin policy; (d)–(e): NTA group for SNAP
program; (f)–(g): Composed NTA group; (h): A network with 125MB/s bandwidth per link.

network. The loops on node 1 and 2 along with the transition
1 → 2 realize the waypointing and NTA explicitly uses e
to denote the destination host in transition 2 → 3. bw is a
2-dimensional array indicating the available bandwidth of
each link, The consumption r1: bw[h′][h]�100MB/s
means that a bandwidth of 100MB/s is consumed on the
link from the current switch h′ to the next hop h. Since
r1 appears in all transitions (except those connect to start and
end nodes), this NTA reserves 100MB/s for the end-to-end
connection.

Fig. 2b shows a SNAP program [9], which counts the first
1000 packets sent from ip1 to ip2 to ensure the two hosts
are properly connected. Instead of a single NTA, this program
corresponds to a NTA group, as shown in Fig. 2d and 2e,
which maps to the two network transaction spaces i.e.,
counting+routing (g1), and routing only (!g1). Since compil-
ing an NTA will generate one transaction sequence, we need
to express all possible variable checking results using a group
of NTAs. Note that this is an end-to-end counting program,
so NTAs should consider all possible locations triggering the
counting operation, i.e., in middle of the network (transition
1→ 2), or at the last hop (transition 1→ 3).

Composing programs at NTA. Since NTA is
language-agnostic and has the complete semantics from
the programs, it is a sweet spot to compose cross-language
programs without causing conflicts. CODER achieves the
composition of two programs by product-intersecting their
respective NTAs or NTA groups (see Section III-C).

In our case, the composition of the two example pro-
grams is a new NTA group consisting of the intersection
of Fig. 2c and 2d, and the intersection of Fig. 2c and 2e.
The former is shown in Fig. 2f, where num_pkt is checked
and updated exactly once along the path traversing B. The
other NTA is much the same with Fig. 2f except (g1,u1) is
replaced with !g1. The composite semantics can be stated as
“forwarding the packet class with 100MB/s bandwidth while
traversing B, and counting the first 1000 of them”.

Compiling NTAs. CODER compiles the NTAs in two steps:
(1) generating a valid transaction sequence, and (2) mapping
each transaction in the sequence into NDP configurations.

The first step is challenging: to find a valid transaction
sequence, CODER needs to consider three types of constraints:
(1) path constraints: the path must traverse the specified
waypoints; (2) resource constraints: the resource consumption
should not exceed the available resource, e.g., path A →
B → D in Fig. 2h is invalid for Fig. 2c if another NTA
consumes 50MB/s bandwidth on link (A, B); (3) consistency
constraints: the same variable should be operated at the same
switch in order to avoid synchronization, e.g., Fig. 2d and 2e
must check and update num_pkt at the same switch. Finding
a feasible solution for above constraints might take long time
with complex NTA or large topology. Fortunately, this step is
NDP-independent, thus can be reused for all NDPs. In other
words, the factual back end contains only the second step,
which is lightweight and can be easily adopted for a new NDP.

To accelerate the first step, CODER applies a series of
heuristics instead of directly creating a large MILP, e.g., path
selection and clustering. These heuristics can significantly
reduce the problem scale, and more importantly, make the
problem solvable in parallel.

Supporting hybrid data plane. To enable interoperation in
the hybrid data plane, a capability abstraction of different NDP
standards is a necessity, which should describe the processing
capabilities of each kind of NDP device, including which kind
of packets can be processed (identified) by the devices, which
sets of actions can be performed on the packets, etc.

Given the topology and the device capabilities, CODER
applies more heuristics and constraints in its back end to gener-
ate a proper solution, which ensures that (1) all operations are
assigned to capable devices e.g., the counting operations can
be put on either OpenFlow or P4 switches, while the stateful
operations can only be carried by the latter; and (2) the device
capabilities are maximally leveraged, e.g., even OpenFlow
switches may only identify partial fields of an arbitrary-defined

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: COMPILING CROSS-LANGUAGE NETWORK PROGRAMS INTO HYBRID DATA PLANE 5

flow, we can still leverage their forwarding capabilities to meet
the high-level intents (see Section III-E).

III. DESIGN OF CODER

In this section, we detail the design of CODER. Specifically,
we first formally define NTA (Section III-A), and show how
NTA can express various semantics (Section III-B). Next,
we present the middle end that composes multiple NTAs
(Section III-C), and the back end that efficiently enforces
NTAs in the NDP (Section III-D). We finally discuss the
capability framework for different NDPs, and adopt the back
end to support the hybrid data plane (Section III-E).

A. Network Transaction Automaton

Network transaction. A network transaction is a three-
tuple, h r d , where h is the next hop to be forwarded,
r is the consumption of the network resources, and d is a
stateful operation that first checks the variables against a set
of predicates, namely guard, and then modifies the variables
with a set of operations, namely update.

Network transaction automaton. A network transaction
automaton (NTA) is defined as a 5-tuple (Σ, Q, q0, a, T),
where Σ is the set of all possible network transactions, Q
is the set of NTA nodes, q0 ∈ Q is the start node, a ∈ Q is
the end node, and T is the set of transitions. Each transition
t ∈ T is a 3-tuple (q, σ, q′), where q and q′ are the NTA
nodes, and σ ∈ Σ is the network transaction.

As an analog, NTA can be viewed as the “language” for
specifying network transaction sequences that comply with the
program intent, and the compilation of NTA is to produce one
“sentence” under the constraints of network topology, network
resources, and variable consistency.

Elements in NTA. NTA involves four major elements: the
next hop, the resource, the variable, and the packet class.

The next hop represents the forwarding target(s). The oper-
ator can specify “any switch” with “dot”, a specific switch if
it is known to her, e.g., switch B, or a kind of switches with a
mnemonic, e.g., DPI , which can be replaced by real switches
according to the network configurations in the back end.

The resource represents the static constraints of the network,
e.g., link bandwidth bw in Figure 2c, which are shared
by all NTAs. Resources are non-negative, so CODER must
respect this nature through the compilation, by considering
all consumptions on the same resource. The consumptions
are enforced off-line using specific configurations, e.g., meter
action in switch for reserving bandwidth. In other words, the
on-line processing is irrelevant to the resources.

The variable records the network states, which is per-
sistent on the data plane switch [9], e.g., num_pkt in
Figure 2d and 2e. The guard and update of variables will be
translated into matching fields and actions in data plane rules,
respectively. There could be different network transaction
spaces depending on the results of variable guard, so a group
of NTAs will be generated to handle each of them, as shown
in Figure 2d and 2e. In contrast of resources, CODER does
not care about how to check and update the variable, but only
where to perform it for consistency concerns.

Fig. 3. The NTA that constrains the utilization of switches. nf is the resource
array of each switch’s flow entry capacity.

The packet class binding to the NTA is a packet header
filter. The filter must specify the source and destination IP
addresses, because they determine the concrete entrance and
exit in the network. Additionally, the filter must be assigned
statically, i.e., it can/will be checked at every switch along the
routing path. On the other hand, the header filter that depends
on a variable will be treated as a variable guard. For example,
if susp is variable stored at a certain switch, srcip=susp
is a variable guard, because the source IP address must be
checked at the same switch with susp.

NTAs from the same group specify different transaction
spaces for the same packet class, while NTAs from different
groups should have orthogonal packet class; otherwise the
overlapped part should be composed in the middle end.

B. Front End: Expressiveness of NTA

Due to the simplicity of NTA, the front end of CODER is
quite thin and easy to implement (see Section IV-B). Instead,
the major concern is whether the NTA is expressive enough
to cover the NPL semantics. A recent survey classifies those
semantics into three catalogs [6]: (1) traffic engineering that
optimizes the routing paths, e.g., waypointing [26], QoS [8],
failure tolerance [18]; (2) virtualization that abstracts a much
simpler virtual topology for the operators [9], [27]; and
(3) monitoring that collects the telemetry data, e.g., #packets
traversing the network [3], [28]. In the following, we show
NTA is capable for expressing these and even more complex
semantics. We omit the binding packet class in all following
examples.

Traffic Engineering (TE) includes waypointing, QoS, and
failure tolerance. First, due to its DFA form, NTA naturally
supports all path requirements compliant with regular grammar
for waypointing. For QoS, NTA can express the constraints
of network resources using consumptions, e.g., Merlin’s NTA
in Figure 2c. For fault tolerance, NTA can tolerate k link
failures in two ways: (1) finding k disjoint paths for each
packet class by setting a mutex resource of each link; or
(2) finding Ck

n paths for each packet class (n is #links), by
taking out k links from the topology, i.e., initializing a zero
resource for those links (see Section IV-A). Figure 3 illustrates
another NTA for TE: each switch can install rules for at most
100 flows. This semantics can be used to balance the flow table
utilization of switches. Specifically, nf is a map of resources,
which represents the capacity of switches. NTA initializes each
element of nf to be 100 and consumes it along the path, which
constrains the number of installed flows.

Virtualization (VT) hides the low-level network details, so
that programmers can install the micro-flow rules on a higher-
level abstraction. There are typically two kinds of VT: one-
to-many and many-to-one. For the first, since NTA nodes also

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. The NTA group for heavy-hitter-detection semantics, which counts
#flows sent from a certain IP, and tags it as a heavy hitter if the counter
reaches a threshold.

have a one-to-many correspondence to the switches, NTA can
directly use .* transitions to support such virtualization. For
example, node 1 in Figure 2d maps to the one-big-virtual-
switch that performs the counting task. For the many-to-one
VT, the mappings are explicitly specified by the operators [17],
so NTA can leverage the devirtualized result from the native
compilers, i.e., network transaction at a certain switch, and
maps an NTA node to that switch.

Monitoring (MT) records and updates network statistics,
e.g., #packets of a matching flow. NTA supports such stateful
semantics using network variables. Consider a heavy-hitter-
detection semantics which identifies the hosts establishing too
many flows, this semantics maps to two transaction spaces,
and is addressed by the two NTAs in Figure 4: Figure 4a
counts (uc) and tags the flow (uh), by assuming the guard of
threshold succeeds (gc); Figure 4b handles the negative results
(!gc) which counts the flow only. Here, the NTAs bind to all
pairwise packet classes with tcp.flags=SYN, which can
be extracted by a programmable parser [13].

Complex semantics. Thanks to the hop-by-hop expressive-
ness, NTA can represent the combination of above semantics.
For example, we could fix where to count the packets in
Figure 2d by setting a waypoint. Moreover, we could con-
catenate Figure 2d with Figure 2c, which produces a new
semantics: the first 1000 packets must traverse B (see Figure 5
in Section III-C). These semantics, where the stateful operation
depends on path, or the path depends on stateful contexts (the
value of num_pkt), cannot be expressed by either the one-
big-switch abstraction [9] or regular expression [8].

C. Middle End: Modular Compositions

At the middle end, CODER can manipulate NTAs in a
language-independent way. We currently focus on program
composition, one of the most needed features. For simplicity of
presentation, in the following we just consider how to compose
two NTAs. Composition of two groups of NTAs can be viewed
as a product composition of each NTA in the groups. Let
the two NTAs be n1 and n2, and CODER aims to offer the
following three types of program compositions.

• Parallel composition (+) produces an NTA that accepts
n1 and n2 simultaneously. This is perhaps the most
important type of composition, since it enables cross-
language programs to manipulate the same traffic.

• Sequential composition (�) produces an NTA that per-
forms n1 and n2 sequentially. This composition can be
used when one program is triggered by another, e.g.,
counting the suspicious flows identified by a firewall.

Fig. 5. Sequential composition (Fig. 2d�Fig. 2c).

• Either-or composition (�) produces an NTA that per-
forms exactly one of n1 and n2. This is useful for
load-balancing traffic among identical network functions,
e.g., traversing one of multiple firewalls.

The theoretical basis of above composition is the operations
on automaton, e.g., concatenation and intersection. However,
due to the resource and stateful elements carried in NTA
transitions, directly applying the conventional operations will
result in semantic loss. In the following, we customize three
operations of NTA, which can be used to realize the above
compositions without semantic loss.

Intersection. CODER adopts the Cartesian production for
intersecting two NTAs, which realizes the parallel composi-
tion. In a nutshell, the node set of the intersected NTA is the
product of the nodes in n1 and n2, i.e., Q1 × Q2. Next, for
the new start node (q1,0, q2,0), CODER tries to produce a new
transition by merging transitions starting from q1,0 and q2,0,
and the process iterates for other nodes, as detailed below.

We say two transitions can be merged, if they carry the same
next hop, or at least one of them has a next hop of “dot”. The
merged transition will carry the same or the non-dot next hop.
For the stateful operations, the guard in the merged transition is
the intersection of the original guards, i.e., g3=g1&g2, and the
update is the union of the original updates, i.e., u3=u1∪u2.
Note that usually u1 and u2 operate on different variables,
because the network programs are independently written and
should not rely on any shared variable. The middle end would
abort and report to users when such cases detected. For
resource consumptions on the different resources, we retain
both of them; for those consuming the same resources, we use
the largest consumption to overwrite others. For example,
consider two NTAs reserving different bandwidth for the
same packet class, say 10MB/s and 20MB/s, respectively.
The parallel composed NTA should not consume 30MB/s,
because 20MB/s bandwidth has already satisfied the semantics
of both original NTAs. This principle can be expanded to other
resources, e.g., switch flow entries.

Concatenation. The sequential composition can be viewed
as the concatenation of two NTAs. The major difference
between concatenating two NTAs and concatenating DFAs is
that the start node and end node in NTA map to the network
states that the packets are not inside the network. As a result,
the concatenated NTA should not include the end node of the
left operand and the start node of the right operand.

In detail, for concatenating n1 and n2, CODER removes the
end node a1 in n1 and the start node q2,0 in n2. Next, for all
transitions pointing to a1, CODER replaces e in the next hop

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: COMPILING CROSS-LANGUAGE NETWORK PROGRAMS INTO HYBRID DATA PLANE 7

field with (•), and product-merges them with the transitions
starting from q2,0. Since the modified transitions must have a
dot next hop, the merging is ensured to be successful.

For example, when concatenating Fig. 2d (n1) with Fig. 2c
(n2), node 3 in n1 and node 0 in n2 will be removed.
Transition 1→3 in n1 will be modified as • g1,u1 , and
then be merged with transition 0→2 in n2, producing a new
transition B g1,u1 from node 1 in n1 to node 2 in n2.
By product merging all the end transitions in n1 with the start
transitions in n2, we obtain a concatenated NTA shown in
Fig. 5. Note that this process may produce a non-deterministic
NTA, and we can reduce it using conventional technique.

Symmetric difference. This operation maps to the either-
or composition, which is quite simple, as we just merge the
start nodes and the end nodes of two NTAs, and reduce the
composed NTA if necessary.

D. Back End: Enforce NTA Into Data Plane

The back end of CODER translates the set of NTAs into
rules that can be installed in the NDP. Typically, such transla-
tion can be formulated as the multi-commodity flow problem
(MCFP), which is to find a proper set of links that can form
a complete path for each flow, while satisfying the bandwidth
constraints. Many approximation and specialized algorithms
are proposed to handle this well-known NP-complete prob-
lem [29], which, however, cannot be directly adopted by the
back end of CODER. The major reason is that the MCFP
must be solved on the graph generated by the product of
NTA and the topology (see Step 1 in the following), which is
usually quite huge. As a result, solving the MCFP, even for
a small topology, can take unacceptable time. In this section,
we propose a set of heuristics to mitigate the complexity of
this process, making the back end feasible for the real NTA
and/or large topologies.

Let N be the set of all NTAs, in the following we show
how the back end generates the NDP rules in four steps and
reacts to the network changes.

1) Step 1: Constructing Path Graph: This step aims to
construct a path graph Gu for each nu ∈ N , A path graph is a
digraph where each path corresponds to a sequence of network
transactions that respect the forwarding requirements in nu,
e.g., the source/destination and the waypoints. Specifically, the
construction takes places in two stages.

(1) Transforming NTA into NFA. First, we denote the
transition h r d as hrd. In this way, we can obtain a DFA
where transitions are triggered only by h. Then, we further
transform this DFA into a Nondeterministic Finite Automaton
(NFA) Mu, by expanding all possible h. For example, the left
part of Fig. 6 shows the NFA for the NTA in Fig. 2f, where the
• (dot) transitions are expanded to all switches in the physical
network. To save space, we introduce some shorthand (e.g.,
A1 is the shorthand for Ar1). Note that transition 0→1 and
0→3 in Fig. 2f are specialized to AN , since in this stage we
have known that ip1 connects to A.

(2) Mapping the NFA to physical network. Let L denote the
set of switches in physical network, and Qu denote the set of
nodes in Mu. Then, the set of nodes in Gu is the Cartesian

Fig. 6. The path graph constructed by the NTA in Fig. 2f and the topology
in Fig. 2h (directed arrows are omitted). The thick path illustrates a path
candidate.

product L × Qu, and each node is a pair (x, y) where x is
a physical switch and y is a transition in the NFA. Let T
be an operator that extracts h from a transition in Mu, i.e.,
T (hrd) = h. Then, there is an edge from (a, q) to (b, q′) in
Gu iff: (1) (T (a), T (b)) is a link in L, and (2) (q, q′) is a valid
transition of Mu when processing b. It is easy to verify that
paths in Gu are real paths in physical network, which satisfy
the waypoint constraints. In addition, Gu retains the resource
and variable information of nu, since each node in Gu can
map back to a transition in nu.

The right side of Fig. 6 is the path graph for the example,
and the thick line S → AN → B2 → D1 → e1 shows a
candidate path: A → B (counting) → D.

Step 2: Reducing problem size in parallel. As mentioned
earlier, having all path graphs, a straightforward method is to
conduct an MILP that respectively captures the MCFP for each
Gu, with constraints on basic routing, resource invariant, and
variable consistency. However, this MILP could be too large
to be solved within acceptable time, e.g., over 30 minutes
for solving Fig. 6 (4 switches). CODER applies a series
of heuristics that can fast prune the infeasible solutions,
before feeding them to MILP. These heuristics can be easily
parallelized, so that can benefit from the multiple CPUs.

(1) Generating path candidates. CODER enumerates all
simple paths (i.e., no loops) for each path graph in parallel.
We can use A∗ heuristic to further cut off the paths with too
many hops that are not usable in practice. Each path graph
will select exactly one path to form a feasible solution.

(2) Analyzing variable consistency. The dependent variables
should be placed at the same switches; otherwise, multiple
switches will have to synchronize the values of dependent
varibles through the packets or the centralized controller, both
of which would incur large overhead in runtime. Instead of
directly feeding all paths to MILP and finding a combination
that respects the variable consistency, CODER prunes the
invalid variable placements on the candidate paths beforehand.

Considering two path graphs G1 and G2, one is the
for the counting case shown in Fig. 6, and the other is

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I

VARIABLES INVOLVED IN MILP

TABLE II

CONSTRAINTS OF THE MILP

the non-counting path graph. G2 is very similar to G1 by
replacing (A|B|C|D)2 with (A|B|C|D)3, which stands for
(A|B|C|D)d2r1 (d2 =!g1). We can easily find two path
candidates from G1, p1 : AN → B2 → D1 and p2 : AN →
B1 → C2 → D1. Similarly, we have two candidates from G2,
p3 : AN → B3 → D1 and p4 : AN → B1 → C3 → D1.

Straightforward MILP will put these four paths together,
and try to find out a feasible combination. However, it is
obvious that both p1 and p3 put the variable in B, while
p2 and p4 check the variable guard in C. In other words,
it is no way that p1 and p4 can work out a solution, due to the
broken consistency. Hence, CODER clusters these paths by
the positions they put the variables, which generates a set of
path clusters, each of which ensures the variable consistency.
CODER applies a divide-and-conquer strategy for this process,
i.e., recursively merging the sub-clusters, which can be easily
parallelized. Moreover, CODER can cut off the paths from
the same path graph in the cluster; SOL reports that 5 paths
for each packet class is sufficient for respecting only resource
requirements [30].

We can respectively create one MILP for each path cluster,
then solve these MILPs in parallel, and shut the whole process
as soon as one of them finds a feasible solution.

Step 3: Creating and solving MILP. An MILP for a path
cluster takes two inputs: the path cluster P , and the resource
capacity C = {C1, . . . , Ck} for k types of resources. It outputs
a set of 0–1 variable Hi that indicates whether pi ∈ P is
selected. With the variables defined in Table I, we explain the
constraints on this problem shown in Table II.

(1) Basic routing. To ensure the connectivity for each packet
class, we select exactly one path from each path graph.

(2) Resource invariant. Each path pi ∈ P can consume
a set of the network resources. Since the network resources
are immutable and shared by all programs, we can calculate

the total impact for k types of resources by accumulating the
consumptions along pi, denoted as Ri = {Ri1, . . . , Rik}. The
constraint is to ensure that, after applying Ri for each selected
pi, each element in C is non-negative.

(3) Distinguishable operations. Considering another path
candidate p5 from G2, AN → C1 → B3 → D1, p1 and
p5 comply with the variable consistency (checking num_pkt
at B), but will confuse A, as it does not know where to forward
the packet (B or C). We call it an “indistinguishable case”,
and eliminate such cases by adding the following constraints:
the selected paths must ensure that each switch n takes the
same operations a (i.e., forwarding+variable update) for the
same matching field m (i.e., packet class+variable guard).

Step 4: Generating NDP configuration. The final step in
the back end is to enforce the selected paths, i.e., network
transaction sequences, into the NDP. To be specific, two kinds
of configurations will be generated:

(1) Switch rules. Most NDPs support the MatchAction
rule, where Match is the matching fields, mapping to packet
class+variable guard, and Action is to manipulate the packets
and network-wide variables with forwarding+variable update.
All the four elements are easy to obtain from the network
transaction sequences.

(2) Configurations consuming network resources. We pre-
define a set of configuration templates to enforce the resource
consumption. For example, for bandwidth, we can define a
meter action in the switch, or interpret it into tc policies in
the hosts. Some resources are naturally consumed, e.g., the
flow table entries are consumed by installing the rules.

This step is the only data-plane-dependent process in the
back end that should be modified when porting programs
to a new NDP. Actually, the modification is quite trivial,
since given the concrete routing path and state mappings,
this module only needs to handle the syntaxes of the target
instruction.

Reacting to network changes. A full recompilation for
each network change (e.g., a link failure) is time-consuming.
CODER uses simple heuristics to mitigate such overhead.

First, CODER collects the impacted packet classes from
the network changes, e.g., a link failure. Next, CODER
re-compiles their NTAs with following heuristics: (1) remove
the network resource consumed by the non-impacted NTAs;
(2) only solve the path cluster that has the same variable place-
ment with the non-impacted NTAs. If the network resources
are relatively sufficient, these heuristics can significantly cut
the overhead of obtaining new solution (see Section V-B);
otherwise, CODER will fully re-compile all the NTAs.

E. Back End: Support Hybrid Data Plane

The back end introduced in Section III-D assumes that
all switches in the data plane have the same capabilities,
i.e., they can perform all operations indicated by the NTAs.
This assumption could be too strict in practice, as the real
networks consist of heterogeneous devices. In this section,
we extend the back end of CODER, which compiles NTAs to a
hybrid data plane by respecting the different capabilities of the
switches.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: COMPILING CROSS-LANGUAGE NETWORK PROGRAMS INTO HYBRID DATA PLANE 9

Capability abstraction for different NDP standards. To
realize the wire-speed processing, data plane devices often
follow a compact processing pipeline, where the de facto
scheme for programmable switches is Parse+Match+Action.
In the stage of Parse, the switch parses packets with fixed
or arbitrary-defined protocols, and extracts the fields needed
for the next stage. Next, the Match stage matches the fields
with a (set of) table(s), which consists of user-defined rules.
Finally, the Action stage performs the action of the matched
rules. In the following, we analyze the processing capabilities
in these stages, and propose a simple abstraction to capture
them.

The Parse stage determines what fields can be extracted
by the switch. For example, OpenFlow switches embed a
fixed parser that can extract 44 fields from the packets [31];
while P4 switches can program the parser, which means they
can identify arbitrary-defined flows. To this end, we use a
set of 44 fields to depict the parsing ability of OpenFlow,
and a set of infinite fields to depict the parsing ability
of P4.

The capability in Match stage can be divided into two parts:
what fields can be put in the table and how multiple tables can
be organized. The first part is actually determined by the Parse
stage, since the table must and only needs to support the fields
extracted by the parser. For the second part, the multiple table
layout is widely studied in previous literature, which takes
input as the one logic table design, and outputs a physical
layout with multiple tables [32]. That is, we can directly feed
the logic rules (i.e., the output of Step 3 of Section III-D),
and leverage the existing techniques to generate the physical
layout (i.e., in Step 4 of Section III-D). In sum, we do not
need to capture the capability of this stage.

A simple abstraction to capture the capability of Action
stage is a set of the actions supported by the switches.
For example, the action set of OpenFlow contains packet
forwarding, and the action set of P4 further includes the packet
reassemble. Besides those conventional actions, we notice that
the recent proposed switches support the stateful operations.
These operations read/write not only the packet and/or the
Match table, but also a data structure storing states, e.g.,
a state table or a register. One key feature of these data
structures is the number of values they can store for a state. For
example, a state table can only store a quite limited number
of values (one value per entry, depending on the size of state
table), while a register can store 2n values (n is the width
of the register). We view this number as another capability
metric.

In sum, given an NDP standard, we describe its processing
capability with a three-tuple (F, A, V), which is a field set,
an action set, and a number of values it can store for a
state. As an example, the capability of OpenFlow 1.5 can
be described as ({44 fields}, {forwarding, …}, 0), and the
capability of P4 is ({∞}, {forwarding, reassemble, …}, 232).

Compilation for hybrid data plane. Besides the con-
straints listed in Table II, CODER’s back end needs to further
consider two constraints: (1) the actions can only be performed
on capable devices, and (2) the capabilities of each device
should be maximally leveraged.

For the first constraint, CODER has to ensure that (1a)
the operations assigned to switch s must be in s.A, and
(1b) if we want to put a state at s, the number of possible
values of the state must be less than s.V . To be specific,
after constructing the path graph (Step 1 in Section III-D),
CODER traverses the graph and removes all the nodes that
do not satisfy (1a) and (1b). For example, node (2, B2) and
(4, B2) in Fig. 6 mean that the counting variable will be put
at switch B. However, assuming B is an OpenFlow switch,
which does not support counting the packets with a variable,
i.e., V = 0, we can directly remove these two nodes. As such,
Step 2 will not generate any path candidate that violates this
constraint.

Satisfying the second constraint is more tricky. Intu-
itively, we should ensure that the packet class of NTAs
can be identified by s.F . For example, if a packet class is
dstip=X&&tcp.flags=SYN, we should route this packet
class with P4 switches only, since other switches cannot extract
tcp.flags. However, this scheme can waste the capability
of other switches, as shown in the following.

Assume the above packet class is the only packet class
specifying dstip=X in the whole network. Then, we can
actually use OpenFlow switches to realize the correct forward-
ing, because dstip is enough to distinguish this packet class
from others. The key insight from this example is that we do
not need to ensure all the packet classes in s can be identified
by s.F , instead, they must be distinguishable by s.F .

In fact, our original MILP shown in Table II has already
considered the distinguishable constraint, which requires that
if two packet classes are not distinguishable at switch s, i.e.,
being viewed as the same packet class by s, the operations
on them must be the same. For example, two packet classes
dstip=X and dstip=X&&tcp.flags=SYN are not dis-
tinguishable at an OpenFlow switch, but that switch might
also be useful, if we can perform the same operations (like
forwarding to the same port) to these two packet classes.

IV. CODER IN ACTION

In this section, we demonstrate the expressiveness of NTA
for 7 mainstream NPLs (Section IV-A). Then we present some
key designs in CODER that make it practical (Section IV-B).
We finally discuss another application, i.e., network verifica-
tion, upon CODER (Section IV-C).

A. Expressiveness for Diverse NPLs

Real programs from Merlin and SNAP. We collect 14 pro-
grams previously implemented by Merlin [33] and SNAP [34],
as listed in Table III. The front ends of CODER can success-
fully translate all these programs into NTAs, meaning that
NTA can indeed cover the semantics of these two languages.

Pyretic [3] generalizes the abstractions from NetCore [20],
and offers a virtual topology construct. As discussed in
Section III-B, NTA can express it by using .* transitions to
connect the nodes that map to the virtual switches.

FlowLog [28] offers a SQL-like query syntax to manipulate
packets using the states stored in the controller. We suc-
cessfully express this semantics by mapping the database

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE III

PROGRAMS FROM MERLIN (1–4) AND SNAP (5–14)

table/entry used by FlowLog into network variables in NTA,
so that such manipulation can take place in the NDP.

FatTire [18] introduces a fault-tolerance semantics that can
tolerate k link failures. As described in Section III-B, there are
two realizations for this semantics, and we adopt the first one,
i.e., finding k+1 disjoint paths. Specifically, CODER places a
variable fail in the ingress switch, ranging from 0 (primary
path) to k (kth backup path). Then CODER generates k + 1
NTAs for each value of fail. Each transition of the NTA
consumes a mutex resource allocated for the corresponding
link. Compiling those NTAs will result in k + 1 disjoint
paths.

NetKAT [27] provides a sound and complete set of seman-
tics including path selection and virtual topology, which have
already been covered by NTA. Thus, NetKAT programs can
be readily translated into NTA.

PGA [10] allows operators to draw the policy graphs for
different applications separately, and automatically compose
them. Since there are only path constraints, it is easy to
translate a policy graph into an NTA.

We summarize the features of above NPLs in Table IV,
and find that no NPL supports all features. This possibly
confirms the necessity of running cross-language programs in
the same network. We also present the corresponding NTA for
a snippet of each NPL, and conclude that NTA can express
all semantics of those NPLs to aggregate their respective
features.

B. Prototype Implementation

We implement CODER with ∼3K lines of code (LOC)
in Python/Cython, including two front ends for Merlin and
SNAP, a middle end that supports three types of composition,
and three back ends for OpenFlow [31], OpenState [11] and
NetASM [35]. We use the Gurobi optimizer [22] to solve the
MILP shown in Table II. We highlight the key implementations
in CODER in the following.

APIs. CODER poses a set of APIs to manipulate NTA
for NPL designers and compiler users. The following defines
an NTA with two transitions in Fig. 2f, i.e., node 1 loop,

transition 1→4. It then composes and compiles the NTA. The
information of switch capabilities is embedded in topo.

Parallel acceleration. Our prototype maximally parallelizes
the back end, including path graph construction (parallel for
all NTAs), path generation (parallel for all path graphs),
path clustering (divide and conquer for all paths), and MILP
creation and solving (parallel for all path clusters).

Development efforts. For supporting a new NPL, we report
that (1) the font end for Merlin takes ∼50 LOC, while the
native compiler of Merlin has ∼6K LOC; (2) the front end
for SNAP takes ∼80 LOC, while the native compiler of
SNAP’s compiler has ∼5K LOC. These results show that with
CODER, NPL developers can focus on the design of syntaxes,
instead of how to enforce them.

For porting programs into another NDP, one can simply
modify the last module of the back end, as the generated
transaction sequences can be reused. This process is quite
lightweight, e.g., producing OpenState rules takes ∼100 LOC.

Reference design: SNAP’s front end. The SNAP compiler
firstly translates its programs into the extended forwarding
diagram (xFDD). Thus, it could be a sweet spot to translate
xFDD, instead of the original SNAP program, into NTA.

An xFDD is defined as either a branch (t?d1 : d2) (t is a
test, d1/d2 is xFDD), or an action set. In brief, xFDD processes
a packet from the root node to a leaf node, denoted as “if
t1& . . .&tm then as”, where ti is the test (or its inverter)
along the above path, and as is the action set in the leaf node.
We split the xFDD by the tests on packet class, and view the
rest tests as a set of guards, and the actions as a set of updates.

Next, we decide the order of triggering the guard and update
functions, which is related to the variable dependencies in
xFDD [9]. To be specific, xFDD poses three types of depen-
dencies between two variables s and t: (1) (s, t) ∈ tied, if s
and t must be placed in the same switch, (2) (s, t) ∈ deps, if s
must be operated before t, and (3) s and t are not dependent,
if they are in different strongly connected components in
xFDD. The front end handles these dependencies as follows:
if (s, t) ∈ tied, the operations on s and t should be carried
by the same transition; if (s, t) ∈ deps, the operations on
s should precede these operations for t; if s and t have no
dependency, they should be put into separated NTAs, and be
parallel composed afterwards.

Specifically, a sequence of NTA nodes are linearly con-
nected, and each transition between them carries a set of
variables that belongs to tied, in the order inferred from deps.
Next, the front end adds a “dot” loop for each node, and
finalizes the NTA by appending the start and end node.

Reference design: OpenState’s back end. OpenState
tracks the user-defined states by proposing the eXtended Finite
State Machine (XFSM) [11]. For each incoming packet, the
OpenState switch will first look up the current variable for this

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: COMPILING CROSS-LANGUAGE NETWORK PROGRAMS INTO HYBRID DATA PLANE 11

TABLE IV

FEATURES, SNIPPETS AND NTAs FOR NPLs

packet in the state table, then trigger an XFSM transition in
the XFSM table, and finally update the state table accordingly.

We refer a row in XFSM table as an OpenState rule,
which consists of four columns: (C1) a state provided as a
user-defined label, (C2) an event expressed as an OpenFlow
match, (C3) a list of OpenFlow actions, and (C4) a next-state
label. It is straightforward for mapping a network transaction
to an OpenState rule: variable guard→C1, packet class→C2,
forwarding to next hop→C3, and variable update→C4.

C. Network Verification Upon CODER

In Section III-C, we present the most desired transformation
in the middle end, i.e., composition. In fact, given the complete
semantics maintained in NTA, the middle end can conduct
more optimizations and applications. Here we consider the
network verification as another typical example.

Traditionally, the network verifier checks the correctness
and consistency of and between the control plane (e.g., BGP
configuration) [36] and data plane (e.g., forwarding table)
[37], [38]. In the context of NPL and NDP, the data plane
verification is to check whether the current NDP configuration
complies with the high-level intent, and the control plane
verification is to check whether the NPL programs can be
executed without violating the network invariants. CODER can
help realizing both verification needs. Specifically, CODER
inputs the NPL programs, and tries to compose and compile
them according to the topologies and resources. Then, we can
verify the following network properties.

Do NDP configurations comply with the high-level
intents? Given the NDP configurations, the operators want
to ensure they are consistent with the high-level intents.
Previously this demands the operators to provide a set of

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. The time cost of the parallel composition vs. #composed NTAs.

unified policy representations for all intents [38], which is a
considerable burden. On the other hand, the NTA in CODER
naturally reveals the high-level intent, and can be easily veri-
fied against the data plane configurations. Recall that NTA is
the “language” of the legal sequences of network transactions.
As a result, the verification process is to transform the NDP
configurations into a sequence of network transactions, and
then match it with the NTA. If the sequence is accepted, then
the configurations comply with the high-level intent.

Do NPL programs violate the network invariants?
Operators may be concerned by the correctness of the NPL
programs, i.e., will they violate the invariants like reachability?
This concern is unnecessary when there is only one program,
as most NPLs do not allow the operators to specify an intent
with a loop or blackhole. However, when there are multiple
programs, potentially written in different NPLs, the conflicts
may lead to a violation of the network invariant. With CODER,
the operators can verify the invariants by simply compiling the
composite NTAs of all programs. And if CODER can find a
feasible solution, it means that the programs are compatible
and the network invariants can be assured.

V. PERFORMANCE EVALUATION

This section evaluates the performance of CODER. For front
ends, we observe the translation for each program in Table III
finishes within 100ms, which is fast enough for common
usage. As such, we only test the performance of the middle
and back end, i.e., composing NTAs and producing transaction
sequences. Experiments are performed on a machine with dual
20-core Intel Xeon 2.2GHz CPUs and 192GB memory.

A. Middle End

Since there are only a small number of real programs avail-
able to us, we synthesize more NTAs to test the composition
performance in the middle end. We observe that the NTAs for
real programs are relatively small: for programs in Table III,
each NTA has ∼4 nodes and ∼7 transitions on average. Thus,
the number of nodes and transitions in our synthesized NTAs
are set to 4–10 and 5–15, respectively. Since sequential and
either-or compositions only operate the start and end nodes,
their running time is independent of NTA sizes, and very
fast (within 1ms for two large NTAs). Fig. 7 only reports
the running time for parallel composition of NTAs, with the
number of NTAs varying from 2 to 300.

B. Back End

When evaluating the back end, we are interested in answer-
ing the following questions: (1) is the running time acceptable

TABLE V

COMPILING dns-Defense ON COLLECTED TOPOLOGIES

for real network configurations? (2) can CODER efficiently
react to network changes? (3) is the compiled solution
(near-)optimal compared to existing approaches? (4) can
CODER perform efficiently on hybrid data plane?

Settings. Our experiments use the topologies from
SNAP [34], as shown in the left part of Table V. Here,
“demand” refers to the end-to-end bandwidth requirement for a
packet class. Therefore, in the following we will use #demands
and #packet classes interchangeably. For NTA, we use
dns-defense, the parallel composition of defense and
DNS-tunnel-detect in Table III, which specifies two
random waypoints, consumptions on one resource, and three
variables. We apply dns-defense to 10% of all packet
classes in each topology, and just assure the basic routing and
the bandwidth reservation for other packet classes. Applying
the policy to more packet classes is possible while it is
uncommon to route all packet classes through a single switch
(for variable consistency), and there may not be a solution.
By using 10% of packet classes, we can guarantee that
there is at least one solution for the selected waypoints and
packet classes. We apply an adaptive threshold in the path
generation process, by only collecting paths with no more than
stp + 3 hops for each path graph, where stp is the length of
shortest path. In each path cluster, we randomly select 10 paths
from the same path graph to reduce the MILP size (we used
experiments to validate that 10 paths suffice for obtaining a
solution, and a similar phenomenon is reported in SOL [30]).

Breakdown of compilation time. Table V reports a break-
down of compilation time of dns-defense. where we
can see the total compilation time is within 100s for all
topologies. As a comparison, SNAP consumes 380s for com-
piling dns-tunnel-detect (i.e., dns-defense without
waypoints) on AS 3257. In addition, due to the parallelism in
the back end, the speed of each phase grows linearly with the
#cores, which is not possible for pure MILP approaches [8],
[9]. CODER will get faster if more packet classes are involved
in the stateful policies. This is because more stateful packet
classes will lead to more and much smaller path sets, which
actually accelerates the problem solving.

The impact of topology size and #packet classes. The
running time of back end will be impacted by the #packet
classes which determines the #path graphs, and the topology
size which determines the size of each path graph. We syn-
thesize 5 topologies with 10–250 switches using IGen [39],
and randomly generate 100–10K packet classes. Fig. 8 shows

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: COMPILING CROSS-LANGUAGE NETWORK PROGRAMS INTO HYBRID DATA PLANE 13

Fig. 8. The compilation time vs. different topologies and #demands
(dns-defense).

Fig. 9. The compilation time vs. #composed NTAs on campus topologies.

the compilation time, where we can see the time grows
linearly with the #packet classes but exponentially with the
topology size. Again we argue that the parallel feature in
CODER’s back end can largely tame the overhead explosion;
deploying a 10-server cluster can bring a reduction of one
magnitude of the compilation time. Besides, we can apply
other heuristic parameter to control the problem size, e.g., the
cutoff threshold in path generation and clustering. Moreover,
the full-compilation only happens in bootstrap stage, and we
can apply the proposed heuristics when handling continuous
network changes (see the latter experiment).

The impact of NTA complexity. As the real programs
in Table III are relatively small, we synthesize a large NTA
by either-or composing dns-defense with itself. Since we
deliberately choose not to merge equivalent nodes, the size
of path graph grows exponentially. Fig. 9 shows a quite stable
compilation time for the campus topologies. The reason is that
in each path cluster, we cut off the paths from the same path
graph to a fixed number of 10, so the MILP size is stable no
matter how complex the path graph is. Note that in practice,
compositions will not significantly enlarge the path graph since
equivalent nodes can be merged. As a reference, the path graph
created by parallel composing all programs in Table III on
Stanford topology has 8K nodes and 42K edges, while the
50-either-or-composed dns-defense produces a path graph
with 12K nodes and 60K edges on Stanford topology, which
can be solved within 50s. This means CODER can compile
NTAs of real programs in moderate time.

Reacting to network changes. In cases of network updates
like link failures, CODER only needs to re-compile the NTA
for impacted packet classes. Thus, the recompilation overhead
depends only on #impacted packet classes. Here, we use the
NTA of dns-defense on the IGen 80-switch topology with
10K demands, and after computing a solution, we randomly
fail one of the links. We observe that one link failure can
impact 93 packet classes on average, and Fig. 10 reports that
CODER can re-compile the NTA within 1.6s for all cases.

Compilation optimality. We measure optimality by compil-
ing defense and dns-tunnel-detect in Table III and
comparing with Merlin and SNAP respectively. We mainly

Fig. 10. CDF of reacting to a link failure (dns-defense on IGen 80-switch
topology).

TABLE VI

AVERAGE NUMBER OF HOPS FOR EACH DEMAND

compare the average number of hops for each demand, because
it shows the latency overhead in runtime, and also infers the
resource overhead (i.e., the number of generated rules). Other
settings are consistent with Table V. Results in Table VI show
that for most cases, CODER incurs no overhead compared
with Merlin ans SNAP. In a few cases, CODER might bring
minor overhead. The reason is that in Step 4 of Section III-D,
CODER would solve multiple MILPs in parallel, and it is
possible that the first solved path is not the optimal (shortest)
one. However, since we constrain the path candidates to be
shorter than stp + 3 (stp is the length of the shortest path),
the overhead is quite minor, i.e., less than 2%.

Practicalness of heuristics. Mapping complex high-level
intents into data plane is quite difficult, especially considering
the rich semantics NTA supports. To this end, we synthesize
complex NTA and large networks to stress-test the middle end
and back end. The results show that: (1) the middle end would
consume unacceptable time (i.e., longer than 2 hours) if we
compose 150 NTAs that each has hundreds of transitions and
nodes; (2) the back end will break down (i.e., do not compile
within 2 hours) on a 800-node topology with 10,000 demands.

We argue that the real intents are not that complex, as men-
tioned in Section V-A, and in most cases, large topologies
often come with symmetric feature, where many heuristics can
be used to accelerate the compilation [40]. In sum, CODER
does not try to fundamentally conquer the vast complexity, but
aims to provide a feasible solution in most practical cases.

Performance on hybrid data plane. In this experiment,
we pre-define two kinds of switches, P4 and OpenFlow, using
the capability abstraction proposed in Section III-E. Then,
we use the same NTA and topologies shown in Table V,
and randomly specify some switches as the P4 switches,
and others as the OpenFlow switches. Table VII shows that
the compilation speed boosts with the decrement ratio of P4
switch. This is because we eliminate the impossible nodes
from the path graph, such that the following step will generate

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE VII

dns-Defense ON HYBRID DATA PLANE

much less path candidates compared to the original version.
Besides, the path elimination process is simple and fast, and
we do not employ new constraints in MILP. As a result,
lower ratio of P4 switches narrows the possibilities of variable
placement, and hence the higher compilation speed.

VI. LIMITATIONS AND DISCUSSION

Semantics completeness. As mentioned in Section I, NTA
focuses on the semantics of network-wide behaviors, e.g., rout-
ing and endpoint actions like counting, while the single-point
processing is out of the scope of NTA, e.g., count-min sketch
and bloom filter. NTA does not support the control plane
program with dynamic semantics. For example, bandwidth
negotiation [8], latency minimization [41] and vector-distance
routing [42] require to probe the network and react to the
network changes in the data plane, which cannot be expressed
by NTA for now. We would explore the enhancement of NTA’s
expressiveness in our future work, and currently, NTA focuses
on expressing the deterministic end-to-end semantics.

Hardware capability of NDP. CODER’s NDP capability
model only considers the processing ability, i.e., whether an
operation is supported by the NDP, while to compile P4
programs into a real P4 switch, one should also consider
the capability of the hardware like the size of TCAM, the
length of pipeline and the number of ALUs [43]. A simple
solution would be like the adding rule capacity constraint in
OpenFlow switches. However, modeling constraints for ALU
and pipeline capacity is more difficult because it is not clear
how the resource would be consumed if we put a specific P4
operation on a switch. We will explore how to involve the
hardware capability into the NDP model in the future work.

Per-packet stateful processing. The variable NTA employs
is persistent at the NDP switch, while there exists the per-
packet variable that traverses the network with the packet, e.g.,
FlowTags [44]. NTA can support such variables by loosing the
constraint of placing them; only variables for the same packet
class should be placed at the same switch.

Too many variable guards. The #guard results determine
#NTAs in an NTA group. Due to the product-composition
effect, the #NTAs could quickly grow to an unacceptable
number if too many variable guards are involved. However,
we note that multiple NTAs are necessary, only if the routing
paths or resource consumptions vary to the guard results;
otherwise, we need not create the second NTA, but just
reuse the variable placement in the first one. For example,
Fig. 2d and 2e correspond to the same routing path, so we

can just create and compile the former one, and place !g1 at
the same switch with g1. Currently, most stateful semantics are
in an end-to-end way, which means they will not create extra
NTAs. In this way, we believe the risk of explosive #NTAs is
minor.

VII. RELATED WORK

NPLs use formal representations to carry their semantics.
NetKAT [27], [45] is the first to use regular expressions
for describing the end-to-end network behaviors, which is
based on Kleene algebra with Tests (KAT) and make the net-
work semantics sound and complete. Merlin [8] also express
the path requirements with regular grammar, and extends
them with bandwidth requirements. Kinetic [46] uses Finite
State Machine to capture the dynamic semantics of network.
SNAP [9], based on the one-big-switch model, uses the xFDD
to express the stateful end-to-end network behaviors. While
these representations are expressive for specific programming
purposes, the proposed NTA draws most of their merits,
making it suitable for serving as the IR for NPLs.

Specifically, NTA can fully cover a broad range of semantics
in previous NPLs, including forwarding the packets [2], [3],
reserving the resource [8], [18], and stateful operations [9].
Besides above static semantics, there also exists the dynamic
semantics that negotiate the packet behaviors in the run-
time, e.g., bandwidth adjusting [8], latency minimization [42].
Currently, NTA cannot express those dynamic semantics
(Section VI).

Program interoperation, i.e., running cross-language pro-
grams in a single network, is a highly desired feature, which
previously is only achievable for the programs written in the
same NPL [3], [9], [10], [15], [16]. CoVisor tries to compose
NDP rules compiled from the cross-language programs [17].
However, due to semantics loss in NDP rules, it can only
merge the actions from compatible rules (e.g., a forwarding
rule and a counting rule), or overwrite others with the highest-
priority rule. Unlike the above approaches, CODER composes
the programs at the IR level. Since NTAs retain the original
intents of the programs, the composition will not lose any of
the semantics. There are approaches to compose the dynamic
semantics [41], [47], and CODER currently does not support
this feature as NTA cannot express those semantics.

Target-independent compilation in previous works mainly
focuses on NDP [13], [35], which starts from the low level
(e.g., OpenFlow rule) to produce an even lower-level repre-
sentation (e.g., TCAM entry), while CODER aims to set a
middle representation between the high level (NPL) and low
level (NDP). SOL [30] proposes a set of APIs to realize varied
optimization objectives to unify the compilation process from
the language level, which does not support other NPLs, making
it actually another NPL. In contrast, the front ends in CODER
are lightweight, so diverse NPLs can be easily translated into
the unified NTAs, where the compilation modules are reused.

Other IRs are also used in programmable networks, most
of which, however, are for single-switch programming. P4 [13]
has its IR called HLIR (high-level IR), which is the starting
point of the program being compiled into different back end,
like FPGA, Tofino, etc. NetASM [35] is an IR for bridging the

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: COMPILING CROSS-LANGUAGE NETWORK PROGRAMS INTO HYBRID DATA PLANE 15

TABLE VIII

COMPARISON OF IRs IN PROGRAMMABLE NETWORKS

single-switch high-level language (P4, click) with the hardware
implementation, which can further optimize the processing
by re-scheduling the pipeline, eliminating the dead code, etc.
μP4 [48] proposes to write the P4 program in a modular way,
and composes the program pieces with its IR, which can be
further compiled into different forms of implementation.

IRs are also used in the network-wide programming frame-
works, which, however, are not for unifying the NPLs or
NDPs, instead, they are to facilitate the compilation or opti-
mizations of its own NPLs. For example, FatTire [18] uses
a forwarding graph as its IR, to fast locate the feasible
backup paths for fault tolerance; Merlin [8] first transforms
the program into an automaton, in order to decide the optimal
forwarding paths; SNAP [9] uses xFDD as its IR, to merge
program pieces written in SNAP.

Table VIII briefly summarizes IRs used in programmable
networks. It can be seen that previous IRs either are for single-
switch programming, or can only serve a certain NPL/NDP,
while CODER with NTA is the first IR that unifies the
network-wide NPLs and hybrid NDPs.

VIII. CONCLUSION

This paper motivated the need to modularize the compiler
of network programming languages with Intermediate Repre-
sentation (IR). We proposed such an IR based on NTA, and
designed a modular compiler named CODER. We prototyped
CODER and evaluated it with real and synthetic programs on
various networks. The results showed that CODER is practical
and feasible in compiling network programs. We note that
although CODER might not be the silver bullet for serving all
the NPLs and NDPs, there still exists lots of value in looking
for a proper IR to modularize the compiler, where CODER
with NTA can be seen as the first step.

REFERENCES

[1] H. Li et al., “A modular compiler for network programming languages,”
in Proc. 16th Int. Conf. Emerg. Netw. Exp. Technol., Nov. 2020,
pp. 198–210.

[2] N. Foster et al., “Frenetic: A network programming language,” in Proc.
ACM SIGPLAN ICFP, 2011, pp. 279–291.

[3] C. Monsanto et al., “Composing software defined networks,” in Proc.
USENIX NSDI, 2013, pp. 1–13.

[4] (2018). Floodlight OpenFlow Controller. [Online]. Available: https://
bit.ly/2Riemyh

[5] (2017). Ryu OpenFlow Controller. [Online]. Available: https://
bit.ly/2TedVCF

[6] C. Trois, M. D. Del Fabro, L. C. E. de Bona, and M. Martinello,
“A survey on SDN programming languages: Toward a taxonomy,” IEEE
Commun. Surveys Tuts., vol. 18, no. 4, pp. 2687–2712, 4th Quart., 2016.

[7] Z. Latif, K. Sharif, F. Li, M. M. Karim, and Y. Wang, “A comprehensive
survey of interface protocols for software defined networks,” 2019,
arXiv:1902.07913. [Online]. Available: https://arxiv.org/abs/1902.07913

[8] R. Soulé et al., “Merlin: A language for provisioning network resources,”
in Proc. ACM CoNEXT, 2014, pp. 213–226.

[9] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“SNAP: Stateful network-wide abstractions for packet processing,” in
Proc. ACM SIGCOMM, 2016, pp. 29–43.

[10] C. Prakash et al., “PGA: Using graphs to express and automatically
reconcile network policies,” in Proc. ACM SIGCOMM, 2015, pp. 29–42.

[11] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate:
Programming platform-independent stateful openflow applications inside
the switch,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 2,
pp. 44–51, 2014.

[12] NETCONF, document RFC 6241, 2011. [Online]. Available: https://
bit.ly/3nEpPoM

[13] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[14] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in Proc. ACM HotSDN, 2013,
pp. 127–132.

[15] W. Wang, W. He, and J. Su, “Redactor: Reconcile network control with
declarative control programs in SDN,” in Proc. IEEE 24th Int. Conf.
Netw. Protocols (ICNP), Nov. 2016, pp. 1–10.

[16] A. Bairley and G. G. Xie, “Orchestrating network control functions
via comprehensive trade-off exploration,” in Proc. IEEE Conf. Netw.
Function Virtualization Softw. Defined Netw. (NFV-SDN), Nov. 2016,
pp. 114–120.

[17] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compositional
hypervisor for software-defined networks,” in Proc. USENIX NSDI,
2015, pp. 87–101.

[18] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire: Declarative
fault tolerance for software-defined networks,” in Proc. ACM HotSDN,
2013, pp. 109–114.

[19] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. ACM SIGCOMM Conf.
Appl., Technol., Archit., Protocols Comput. Commun. (SIGCOMM),
2012, pp. 1–12.

[20] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” in Proc. 39th
Annu. ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang. (POPL),
2012, pp. 217–230.

[21] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN networks: A survey
of existing approaches,” IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3259–3306, 4th Quart., 2018.

[22] (2018). Gurobi Optimizer. [Online]. Available: https://bit.ly/1Kc3Hxc
[23] (2017). CPLEX Optimizer. [Online]. Available: https://ibm.co/2N2v6s6
[24] T. Ralphs, Y. Shinano, T. Berthold, and T. Koch, Parallel Solvers

for Mixed Integer Linear Optimization. Springer, 2018, pp. 283–336.
[Online]. Available: https://link.springer.com/chapter/10.1007%2F978-
3-319-63516-3_8

[25] T. Koch, T. Ralphs, and Y. Shinano, “Could we use a million cores to
solve an integer program?” Math. Methods Operations Res., vol. 76,
no. 1, pp. 67–93, Aug. 2012.

[26] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” in Proc.
ACM Conf. SIGCOMM, Aug. 2013, pp. 27–38.

[27] C. J. Anderson et al., “NetKAT: Semantic foundations for networks,”
ACM SIGPLAN Notices, vol. 29, no. 1, pp. 113–126, 2014.

[28] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi,
“Tierless programming and reasoning for software-defined networks,”
in Proc. USENIX NSDI, 2014, pp. 519–531.

[29] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar, “Approximation
algorithms for the unsplittable flow problem,” Algorithmica, vol. 47,
no. 1, pp. 53–78, 2007.

[30] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-
defined network optimization using SOL,” in Proc. USENIX NSDI, 2016,
pp. 223–237.

[31] (2015). OpenFlow Switch Specification 1.5.1. [Online]. Available:
https://bit.ly/1Wqi7N2

[32] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. ACM SIG-
COMM, 2013, pp. 1–12.

[33] (2017). Merlin. [Online]. Available: https://bit.ly/2TlaDOk

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

[34] (2016). SNAP. [Online]. Available: https://bit.ly/2GF472Y
[35] S. Muhammad and F. Nick, “The case for an intermediate representation

for programmable data planes,” in Proc. ACM SOSR, 2015, pp. 1–6.
[36] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach

to network configuration verification,” in Proc. Conf. ACM Special
Interest Group Data Commun., Aug. 2017, pp. 155–168.

[37] P. Zhang, X. Liu, H. Yang, N. Kang, Z. Gu, and H. Li, “APKeep:
Realtime verification for real networks,” in Proc. USENIX NSDI, 2020,
pp. 241–255.

[38] W. Zhou, J. Croft, B. Liu, E. Ang, and M. Caesar, “Automatically cor-
recting networks with neat,” in Proc. USENIX NSDI, 2018, pp. 595–608.

[39] B. Quoitin, V. V. den Schrieck, P. Francois, and O. Bonaventure, “IGen:
Generation of router-level internet topologies through network design
heuristics,” in Proc. 21st Int. Teletraffic Congr., Sep. 2009, pp. 1–8.

[40] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proc. ACM SIGCOMM, 2014, pp. 503–514.

[41] V. Heorhiadi, S. Chandrasekaran, M. K. Reiter, and V. Sekar, “Intent-
driven composition of resource-management SDN applications,” in Proc.
14th Int. Conf. Emerg. Netw. Exp. Technol., Dec. 2018, pp. 86–97.

[42] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana, and D. Walker,
“Contra: A programmable system for performance-aware routing,” in
Proc. USENIX NSDI, 2020, pp. 701–721.

[43] J. Sonchack, D. Loehr, J. Rexford, and D. Walker, “Lucid: A lan-
guage for control in the data plane,” in Proc. ACM SIGCOMM, 2021,
pp. 731–747.

[44] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “FlowTags:
Enforcing network-wide policies in the presence of dynamic middlebox
actions,” in Proc. ACM SIGCOMM, 2013, pp. 19–24.

[45] N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson,
“A coalgebraic decision procedure for NetKAT,” in Proc. 42nd Annu.
ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang., Jan. 2015,
pp. 343–355.

[46] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable dynamic network control,” in Proc. USENIX NSDI,
2015, pp. 59–72.

[47] A. AuYoung et al., “Democratic resolution of resource conflicts between
SDN control programs,” in Proc. 10th ACM Int. Conf. Emerg. Netw. Exp.
Technol., Dec. 2014, pp. 391–402.

[48] H. Soni, M. Rifai, P. Kumar, R. Doenges, and N. Foster, “Compos-
ing dataplane programs with µP4,” in Proc. ACM SIGCOMM, 2020,
pp. 329–343.

Hao Li received the Ph.D. degree in computer science from Xi’an Jiaotong
University in 2016. He is currently an Associate Professor with the School
of Computer Science and Technology, Xi’an Jiaotong University. His main
research interests include programmable networks and network measurement.

Peng Zhang received the Ph.D. degree in computer science from Tsinghua
University in 2013. He was a Visiting Researcher at The Chinese University of
Hong Kong and Yale University. He is currently an Associate Professor with
the School of Computer Science and Technology, Xi’an Jiaotong University,
Xi’an, China. He is also with the MOE Key Laboratory for Intelligent
Networks and Network Security. His research interests include network
verification and network security.

Guangda Sun received the bachelor’s degree in computer science from Xi’an
Jiaotong University in 2020. He is currently pursuing the Ph.D. degree with
the National University of Singapore. His research interests include distributed
systems in datacenter, programmable network hardware and hybrid network
design, and network verification.

Wanyue Cao received the bachelor’s degree in computer science from the
Dalian University of Technology in 2019. She is currently pursuing the
master’s degree with Xi’an Jiaotong University. Her research interests include
network management and configuration synthesis.

Chengchen Hu (Member, IEEE) is currently the Chief Expert and the
Associate VP of Technology Planning at NIO Inc. Prior to joining NIO,
he was a Principal Engineer and the Founding Director of Xilinx Labs Asia-
Pacific, Singapore. Before his experience with Xilinx, he was a Professor
and the Department Head of the Department of Computer Science and
Technology, Xi’an Jiaotong University, China. His research theme is to
monitor, diagnose, and manage networking and distributed computing through
hardware optimized and software-defined systematical approaches. He was a
recipient of the New Century Excellent Talents in University Award from
the Ministry of Education, China, a fellowship from the European Research
Consortium for Informatics and Mathematics (ERCIM), and a fellowship of
Microsoft “Star-Track” Young Faculty.

Danfeng Shan (Member, IEEE) received the B.E. degree in computer science
and technology from Xi’an Jiaotong University, China, in 2013, and the Ph.D.
degree in computer science and technology from Tsinghua University, China,
in 2018. He is currently an Associate Professor with the School of Computer
Science and Technology, Xi’an Jiaotong University. His research interests
include data center networks and congestion control.

Tian Pan received the Ph.D. degree from the Department of Computer
Science and Technology, Tsinghua University, in 2015. He is currently an
Associate Professor with the Beijing University of Posts and Telecommunica-
tions. His main research interests include data center networks, programmable
data plane, and satellite networks.

Qiang Fu received the Ph.D. degree from The University of Queensland. He is
currently a Senior Lecturer in cloud, systems, and security with RMIT Univer-
sity. His research interests are broadly in the areas of Internet and cloud-based
systems including wireless and mobile systems. More recently, he has a focus
on content delivery networks, data center design and analysis, cyber-physical
systems and the IoT, virtualization, as well as network programmability.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 21,2022 at 02:05:00 UTC from IEEE Xplore. Restrictions apply.

