
Towards A Fast Packet Inspection over Compressed
HTTP Traffic

Xiuwen Sun, Kaiyu Hou, Hao Li, Chengchen Hu
Department of Computer Science and Technology

Xi'an Jiaotong University
Email: {silvin. immike}@stu.xjtu.edu.cn.{hao.li. chengchenhu}@xjtu.edu.cn

Abstract-Matehing multiple patterns is the key teehnology
in firewall, Intrusion Deteetion Systems, etc. However, most of
the web services nowadays tend to eompress their traffie for
less transferring data and better user experienee, which has
ehallenged the multi-pattern matching original working only on
raw eontent. Naive and straightforward solutions towards this
challenge either deeompress the eompressed data first and apply
legaey multi-pattern matching methods, or have to sean redun­
dant data during the matching., whieh are not fast and memory
efficient. In this paper, we pro pose COmpression INspeetion
(COIN) method tor multi-pattern matching on eompressed HTTP
traffie. COIN does not deeompress the data before matching and
only seans onee eaeh bit of the traffie under inspeetion. We have
eolleeted real traffie data from Alexa.eom top 500 and Alexa.en
top 20000 web sites and have pertormed the experiments under
1430 SNORT patterns. The evaluation results show that COIN
is 10-31 % faster than state-of-the-art approach.

Index Terms-Deep Packet Inspeetion, Compressed Traffie,
Multi-Pattern Matching, gzipIDEFLATE.

I. INTRODUCTION

Intrusion Detection System (IDS), Intrusion Detection Pro­
tection (IDP), firewalls leverage multi-pattern matching tech­
nology to inspect the network traffk payload. The task be­
comes more challenging because of a more and more signifi­
cant trend that the web service traffk today is transmitted after
compression.

It was shown in [1] that 66% of Alexa top 1000 sites
used HTTP compression in July 2010 and the percentage
was increased to 95% for the top 500 sites in October 2016
[2]. This phenomenon makes the lazy method not acceptable,
wh ich simply ignores the compressed traffic - it is easy for an
adversary to bypass the detection by compressing the anomaly
traffk. A naive decompression-and-match approach used by
most of the products match patterns after a decompression
processing first. Obviously, this approach is as accurate as the
matching on raw traffk without compression but it would be
quite slow and hungry for memory. ACCH is a state-of-the-art
method, which also activates matching after decompression but
accelerates the entire process by reusing the saved information
during the decompression phase for the matching phase [3].
We observe that ACCH has the redundant processing in the
decompression phase and the matching phase, which is to be
prevented in this paper.

After briefly reviewing the background and problem with
ACCH in Section 11, we propose a method called COmpression

978-1-5386-2704-4/17/$31.00 @ 2017 IEEE

https:l/www .facebook .com h ups: //www. facebook .com Ox I f, Ox8b,
http s:l/www.google.com <12,25>google<4,24>

Fig. 1. Compressing process in gizp and DEFLATE

INspection (COIN) in Section III, which does not need to
match again a same pattern in the compressed traffic if it
has been appeared before. The basic idea to achieve this is
based on the simple observation: the compressed encoding of
a segment of bytes should always be the same associated with
a same corresponding plain text before the compression, so
there is no need to recheck the pattern within compressed data
if it has been matched before. The experiments are described
in Section IV and our evaluation results demonstrated that
COIN further accelerates ACCH by 10-31% under real traffic
data. Related works are presented in Section V and finally in
Section VI, we conclude the paper.

n. PROBLEM

A. Background knowledge on gzip/DEFLATE

We focus on gzip in this paper [4] , wh ich is a compression
encoding format recommended by HTTP 1.1 [5] and is utilized
by more than 85% of the web sites as the default format shown
by our experiment on Alexa Top sites. gzip uses DEFLATE
[6] as its compression method built based on a combination
of the LZ77 algorithm and Huffman coding.

Figure 1 shows an example of compressing with gzip.
In the first stage, LZ77 algorithm cOlupress the plain text
"https:!/www." in the second line to be "< 12,25> ", which
means "go back 25 characters (Iine feed included) and copy
12 characters". The "https:!/www." in the first line is called
referred string and the "<12,25> ", which is a two-tuple of
"<length, distance> ", is named as pointer.

The data encoded by Huffman coding, is a continuous
bit stream with variable length. Therefore, the encoded data
cannot be byte-coded, which is the reason why the previous
work have to decompress traffic before a pattern matching
method could be applied.

B. ACCH Algorithm

ACCH is fundamentally a multi-pattern matching ap­
proach based on Aho-Corasick (AC) algorithm [7]. An AC
algorithm first constructs a Deterministic Finite Automation

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:29:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 2.

Case.1

Case.2

Case.3.1

Case.3.2

distylnce leneth

,
/ ,
I Left I Internal I Right I

Illustration of pointer and its ref erred string.

pattern

I xA I BCD] BCD

pattern
I \

I Xy I ABC 1 .. ·1 MN I ABC I D .. ·I

~ I Xy jBCi .. ·1 MNI ABCD I
pattern

I xA I BCD] .. ·1 MN I BCD

Fig. 3. Categories of ACCH.

(DFA) by patterns and then processes the input characters in
a single pass with deterministic perfonnance.

The basic observation in ACCH is: "If referred string does
not completely contain matched patterns then the pointer
contains none" [3]. Following this observation, pointer is
separated to three parts (Figure 2). If no matched patterns
occurred within the referred string, ACCH skips the Interna!
area in pointer. However, if not, ACCH has to scan those bytes
again (it has scanned in its referred string).

ACCH divides the matching cases into three categories, as
shown in Figure 3.

(1) Lejt Boundary: the pattern starts prior to the pointer
and its suffix is in the pointer. For handling this case, it
should detennine whether a pattern ends within the pointer
left boundary. ACCH uses depth, the number of edges on
the shortest simple path from current scanning state to the
DFA root, to indicate the longest prefix of any pattern within
the pattern-set [8] at the current sc an location. The algorithm
continues scanning the pointer as long as the number of bytes
scanned within the pointer is sm aller than depth, otherwise
moving to Interna! case.

(2) Right Boundary: the pointer contains a pattern prefix and
its remaining bytes occur after. By using a status parameter,
a byte with u (Uncheck) means its depth is sm aller than
(not including) a pre-defined constant parameter CDepth (2 as
default), otherwise the byte is marked c (Check). Then, ACCH
locates the last occurrence of Uncheck within the referred
string as unchkPos and scans from the corresponding position
within the pointer. In order to determine safely the right
boundary, the scan is resumed from unchkPos - CDepth + 2.
In this case, it needs to pre-configure parameter CDepth. With
different values of CDepth, the numbers of skipped bytes are
influenced and may vary the performance.

(3) Interna! area: a pattern ends within the referred string.
ACCH introduces another status m (Match) . In referred string,
a byte with Match status means a pattern ends at its 10-

pattern
()

Prefix I Xy I BCD

pattern

Inclusionl XY I ABCD 1· .. 1 MN [ABCD j '''1
pattern

I)

Suffix I Xy I ABC 1· .. 1 MN I ABC I D .. ·I
Fig. 4. Categories of COIN. The left shadow area represented ref erred string
and the right represented pointer.

cation. The same as Case 2, algorithm starts scanning at
unchkPos - CDepth + 2 position. In this case, unchkPos is
the last occurrence of Uncheck prior the byte with Match .
However, ACCH have to check again the complete pattern
bytes if comes to again after its first scanning in its referred
string before.

Example of ACCH with input text is presented in §III-B.

III. COIN

In this section, we propose a faster method COIN for multi­
pattern matching on compressed HTTP traffic. COIN leverages
different ways to match patterns according three cases as
shown in Figure 4.

(1) Prefix, pattern starts before pointer, but regardless of its
end position.

(2) Inclusion, pattern is contained in pointer entirely.
(3) Suffix, pattern starts in pointer, but not contained.
PIe ase note that COIN uses a different case cIassification

and different processing method as what ACCH does in
inclusion and suffix cases. COIN can skip the bytes within
pointer when scanning even if it contains a complete pattern.

A. A!gorithm

Since the contents of pointer and referred string are iden­
tical, we have another hypothesis that if there is a complete
pattern in referred string, then the pattern must also be in
pointer.

COIN skips as many bytes as possible in pointer to ac­
celerate multi-pattern matching. So, we need to handle the
positional relationship between pointer and pattern correctly.
As shown in Figure 4, COIN handles the three cases as the
following.

(1) Prefix: COIN uses the same parameter depth defined in
ACCH. It ends this procedure directly and moves to process
case of inclusion, if depth equals to 0 at the prior byte of
pointer. Otherwise, it would continue scan the pointer bytes
as long as the number of scanned is smaller than depth.

(2) Inclusion: COIN introduces a parameter called status. A
byte with m (Match) state means that a pattern is matched at
that location. If patterns matched during the matching process,
COIN records pattern's length and location as matching infor­
mation. When handling inclusion case, COIN copies status
[rom referred string to pointer first. Then let mPos be the
position in the pointer with Match state, and mLen be the
length of pattern. By checking whether the mPos-mLen is out
of the left boundary of pointer, we can detect whether an entire

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:29:18 UTC from IEEE Xplore. Restrictions apply.

3

4

Algorithm 1: COIN (COmpression INspection)

definition: bytelnjo - {byte, status, depth}
byteList - array of bytelnjo

input : Tr h ... Tr j n - compressed traffk
function COIN(Trh .. . Trjn)

for i +--- l 10 n do
if Tr j i is not pointer(Zen , dist) then

I
bytelnjo.byte = Trfi; AC_ScanByle(bytelnjo);
byteList.Add(bytelnjo) ;

else

l byteList.Add(byteList [i - di st : i - dist + Zen]);
COIN_ScanPoinler(i , dist , Zength);

9 function COIN_ScanPoinler(i , dist , Zen)
10 cur P os +--- 0; 0 j j set +--- i - di st;
11

12

13

14

IS

16

17

18

19

20

21

22

23

24

2S

26

27

28

29

30

/ / === 1 . prefi x case ===
if byteList [i - 1].depth i= 0 then l for cur Pos +--- 0 to Zen do

l if AC_ScanByte(byteList [i + curPos]) ::; curPos
then break;

if curPos ~ Zen - 1 then break;

/ / === 2 . inc1usion case
for j +--- cur P os 10 Zen do

if byteList [i + j].status = MATCH then
I /pointer contains entire pattern
if match[i + j].Zen ::; j + 1 then

l cur Pos +--- j + 1;
Record match[i + j].Zen and i + j;

else
L byteList [i + j].status +--- 0;

// === 3 . suffi x case ===
ZastBytelnjo +--- byteList [i + Zen - 1];
if curPos < Zen 1\ ZastBytelnjo.depth i= 0 then l AC_ResetScanStatusO;

ojjset +--- i + Zen - ZastBytelnjo.depth;
while ojjset ::; il\ojjset < Zen do
L AC_ScanBYle(byteList [ojjset + curPos].byte);

Plai ntext: 23445677789aa I 234bb77890cc3345676dd3567
Compression: 23445677789aa I <3, 14>bb<4, 12>Occ3<5,26>6dd3<3,32>
Pattems: 123, 890, 4567

Fig. 5. Input data of example. There are 4 <Iength, distance> pairs in the
compression data.

pattern is appeared or not. If so, COIN keeps the pattern's
length and location, otherwise eliminates the Match state at
mPos.

(3) Suffix: Copying depth to the pointer and determining
whether a suffix pattern is presented by detecting depth of the
last byte (lastPos) in the pointer. If depth is larger than 0, the
DFA scans from the lastPos-depth position.

The detail of COIN is shown in Algorithm 1.

B. Example

We use the compressed data in Figure 5 as input to compare
the pattern matching process in ACCH and COIN. In each sub-

EX.l 234 4567"'aal 234 bb'"

depth 001 1234"'001 231 00'"

ACCH uuu ueem"'uuu emu uu'"

COIN 000 OOOm"'OOO OmO 00'"

(a)

EX .2 "'7 7789 aa"'bb 7789 0'"

depth "'4 0012 00"'00 0012 3'"

ACCH "'m uuue uu"'uu u?ue m'"

COIN "'m 0000 00"'00 0000 m'"

(b)

Ex.3 2 34567 7'" ee3 34567 6'"

depth 0 01234 0'" 000 01234 0'"

ACCH u uueem U'" uuu uueem U'"

COIN 0 OOOOm 0'" 000 OOOOm 0'"

(e)

EXAI2344 567 7"'dd3 567

depth 10001 234 0"'000 000

ACCHI uuuu eem u"'uuu uuu

COINIOooO oOm 0"'000 000

(d)
Fig.6. Example of COIN and ACCH

figure of 6, the first line is part of plaintext, the second line
represents the depth of each character in DFA and the last two
lines (ACCH and COIN) represent the status defined by their
algorithms.

(a) Prefix: COIN shares the same process to sc an pointer
in EX.l with ACCH. COIN first copies depth and status from
corresponding referred string to pointer. Because the depth of
the byte ("1") prior to pointer is 1, it continues scanning bytes
in pointer until ending at the last byte ("4") and matching a
pattern ("123"). However, COIN doesn't skip any byte in this
case, as the string in pointer has no more byte.

(b) Suffix: In Ex.2, COIN copies depth and status from
corresponding referred string to pointer. The depth of the
byte ("b") prior to pointer is 0, so the process moves to the
inclusion case. However, there is not a Match state in pointer.
Therefore, the process moves to the suffix case. The depth of
the lastPos (3) is 2, so COIN begins a new scanning after the
position of lastPos-depth ("8" at 2) to lastPos. In this process,
COIN skips 2 bytes in pointer.

In ACCH, the unchkPos in Right Boundary case is 2 (" 1 ").
It starts scanning form unchkPos - CDepth + 2 (we use the
best CDepth, 2, here). ACCH skips 2 bytes in this pointer.
However, we usually cannot meet the best pre-defined CDepth.

(c) lnclusion.l: After process of prejix case, COIN finds a
byte with Match state in pointer in wh ich mPos is 4 (position

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:29:18 UTC from IEEE Xplore. Restrictions apply.

BCD I Z .. ·I
\

Referred I Referred2 Pointer I Pointer2

Fig. 7. Multi-referred string

of "4" in pointer) and the mLen is 4 (11 "4567" 11). Therefore,
there is an entire pattern in this pointer. Then, the COIN starts
scanning posterior byte with Match state. However, there is no
more byte in this pointer. In this case, COIN skips 5 bytes.

In ACCH, the unchkPos is 1 ("4" is the nearest byte with
Uncheck state prior to the byte "7" with Match state). It begins
scanning from unchkPos and skips 1 byte.

(d) Inclusion.2: COIN notices a byte with Match state ("7")
in referred string. However, for this byte, the mPos is 2 and
mLen is 4. Therefore, there is not an entire pattern in pointer.
COIN eliminates the Match state and ends scanning in pointer.
COIN skips 3 bytes in this case.

ACCH cannot find a byte with Uncheck state and set
unchkPos as O. It scans the wh oie pointer and skips nothing.

C. Discussion

As the numbers of bytes skipped by ACCH and COIN in the
above examples, COIN skips more bytes in the inclusion case.
Actually, the analysis at section IV-B shows that over 90%
of patterns are presented in inclusion case. Skipping scanning
bytes in inclusion can bring lots of performance improvements.

In terms of memory usage, both of COIN and ACCH store
the matching information.

COIN needs more space to preserve the parameter of depth,
but the total memory requirements of COIN and ACCH are
similar since ACCH has more information (U ncheck, Check
or Match) to be stored than COIN.

Obviously, these three cases designed in COIN are basic and
complete. They are only the positional relationships between
pointer and pattern. And they can be assembled to all other
more complex cases.

The numbers of bytes that can be skipped in ACCH are
not the same under different CDepth. For example, when
CDepth=4 in Figure 6 (b), ACCH will begin scanning bytes
with the second "7", which should be skipped under a well­
chosen user-defined parameter. Moreover, if under an inappro­
priate parameter, it would scan some redundant bytes.

Figure 7 shows the example of multi-referred string.
Pointer 1 and Referred2 have some overlapped bytes. Since
the scanning process will skip the first three bytes in Pointerl
(pattern "AB CD"), Pointer2 cannot get the depth value exactly
from Referred2. Therefore, ACCH has to use CDepth to
represent the depth approximately.

In prefix case of COIN, we only use the depth of one
byte prior to pointer. And we don't use depth in inclusion
case. Thus, we only need to discuss the use of depth in
suffix case. Assume "BCDZ" is a pattern which needs to be
matched in Pointer2, this pattern will be skipped and lost only
if the depth of last byte in Pointer2 ("D") is less than 3. In
other words, it occurs only if "BCD" has not been scanned in
Pointer2 or Referred2. However, COIN will copy depth from

TABLE I
CI-IARACTERISTICS OF EXPERIM E NTAL DATA S ETS

Alexa.com
Count of Pages 428

Compressed Size (MB) 14.73
Decompressed Size (MB) 68.28

Ratio of bytes represented by pointers 91.35%
Average pointer length(B)

1500

'[
D

51000
'5
a.
~
Cl
=> e
~

~ 500

1235.92

A1exa.com

Data Set

1507.59
~

15.30

1146.07

A1exa.cn

Alexa.cn
13747
226.95
1190.99
91.92%

19.84

Fig. 8. Multi-pattern matching throughput of COIN and ACCH

its corresponding referred string (Referredl) to the unscanned
pointer (Pointer 1). Therefore, if "BCD" is aprefix of a pattern,
Pointer2 will get exact depth (3) value from Referred 1 at last.
Otherwise, if "BCD" is not aprefix of a pattern, the depth
will be larger than its actual value(4 in this example). So, no
matter how many references, the depth of final pointer won ' t
be sm aller than its actual value, which means, it won ' t miss
any pattern in case of suffix.

The status values in COIN are also accurate in multi­
referred situation. Assume "AB CD" is the pattern in Pointer 1.
The third byte CD") has a m status. COIN first copies status
value from Referred1 to Pointerl. After finishing processing
inclusion case, the bytes' status in Pointerl will be updated to
"0" immediately. So, Pointer2 will gets accurate status from
Referred2.

IV. EVALUATION

A. Settings

First, we have collected traffic by accessing the Alexa top
sites as shown in Table I. Especially, all the raw traffic data
related to the transferring of TOP 500 Alexa.com [2] (only
top 500 is public1y available) and top 20000 Alexa.cn [9]
sites using compression are used as the input traffic in our
experiments. In addition, we take 1430 matching patterns from
Snort rules [10] and use a desktop PC (Intel 4-core 3.4GHz
and 8G RAM) for evaluation.

B. Performance

Figure 8 compares the performance of COIN and ACCH
(CDepth = 2) for multi-pattern matching. COIN is more
efficient than ACCH in both data sets. Particularly, COIN can
process 1507Mb compressed traffic in one second and achieve
31 % more throughput than ACCH on the Alexa.cn date set.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:29:18 UTC from IEEE Xplore. Restrictions apply.

TABLE II
CI-IARACTERISTICS OF POINTER , PATTERN AND COMPARING

PERFORMANCE

Data Sets Average Bytes rep- Pattern in Performance
pointer resented inclusion COIN/
length(B) by pointer ratio ACCH

Alexa.eom 15.30 91.35% 92.61% 110.23%
Alexa.en 19.84 91.92% 94.23% 131.54%
Subset 19.19 91.53% 93.64% 128.64%

As shown in Table 11, most of matched patterns are entirely
contained in inclusion case (pattern in inclusion ratio higher
than 90%). Average pointer length in Alexa.cn data set and
its subset (last 6000 websites in 13747) are longer than that in
Alexa.com. Our evaluation shows that COIN achieves a higher
performance in this data set than the data set of Alexa.com
comparing to ACCH, wh ich is mainly due to COIN can skip
more bytes when scanning pointers and thus save much time
on handling the inclusion case.

V. RELATED WORK

A. With gzip/LZ77

We have described ACCH in Section 11 and thus is omitted
here. Besides, there are other work that focus on inspection
the HTTP traffk compressed by LZ77. It was proposed in
[1] that to reduce the memory usage on pattern matching
after decompressing traffk, however the speed is relatively
lower than even ACCH without any optimization on cutting
the matching redundancy. [11] mainly focused on regular
expression matching and retrieve to ACCH on string matching.
The two papers studied in [12] and [13] to match on Huffman­
encoded data, but they only applied to single-pattern matching
instead of multi-pattern matching.

B. With other compression methods

It is achieved in [14] that multi-pattern matching on com­
pressed data with LZW, but it cannot work on LZ77 com­
pression algorithm and thus cannot support inspections over
HTTP traffk. In [15], the authors applied the Boyer-Moore
algorithm [16] to compress and traffk as weil as the pattern
for fast matching. However, the compressing method is (at
least) not adopted by any Alexa top sites. In other words, it
fails to inspect the web traffic nowadays. In addition, Google
proposed a compression method called SDCH [17], which is
available primarily in Google's related servers and browsers
but has not been widely used by other web site as shown
in our experiments. The usage of [18], which can make
decompression-free inspection on the traffic compressed by
SDCH is also limited since it cannot be extended to LZ77.

VI. CONCLUSlON

Compression of HTTP traffk nowadays is popular, espe­
cially for the TOP web sites who generates the majority of the
HTTP trafik. This phenomenon has introduced a requirement
on the fast pattern matching within middleboxes. In this
paper, we have presented a method called COIN for multi­
pattern matching on compressed HTTP traffic. Not as what

the previous work did to check the same pattern every time it
appears in the compressed data segment, the proposed COIN
only does the matching once and is able to skip the processing
on its future appearance. The comparisons with state-of-the­
art approach ACCH show a further 10-31% improvement in
speed under the experiments with real traffic from Alexa .com
top sites and .cn top sites. There is no need for any parameter
settings for COIN, while ACCH's parameter configurations
may vary the performance in different traffic scenarios.

VII. ACKNOWLEDGEMENT

This work is supported by the National Key Research
and Development Program of China (2016YFB0800101), the
NSFC (No.61672425, 61402357), the Microsoft Research
Asia Collaborative Research Program(No.2016JM6066), Fun­
damental Research Project of Natural Science in Shaanxi
Province(No.2016JM6066) and the Fundamental Research
Funds for the Central Universities.

REFERENCES

[1] Y. Afek, A. Bremler-Barr, and Y. Koral, "Spaee effieient deep packet in­
speetion of eompressed web traffie," Computer Communications, vol. 35,
no. 7, pp. 810-819,2012.

[2] "Alexa top 500 global sites," ''http://www.alexa.eomltopsitesf', aeeessed
Oet. 2016.

[3] A. Bremler-Barr and Y. Koral, "Accelerating multipattern matching
on eompressed http traffie," IEEEIACM Transactions on Networking,
vol. 20, no. 3, pp. 970-983, 2012.

[4] L. P. Deutsch, "rfe 1952: Gzip file format speeifieation version 4.3,"
https://www.rfe-editor.org/rfe/rfc1952.txt, May 1996.

[5] R. Fielding, 1. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leaeh,
and T. Berners-Lee, "rfe 2616, hypertext transfer protoeol-http/l.1 ,"
https://www.rfe-editor.org/rfe/rfe2616.txt, June 1999.

[6] L. P. Deutsch, "rfe 1951: Detlate eompressed data format speeifieation
version 1.3," https://www.rfe-editor.orglrfe/rfeI951.txt, May 1996.

[7] A. V. Aho, "Effieient string matching: an aid to bibliographie seareh,"
Communications of the Acm, vol. 18, no. 6, pp. 333-340, 1975.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press Cambridge, 2001 , vol. 6.

[9] "Alexa top china sites," ''http://www.alexa.en/siterankf', aeeessed Feb.
2017.

[l0] "Snort eommunity rules," "https://www.snort.orgf', aeeessed Dee. 2016.
[11] M. Beeehi, A. Bremler-Barr, D. Hay, O. Kochba, and Y. Koral , "AceeIer­

ating regular expression matching over eompressed http," in INFOCOM,
2015 Proceedings IEEE. IEEE, 2015, pp. 540-548.

[12] S. T. Klein and D. Shapira, "Pattern matching in huffman eneoded texts,"
in Data Compression Conference, 2001 Proceedings DCC. IEEE,2001,
pp. 449-458.

[13] A. Daptardar and D. Shapira, "Adapting the knuth-morris-pratt algorithm
for pattern matching in huffman eneoded texts," in Data Compression
Conference, 2004 Proceedings DCC. IEEE, 2004, p. 535.

[14] T. Kida, M. Takeda, A. Shinohara, and M. Miyazaki, "Multiple pattern
matching in Izw eompressed text," in Data Compression Conference,
1998 Proceedings DCC. IEEE, 1998, pp. 103-112.

[l5] Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa,
"A boyer-moore type algorithm for eompressed pattern matching," in
Annual Symposium on Combinatorial Pattern Matching. Springer, 2000,
pp. 181-194.

[16] R. S. Boyer, " A fast string searehing algorithm," Communications ofthe
Acm, vol. 20, no. 10, pp. 762-772, 1977.

[l7] J. Butler, W.-H. Lee, B. MeQuade, and K. Mixter, "A proposal for shared
dietionary eompression over http," Sep, vol. 8, p. 17, 2008.

[18] A. Bremler-Barr, S. David, D. Hay, and Y. Koral , "Deeompression­
free inspeetion: Dpi for shared dietionary eompression over http," in
INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp. 1987-1995.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:29:18 UTC from IEEE Xplore. Restrictions apply.

