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Abstract-Matehing multiple patterns is the key teehnology 
in firewall, Intrusion Deteetion Systems, etc. However, most of 
the web services nowadays tend to eompress their traffie for 
less transferring data and better user experienee, which has 
ehallenged the multi-pattern matching original working only on 
raw eontent. Naive and straightforward solutions towards this 
challenge either deeompress the eompressed data first and apply 
legaey multi-pattern matching methods, or have to sean redun­
dant data during the matching., whieh are not fast and memory 
efficient. In this paper, we pro pose COmpression INspeetion 
(COIN) method tor multi-pattern matching on eompressed HTTP 
traffie. COIN does not deeompress the data before matching and 
only seans onee eaeh bit of the traffie under inspeetion. We have 
eolleeted real traffie data from Alexa.eom top 500 and Alexa.en 
top 20000 web sites and have pertormed the experiments under 
1430 SNORT patterns. The evaluation results show that COIN 
is 10-31 % faster than state-of-the-art approach. 

Index Terms-Deep Packet Inspeetion, Compressed Traffie, 
Multi-Pattern Matching, gzipIDEFLATE. 

I. INTRODUCTION 

Intrusion Detection System (IDS), Intrusion Detection Pro­
tection (IDP), firewalls leverage multi-pattern matching tech­
nology to inspect the network traffk payload. The task be­
comes more challenging because of a more and more signifi­
cant trend that the web service traffk today is transmitted after 
compression. 

It was shown in [1] that 66% of Alexa top 1000 sites 
used HTTP compression in July 2010 and the percentage 
was increased to 95% for the top 500 sites in October 2016 
[2]. This phenomenon makes the lazy method not acceptable, 
wh ich simply ignores the compressed traffic - it is easy for an 
adversary to bypass the detection by compressing the anomaly 
traffk. A naive decompression-and-match approach used by 
most of the products match patterns after a decompression 
processing first. Obviously, this approach is as accurate as the 
matching on raw traffk without compression but it would be 
quite slow and hungry for memory. ACCH is a state-of-the-art 
method, which also activates matching after decompression but 
accelerates the entire process by reusing the saved information 
during the decompression phase for the matching phase [3]. 
We observe that ACCH has the redundant processing in the 
decompression phase and the matching phase, which is to be 
prevented in this paper. 

After briefly reviewing the background and problem with 
ACCH in Section 11, we propose a method called COmpression 
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Fig. 1. Compressing process in gizp and DEFLATE 

INspection (COIN) in Section III, which does not need to 
match again a same pattern in the compressed traffic if it 
has been appeared before. The basic idea to achieve this is 
based on the simple observation: the compressed encoding of 
a segment of bytes should always be the same associated with 
a same corresponding plain text before the compression, so 
there is no need to recheck the pattern within compressed data 
if it has been matched before. The experiments are described 
in Section IV and our evaluation results demonstrated that 
COIN further accelerates ACCH by 10-31% under real traffic 
data. Related works are presented in Section V and finally in 
Section VI, we conclude the paper. 

n. PROBLEM 

A. Background knowledge on gzip/DEFLATE 

We focus on gzip in this paper [4] , wh ich is a compression 
encoding format recommended by HTTP 1.1 [5] and is utilized 
by more than 85% of the web sites as the default format shown 
by our experiment on Alexa Top sites. gzip uses DEFLATE 
[6] as its compression method built based on a combination 
of the LZ77 algorithm and Huffman coding. 

Figure 1 shows an example of compressing with gzip. 
In the first stage, LZ77 algorithm cOlupress the plain text 
"https:!/www." in the second line to be "< 12,25> ", which 
means "go back 25 characters (Iine feed included) and copy 
12 characters". The "https:!/www." in the first line is called 
referred string and the "<12,25> ", which is a two-tuple of 
"<length, distance> ", is named as pointer. 

The data encoded by Huffman coding, is a continuous 
bit stream with variable length. Therefore, the encoded data 
cannot be byte-coded, which is the reason why the previous 
work have to decompress traffic before a pattern matching 
method could be applied. 

B. ACCH Algorithm 

ACCH is fundamentally a multi-pattern matching ap­
proach based on Aho-Corasick (AC) algorithm [7]. An AC 
algorithm first constructs a Deterministic Finite Automation 
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Fig. 3. Categories of ACCH. 

(DFA) by patterns and then processes the input characters in 
a single pass with deterministic perfonnance. 

The basic observation in ACCH is: "If referred string does 
not completely contain matched patterns then the pointer 
contains none" [3]. Following this observation, pointer is 
separated to three parts (Figure 2). If no matched patterns 
occurred within the referred string, ACCH skips the Interna! 
area in pointer. However, if not, ACCH has to scan those bytes 
again (it has scanned in its referred string). 

ACCH divides the matching cases into three categories, as 
shown in Figure 3. 

(1) Lejt Boundary: the pattern starts prior to the pointer 
and its suffix is in the pointer. For handling this case, it 
should detennine whether a pattern ends within the pointer 
left boundary. ACCH uses depth, the number of edges on 
the shortest simple path from current scanning state to the 
DFA root, to indicate the longest prefix of any pattern within 
the pattern-set [8] at the current sc an location. The algorithm 
continues scanning the pointer as long as the number of bytes 
scanned within the pointer is sm aller than depth, otherwise 
moving to Interna! case. 

(2) Right Boundary: the pointer contains a pattern prefix and 
its remaining bytes occur after. By using a status parameter, 
a byte with u (Uncheck) means its depth is sm aller than 
(not including) a pre-defined constant parameter CDepth (2 as 
default), otherwise the byte is marked c (Check). Then, ACCH 
locates the last occurrence of Uncheck within the referred 
string as unchkPos and scans from the corresponding position 
within the pointer. In order to determine safely the right 
boundary, the scan is resumed from unchkPos - CDepth + 2. 
In this case, it needs to pre-configure parameter CDepth. With 
different values of CDepth, the numbers of skipped bytes are 
influenced and may vary the performance. 

(3) Interna! area: a pattern ends within the referred string. 
ACCH introduces another status m (Match) . In referred string, 
a byte with Match status means a pattern ends at its 10-

pattern 
( ) 

Prefix I Xy I BCD 

pattern 

Inclusionl XY I ABCD 1· .. 1 MN [ ABCD j '''1 
pattern 

I ) 

Suffix I Xy I ABC 1· .. 1 MN I ABC I D .. ·I 
Fig. 4. Categories of COIN. The left shadow area represented ref erred string 
and the right represented pointer. 

cation. The same as Case 2, algorithm starts scanning at 
unchkPos - CDepth + 2 position. In this case, unchkPos is 
the last occurrence of Uncheck prior the byte with Match . 
However, ACCH have to check again the complete pattern 
bytes if comes to again after its first scanning in its referred 
string before. 

Example of ACCH with input text is presented in §III-B. 

III. COIN 

In this section, we propose a faster method COIN for multi­
pattern matching on compressed HTTP traffic. COIN leverages 
different ways to match patterns according three cases as 
shown in Figure 4. 

(1) Prefix, pattern starts before pointer, but regardless of its 
end position. 

(2) Inclusion, pattern is contained in pointer entirely. 
(3) Suffix, pattern starts in pointer, but not contained. 
PIe ase note that COIN uses a different case cIassification 

and different processing method as what ACCH does in 
inclusion and suffix cases. COIN can skip the bytes within 
pointer when scanning even if it contains a complete pattern. 

A. A!gorithm 

Since the contents of pointer and referred string are iden­
tical, we have another hypothesis that if there is a complete 
pattern in referred string, then the pattern must also be in 
pointer. 

COIN skips as many bytes as possible in pointer to ac­
celerate multi-pattern matching. So, we need to handle the 
positional relationship between pointer and pattern correctly. 
As shown in Figure 4, COIN handles the three cases as the 
following. 

(1) Prefix: COIN uses the same parameter depth defined in 
ACCH. It ends this procedure directly and moves to process 
case of inclusion, if depth equals to 0 at the prior byte of 
pointer. Otherwise, it would continue scan the pointer bytes 
as long as the number of scanned is smaller than depth. 

(2) Inclusion: COIN introduces a parameter called status. A 
byte with m (Match) state means that a pattern is matched at 
that location. If patterns matched during the matching process, 
COIN records pattern's length and location as matching infor­
mation. When handling inclusion case, COIN copies status 
[rom referred string to pointer first. Then let mPos be the 
position in the pointer with Match state, and mLen be the 
length of pattern. By checking whether the mPos-mLen is out 
of the left boundary of pointer, we can detect whether an entire 
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Algorithm 1: COIN (COmpression INspection) 

definition: bytelnjo - {byte, status, depth} 
byteList - array of bytelnjo 

input : Tr h ... Tr j n - compressed traffk 
function COIN(Trh .. . Trjn) 

for i +--- l 10 n do 
if Tr j i is not pointer(Zen , dist) then 

I 
bytelnjo.byte = Trfi; AC_ScanByle(bytelnjo); 
byteList.Add(bytelnjo) ; 

else 

l byteList.Add(byteList [i - di st : i - dist + Zen]); 
COIN_ScanPoinler(i , dist , Zength); 

9 function COIN_ScanPoinler(i , dist , Zen) 
10 cur P os +--- 0; 0 j j set +--- i - di st; 
11 

12 

13 

14 

IS 

16 

17 

18 

19 

20 

21 

22 

23 

24 

2S 

26 

27 

28 

29 

30 

/ / === 1 . prefi x case === 
if byteList [i - 1].depth i= 0 then l for cur Pos +--- 0 to Zen do 

l if AC_ScanByte(byteList [i + curPos]) ::; curPos 
then break; 

if curPos ~ Zen - 1 then break; 

/ / === 2 . inc1usion case 
for j +--- cur P os 10 Zen do 

if byteList [i + j ].status = MATCH then 
I /pointer contains entire pattern 
if match[i + j ].Zen ::; j + 1 then 

l cur Pos +--- j + 1; 
Record match[i + j ].Zen and i + j; 

else 
L byteList [i + j ].status +--- 0; 

// === 3 . suffi x case === 
ZastBytelnjo +--- byteList [i + Zen - 1]; 
if curPos < Zen 1\ ZastBytelnjo.depth i= 0 then l AC_ResetScanStatusO; 

ojjset +--- i + Zen - ZastBytelnjo.depth; 
while ojjset ::; il\ojjset < Zen do 
L AC_ScanBYle(byteList [ojjset + curPos].byte); 

Plai ntext: 23445677789aa I 234bb77890cc3345676dd3567 
Compression: 23445677789aa I <3, 14>bb<4, 12>Occ3<5,26>6dd3<3,32> 
Pattems: 123, 890, 4567 

Fig. 5. Input data of example. There are 4 <Iength, distance> pairs in the 
compression data. 

pattern is appeared or not. If so, COIN keeps the pattern's 
length and location, otherwise eliminates the Match state at 
mPos. 

(3) Suffix: Copying depth to the pointer and determining 
whether a suffix pattern is presented by detecting depth of the 
last byte (lastPos) in the pointer. If depth is larger than 0, the 
DFA scans from the lastPos-depth position. 

The detail of COIN is shown in Algorithm 1. 

B. Example 

We use the compressed data in Figure 5 as input to compare 
the pattern matching process in ACCH and COIN. In each sub-

EX.l 234 4567"'aal 234 bb'" 

depth 001 1234"'001 231 00'" 

ACCH uuu ueem"'uuu emu uu'" 

COIN 000 OOOm"'OOO OmO 00'" 

(a) 

EX .2 "'7 7789 aa"'bb 7789 0'" 

depth "'4 0012 00"'00 0012 3'" 

ACCH "'m uuue uu"'uu u?ue m'" 

COIN "'m 0000 00"'00 0000 m'" 

(b) 

Ex.3 2 34567 7'" ee3 34567 6'" 

depth 0 01234 0'" 000 01234 0'" 

ACCH u uueem U'" uuu uueem U'" 

COIN 0 OOOOm 0'" 000 OOOOm 0'" 

(e) 

EXAI2344 567 7"'dd3 567 

depth 10001 234 0"'000 000 

ACCHI uuuu eem u"'uuu uuu 

COINIOooO oOm 0"'000 000 

(d) 
Fig.6. Example of COIN and ACCH 

figure of 6, the first line is part of plaintext, the second line 
represents the depth of each character in DFA and the last two 
lines (ACCH and COIN) represent the status defined by their 
algorithms. 

(a) Prefix: COIN shares the same process to sc an pointer 
in EX.l with ACCH. COIN first copies depth and status from 
corresponding referred string to pointer. Because the depth of 
the byte ("1") prior to pointer is 1, it continues scanning bytes 
in pointer until ending at the last byte ("4") and matching a 
pattern ("123"). However, COIN doesn't skip any byte in this 
case, as the string in pointer has no more byte. 

(b) Suffix: In Ex.2, COIN copies depth and status from 
corresponding referred string to pointer. The depth of the 
byte ("b") prior to pointer is 0, so the process moves to the 
inclusion case. However, there is not a Match state in pointer. 
Therefore, the process moves to the suffix case. The depth of 
the lastPos (3) is 2, so COIN begins a new scanning after the 
position of lastPos-depth ("8" at 2) to lastPos. In this process, 
COIN skips 2 bytes in pointer. 

In ACCH, the unchkPos in Right Boundary case is 2 (" 1 "). 
It starts scanning form unchkPos - CDepth + 2 (we use the 
best CDepth, 2, here). ACCH skips 2 bytes in this pointer. 
However, we usually cannot meet the best pre-defined CDepth. 

(c) lnclusion.l: After process of prejix case, COIN finds a 
byte with Match state in pointer in wh ich mPos is 4 (position 
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Fig. 7. Multi-referred string 

of "4" in pointer) and the mLen is 4 ( 11 "4567" 11 ). Therefore, 
there is an entire pattern in this pointer. Then, the COIN starts 
scanning posterior byte with Match state. However, there is no 
more byte in this pointer. In this case, COIN skips 5 bytes. 

In ACCH, the unchkPos is 1 ("4" is the nearest byte with 
Uncheck state prior to the byte "7" with Match state). It begins 
scanning from unchkPos and skips 1 byte. 

(d) Inclusion.2: COIN notices a byte with Match state ("7") 
in referred string. However, for this byte, the mPos is 2 and 
mLen is 4. Therefore, there is not an entire pattern in pointer. 
COIN eliminates the Match state and ends scanning in pointer. 
COIN skips 3 bytes in this case. 

ACCH cannot find a byte with Uncheck state and set 
unchkPos as O. It scans the wh oie pointer and skips nothing. 

C. Discussion 

As the numbers of bytes skipped by ACCH and COIN in the 
above examples, COIN skips more bytes in the inclusion case. 
Actually, the analysis at section IV-B shows that over 90% 
of patterns are presented in inclusion case. Skipping scanning 
bytes in inclusion can bring lots of performance improvements. 

In terms of memory usage, both of COIN and ACCH store 
the matching information. 

COIN needs more space to preserve the parameter of depth, 
but the total memory requirements of COIN and ACCH are 
similar since ACCH has more information (U ncheck, Check 
or Match) to be stored than COIN. 

Obviously, these three cases designed in COIN are basic and 
complete. They are only the positional relationships between 
pointer and pattern. And they can be assembled to all other 
more complex cases. 

The numbers of bytes that can be skipped in ACCH are 
not the same under different CDepth. For example, when 
CDepth=4 in Figure 6 (b), ACCH will begin scanning bytes 
with the second "7", which should be skipped under a well­
chosen user-defined parameter. Moreover, if under an inappro­
priate parameter, it would scan some redundant bytes. 

Figure 7 shows the example of multi-referred string. 
Pointer 1 and Referred2 have some overlapped bytes. Since 
the scanning process will skip the first three bytes in Pointerl 
(pattern "AB CD"), Pointer2 cannot get the depth value exactly 
from Referred2. Therefore, ACCH has to use CDepth to 
represent the depth approximately. 

In prefix case of COIN, we only use the depth of one 
byte prior to pointer. And we don't use depth in inclusion 
case. Thus, we only need to discuss the use of depth in 
suffix case. Assume "BCDZ" is a pattern which needs to be 
matched in Pointer2, this pattern will be skipped and lost only 
if the depth of last byte in Pointer2 ("D") is less than 3. In 
other words, it occurs only if "BCD" has not been scanned in 
Pointer2 or Referred2. However, COIN will copy depth from 

TABLE I 
CI-IARACTERISTICS OF EXPERIM E NTAL DATA S ETS 

Alexa.com 
Count of Pages 428 

Compressed Size (MB) 14.73 
Decompressed Size (MB) 68.28 

Ratio of bytes represented by pointers 91.35% 
Average pointer length(B) 

1500 

'[ 
D 

51000 
'5 
a. 
~ 
Cl 
=> e 
~ 

~ 500 

1235.92 

A1exa.com 

Data Set 

1507.59 
~ 

15.30 

1146.07 

A1exa.cn 

Alexa.cn 
13747 
226.95 
1190.99 
91.92% 

19.84 

Fig. 8. Multi-pattern matching throughput of COIN and ACCH 

its corresponding referred string (Referredl) to the unscanned 
pointer (Pointer 1). Therefore, if "BCD" is aprefix of a pattern, 
Pointer2 will get exact depth (3) value from Referred 1 at last. 
Otherwise, if "BCD" is not aprefix of a pattern, the depth 
will be larger than its actual value(4 in this example). So, no 
matter how many references, the depth of final pointer won ' t 
be sm aller than its actual value, which means, it won ' t miss 
any pattern in case of suffix. 

The status values in COIN are also accurate in multi­
referred situation. Assume "AB CD" is the pattern in Pointer 1. 
The third byte CD") has a m status. COIN first copies status 
value from Referred1 to Pointerl. After finishing processing 
inclusion case, the bytes' status in Pointerl will be updated to 
"0" immediately. So, Pointer2 will gets accurate status from 
Referred2. 

IV. EVALUATION 

A. Settings 

First, we have collected traffic by accessing the Alexa top 
sites as shown in Table I. Especially, all the raw traffic data 
related to the transferring of TOP 500 Alexa.com [2] (only 
top 500 is public1y available) and top 20000 Alexa.cn [9] 
sites using compression are used as the input traffic in our 
experiments. In addition, we take 1430 matching patterns from 
Snort rules [10] and use a desktop PC (Intel 4-core 3.4GHz 
and 8G RAM) for evaluation. 

B. Performance 

Figure 8 compares the performance of COIN and ACCH 
(CDepth = 2) for multi-pattern matching. COIN is more 
efficient than ACCH in both data sets. Particularly, COIN can 
process 1507Mb compressed traffic in one second and achieve 
31 % more throughput than ACCH on the Alexa.cn date set. 
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TABLE II 
CI-IARACTERISTICS OF POINTER , PATTERN AND COMPARING 

PERFORMANCE 

Data Sets Average Bytes rep- Pattern in Performance 
pointer resented inclusion COIN/ 
length(B) by pointer ratio ACCH 

Alexa.eom 15.30 91.35% 92.61% 110.23% 
Alexa.en 19.84 91.92% 94.23% 131.54% 
Subset 19.19 91.53% 93.64% 128.64% 

As shown in Table 11, most of matched patterns are entirely 
contained in inclusion case (pattern in inclusion ratio higher 
than 90%). Average pointer length in Alexa.cn data set and 
its subset (last 6000 websites in 13747) are longer than that in 
Alexa.com. Our evaluation shows that COIN achieves a higher 
performance in this data set than the data set of Alexa.com 
comparing to ACCH, wh ich is mainly due to COIN can skip 
more bytes when scanning pointers and thus save much time 
on handling the inclusion case. 

V. RELATED WORK 

A. With gzip/LZ77 

We have described ACCH in Section 11 and thus is omitted 
here. Besides, there are other work that focus on inspection 
the HTTP traffk compressed by LZ77. It was proposed in 
[1] that to reduce the memory usage on pattern matching 
after decompressing traffk, however the speed is relatively 
lower than even ACCH without any optimization on cutting 
the matching redundancy. [11] mainly focused on regular 
expression matching and retrieve to ACCH on string matching. 
The two papers studied in [12] and [13] to match on Huffman­
encoded data, but they only applied to single-pattern matching 
instead of multi-pattern matching. 

B. With other compression methods 

It is achieved in [14] that multi-pattern matching on com­
pressed data with LZW, but it cannot work on LZ77 com­
pression algorithm and thus cannot support inspections over 
HTTP traffk. In [15], the authors applied the Boyer-Moore 
algorithm [16] to compress and traffk as weil as the pattern 
for fast matching. However, the compressing method is (at 
least) not adopted by any Alexa top sites. In other words, it 
fails to inspect the web traffic nowadays. In addition, Google 
proposed a compression method called SDCH [17], which is 
available primarily in Google's related servers and browsers 
but has not been widely used by other web site as shown 
in our experiments. The usage of [18], which can make 
decompression-free inspection on the traffic compressed by 
SDCH is also limited since it cannot be extended to LZ77. 

VI. CONCLUSlON 

Compression of HTTP traffk nowadays is popular, espe­
cially for the TOP web sites who generates the majority of the 
HTTP trafik. This phenomenon has introduced a requirement 
on the fast pattern matching within middleboxes. In this 
paper, we have presented a method called COIN for multi­
pattern matching on compressed HTTP traffic. Not as what 

the previous work did to check the same pattern every time it 
appears in the compressed data segment, the proposed COIN 
only does the matching once and is able to skip the processing 
on its future appearance. The comparisons with state-of-the­
art approach ACCH show a further 10-31% improvement in 
speed under the experiments with real traffic from Alexa .com 
top sites and .cn top sites. There is no need for any parameter 
settings for COIN, while ACCH's parameter configurations 
may vary the performance in different traffic scenarios. 
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