
Journal of Network and Computer Applications 127 (2019) 122–134

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

COIN: A fast packet inspection method over compressed traffic

Xiuwen Sun a, Hao Li a,∗, Dan Zhao a,c, Xingxing Lu a, Kaiyu Hou b, Chengchen Hu a

a Ministry of Education Key Lab for Intelligent Network and Network Security, Department of Computer Science and Technology, Xi’an Jiaotong University,
China
b Department of Electrical Engineering and Computer Science, Northwestern University, USA
c Xi’an University of Finance and Economics, China

A R T I C L E I N F O

Keywords:
Multi-pattern matching
Regular expression matching
Compressed traffic
Deep packet inspection

A B S T R A C T

Matching multiple patterns simultaneously is a key technique in Deep Packet Inspection systems, such as firewall,
Intrusion Detection Systems, etc. However, most web services nowadays tend to compress their traffic for less
data transferring and better user experience, which has challenged the original multi-pattern matching method
that work on raw content only. The straightforward solutions directly match decompressed data which multiply
the data to be matched. The state-of-the-art works skip scanning some data in compressed segments, but still
exist the redundant checking, which are not efficient enough. In this paper, we propose COmpression INspection
(COIN) method for multi-pattern matching over compressed traffic. COIN does not recheck the patterns within
compressed segment if it has been matched before, so as to further improve the performance of matching, we
have collected real traffic data from Alexa top sites and performed the experiments. The evaluation results show
that COIN achieves 20.3% and 17.0% in the average of improvement than the state-of-the-art approaches on the
string and regular expression matching with real traffic and rule sets.

1. Introduction

Deep Packet Inspection (DPI) technique has been promoted as a crit-
ical component in many scenarios from the traditional security ones
including firewalls and Intrusion Detection System (IDS) (Levandoski
et al., 2008; SourceFire, 2017) to the emerging ones, such as network
optimization, big data analysis (Hu et al., 2016), etc. The tasks become
challenging because of the significant trend that the web service traffic
today is transmitted after compression. Specifically, 66% of Alexa top
1000 sites used HTTP compression in July 2010 (Afek et al., 2012) and
the ratio of the top 500 sites has increased to more than 90% in May
2017 (Alexa.com, 2017).

To address the challenge of pattern matching in DPI over com-
pressed traffic, the traditional method, namely Naive, matches the
decompression traffic byte-by-byte, which is quite slow because of the
multiplied data to be matched after decompressing.

To save the matching time, the state-of-the-art ACCH (Bremler-Barr
and Koral, 2012) reuses the information obtained from the decom-
pression phase to accelerate the string matching over compressed traf-
fic. The other state-of-the-art ARCH (Becchi et al., 2015), which can
accelerate regular expression (RegEx) matching over compressed traf-

∗ Corresponding author.
E-mail address: hao.li@xjtu.edu.cn (H. Li).

fic, leverages the same algorithm as ACCH but replaces calculation of
a parameter. However, we observe that they also incur redundancy in
matching phase, leading to the inefficient processing.

We observe there exists redundancy when directly rechecking the
decompressed content, because these bytes are identical with the plain
texts that must have been checked before. By removing such redun-
dancy, in the preliminary version of this paper (Sun et al., 2017), we
propose a novel COmpression INspection (COIN) method over the com-
pressed traffic, which outperforms ACCH by 20.3% averagely under
the real traffic data. In this paper, we further propose an algorithm
for accelerating RegEx matching over compressed traffic, which is 17%
faster than the state-of-the-art in average. To be specific, we make the
following contributions:

• We present a more efficient method COIN, which contains two algo-
rithms to accelerate string and RegEx matching over compressed
traffic respectively.

• We implement the prototype of COIN which achieves a better per-
formance improvement on throughput of matching than the state-
of-the-art works.

• We prove the correctness of the two algorithms.

https://doi.org/10.1016/j.jnca.2018.12.008
Received 21 May 2018; Received in revised form 14 October 2018; Accepted 4 December 2018
Available online 7 December 2018
1084-8045/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2018.12.008
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2018.12.008&domain=pdf
mailto:hao.li@xjtu.edu.cn
https://doi.org/10.1016/j.jnca.2018.12.008


X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

Fig. 1. Illustration of the pointer and its referred string. The left shadow area
represents a referred string and the right one represents a pointer.

The reminder of this paper is as follows. Section 2 briefly reviews
the background of compression inspection and the technical problems
with ACCH and ARCH. Section 3 presents the design of COIN, including
the details of two algorithms and examples. Section 4 describes the
experiments and our evaluation results. Related works are presented in
Section 5, and in Section 6, we conclude the paper. Finally, we list the
proofs in appendix.

2. Background and problem statement

2.1. Background knowledge on gzip

Gzip (Deutsch, 1996b) is a compression encoding format recom-
mended by HTTP 1.1 and is utilized by more than 90% (434/460) of the
web sites as its default format shown in our survey on Alexa Top 500
sites. Gzip uses DEFLATE (Deutsch, 1996a) as its compression method,
which is based on the combination of the LZ77 (Ziv and Lempel, 1977)
algorithm and Huffman coding.

At first, LZ77 maintains a sliding window as a dynamic dictionary
for compression. While scanning the plaintext, LZ77 will try to find the
maximum substring in the window, and record its length and distance
between the current position and the substring in the window.

Fig. 1 shows gzip compression addressing the example text
“11sshea22sshea33”. LZ77 compresses the second plaintext “sshea” to
a two-tuple of “<length, distance>” where the length is the length of
the plaintext and the distance is the offset from the tuple to the plain-
text, namely “<5,7>” in the case. That means the original text can
be restored by copying 5 bytes from the offset position of 7 bytes. To
unify the terms, the first plaintext “sshea” is called referred string and
“<5,7>” is named as pointer.

After that, the compression data, which contains literals and point-
ers, is encoded by Huffman coding. Therefore, the encoding data is con-
tinuous bit stream with variable length that cannot be byte-coded. It is
also the reason why the works have to decompress traffic before a pat-
tern matching method applied.

At last, the encoding data is saved as DEFLATE format and added
gizp header and tail, which includes magic number, CRC result, etc.
In the specification of DEFLATE, the size of distance of pointer is [1,
32768] and the range of length is [3,258]. Using the length, we define
two indicators, the average pointer length which is easy to understand
and the pointer ratio as the ratio of bytes represented by pointer to the
decompressed traffic. They determine the potential of improvement on
inspecting compression traffic which will be discussed in section 4.

2.2. Multi-pattern matching and challenge on compressed traffic

In general, multi-pattern matching over compressed traffic consists
of two independent stages: decompression and matching. The first stage
is fast enough and not critical (Hogawa et al., 2013), so the second stage
determines the performance of the whole process.

In this paper, we focus on Aho-Corasick (AC) (Aho and Cora-
sick, 1975) algorithm for string matching and finite state automata

Fig. 2. AC FSA of string patterns ‘her’, ‘she’, ‘abc’. Each solid arrow indicates
a transition of scanning a character. Each dash arrow represents a failure func-
tion. The other failure functions to root state are omitted.

Fig. 3. A-DFA for patterns ‘ab + c’, ‘bc + d’. Each solid arrow indicates a transi-
tion of scanning a character. The dash arrows represent the default transitions.

(FSA) for RegEx matching. AC constructs a DFA-like FSA by pat-
terns first, and then adds failure function for each state to allow
searching any other prefix branch while current searching failed. It
processes the input characters in a single pass with deterministic
performance.

For example, Fig. 2 shows a FSA of AC for recognizing the string
patterns “her”, “she” and “abc”. The red arrows indicate the path while
scanning the string “sher”. In the scanning process, each transition with
solid arrow eliminates one character. But, transitions with dash arrow
eliminate nothing.

The algorithms based on FSA are widely used for RegEx matching. It
usually compiles RegExs to a nondeterministic finite automaton (NFA)
first. Then, it converts the NFA to a corresponding deterministic finite
automaton (DFA) and minimizes the DFA. At last, it finds strings which
is accepted by the DFA.

The converting of NFA to DFA leads to the explosion of DFA states
and transitions, which makes DFA costs so much memory space than
NFA. There are many studies to reduce the space consumption of DFA
with some matching performance losing, such as, D2FA (Kumar et al.,
2006), A-DFA (Becchi and Crowley, 2007), XFA (Smith et al., 2008).

For example, Fig. 3 shows a A-DFA constructed with the same
RegExs in Fig. 6. It only has 13 transitions rather than 27 in Fig. 6.
The default transition of A-DFA is similar to the failure function of AC.
The red arrows indicate the path “01235456”, when the A-DFA scans a
string “abccd”.

Either failure function or default transition, travels more than N
states when processing a string of length N. These algorithms are called
compression or scalable FSAs in the survey (Xu et al., 2016) and cost
much more time, but less memory space than regular DFA does on
matching characters. For example, XFA achieves 108 Mbps throughput
with small memory sizes in its evaluation.

Moreover, with amounts of compressed traffic and low compres-
sion ratio (the average ratio is 20% in our survey), the matching over
compressed traffic becomes a challenge that makes the throughput of
matching of Naive over compressed traffic less than one fifth of that
over uncompressed traffic.

123



X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

2.3. Previous works

The characters of the pointer are the same to the referred string’s. If
methods could skip some characters in pointer, they would accelerate
the matching process. ACCH and ARCH are the methods for string and
RegEx matching respectively.

ACCH is fundamentally a multi-string matching approach based on
AC algorithm. The basic observation in ACCH is: “If referred string
does not completely contain matched patterns then the pointer con-
tains none”. Following this observation, pointer is separated to three
parts, Left, Internal, and Right (shown as Fig. 1).

In the Left case, the pattern starts prior to the pointer and its suffix
is in the pointer. ACCH uses a parameter depth, namely, the shortest
length of a simple path from the current scanned state to the root state
of AC, to determine whether a pattern ends within the left boundary of
pointer. If the current state depth, prior pointer area is 0, ACCH moves
directly to the Internal case without scanning a single byte. If not, it
continues scanning the pointer bytes as long as the number of scanned
bytes within the pointer is smaller than the depth.

In cases of Internal and Right, ACCH maintains a parameter status
and marks bytes with the flag of Uncheck, Check, Match during the scan-
ning. A byte with Uncheck means its depth is smaller than a pre-defined
constant parameter CDepth (2 as default), otherwise the byte is marked
Check. And a byte is marked with Match while any patterns end at this
position.

The Right case represents that the pointer contains a pattern prefix
and its remaining bytes occur after. ACCH locates the last occurrence
of Uncheck within the referred string and scans from the corresponding
position unchkPos within the pointer. In order to determine safely the
right boundary, the scan is resumed from unchkPos− CDepth + 2.

The Internal case represents that a pattern ends within the referred
string. Same as the Right case, ACCH starts scanning at the position
of unchkPos− CDepth+ 2 and this unchkPos is the last occurrence of
Uncheck prior the byte with Match. If none of the matched patterns
occurred within the referred string, ACCH would skip the Internal area
of the pointer. However, if not, it has to scan those bytes again. For
example, we assume that the string “she” is a pattern which locates in
the Internal area of the pointer in Fig. 1 and ACCH has to scan these
bytes even they have been found in referred string before.

Due to the closure (∗ or +), the depth could not represent the length
of pattern’s prefix any more in RegEx matching. For example, the prefix
length of a string “abcc” at last byte is 4. But, the depth is 3 in the DFA
shown in Fig. 3. So, ACCH can not perform its algorithm in this scenario
directly.

ARCH is the state-of-the-art work based on the same idea and algo-
rithm of ACCH to perform RegEx matching over compressed traffic. The
key effort behind ARCH is to calculate a parameter Input-Depth for each
scanned character which replaces the depth in ACCH.

Input-Depth depends on the automaton state and the scanned bytes.
It is the length of the shortest suffix of scanned string in which inspec-
tion starting at start state (q0) and ending at current state (s). For DFA,
ARCH uses two methods, simple and complex states and positive and nega-
tive transitions, to calculate the upper bound as the value of Input-Depth.

In simple and complex states method, ARCH marks the states with
simple or complex flag during the DFA construction procedure. When it
travels a simple state, it sets the value of Input-Depth with the depth of
DFA, which is similar to the one in ACCH. And it increases the value by
one when traveling a complex state. In positive and negative transitions
method, ARCH defines two types of transitions: a positive transition
which increases the Input-Depth by one and a negative-transition which
either decreases the value or leaves the value unchanged. In the next
sections, we will only introduce the Simple/Complex method since it is
the only one evaluated by ARCH.

After calculated Input-Depth, ARCH uses the same procedures of
ACCH to perform matching. Thus, it is also insufficient for losing sight
of redundant scanning in the case of complete pattern in pointer. Fur-

Fig. 4. Categories of COIN. The string ‘abc’ is a pattern to be matched.

thermore, the overhead of calculating the Input-Depth is so large that
impacting the performance improvement.

3. Design of COIN

In this section, we propose a faster method COIN for multi-pattern
matching over compressed traffic. Since the contents of the pointer and
referred string are identical, we get another observation that if there is
a complete pattern in the referred string, then the pattern must be also
in the pointer.

Based on this observation, COIN inspects the uncompressed data
after decompression and stores parameters for accelerating matching. It
leverages different ways to match patterns according three cases shown
in Fig. 4.

(1) Prefix, pattern starts before pointer, but regardless of its end posi-
tion.

(2) Inclusion, pattern is contained in pointer entirely.
(3) Suffix, pattern starts in pointer, but not contained.

Obviously, the three cases are basic and complete and the Proof is
listed in Appendix A. They are only the positional relationships between
the pointer and pattern and can be assembled to any other complex
cases, such as Fig. 12(b) which combines two cases: Suffix (pointer1)
and Prefix (pointer2).

COIN uses a different case classification and different processing
method as what ACCH does in Inclusion and Suffix cases. The basic
idea of COIN is to confirm whether a complete pattern occurred in the
pointer and find the last appropriate position for restarting matching.

Algorithm 1 shows the routine of COIN on inspecting literals and the
pointer data of compressed traffic. It invokes FSA procedure to check
each literals and processes bytes in pointer with different methods for
string and RegEx matching scenarios. We will introduce them in the
following subsections.

3.1. String matching

As mentioned in ACCH, the depth could represent the length of pat-
tern’s prefix. It can be also used to process the case of Prefix and Suffix
in COIN. With the addition of length of matched pattern, It can be deter-
mined that whether a pattern within pointer completely. So, COIN han-
dles the three cases as following and the detail is shown in Algorithm 2.
The Proof of correctness is listed in Appendix B.

(1) Prefix: COIN uses the same parameter depth defined in ACCH.
It ends this procedure directly and moves to process Inclusion, if depth
is equal to 0 at the position in front of the pointer. Otherwise, it would
not stop scanning the pointer bytes until the number of scanned bytes
is smaller than the depth.

(2) Inclusion: COIN introduces a parameter called status, which indi-
cates whether a pattern is matched at that location. If patterns are
matched during the matching process, COIN records their length and
locations as matching information and marks the locations with m
(Match). When handling Inclusion case, COIN copies status from the

124



X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

Algorithm 1 COIN (COmpression INspection).

referred string to the pointer first. Then let mPos be the position in the
pointer with Match status, and mLen be the length of pattern. By check-
ing whether the mPos − mLen is out of the left boundary of pointer,
we can detect whether an entire pattern is appeared or not. With the
appearance of complete pattern, COIN keeps and stores its length and
location, otherwise COIN eliminates the Match status at mPos.

(3) Suffix: Copying depth to the pointer and determining whether a
Suffix case is presented by detecting the depth of the last byte (lastPos)
in the pointer. If the depth is larger than 0, COIN restarts the scanning
from the position at lastPos − depth.
3.2. Regular expression matching

For RegEx matching, COIN gets another way to find the last appro-
priate position for restarting matching because the depth can not rep-
resent the length of patterns’ prefix. Before elaborating the detail of it,
we present four categories to identify the states of FSA. The definitions
of them are listed as follows.

Initial State: The states in the 𝜖 − closure of start state q0 in NFA.
When using the Subset Construction algorithm (Hopcroft and Ullman,
2007) converts NFA to DFA, a NFA subset that all the states of it are
marked with Initial states generates an Initial state of DFA. For example,
the state marked with green circle is an Initial state in Fig. 6.

Begin State: The states that returned by 𝛿(q0, a) and a is the first
symbol in a RegEx. In Fig. 6, the states marked with blue circle are
Begin states.

End State: The accepting states. To identify the Begin or End states,
they are numbered with sequence number of RegExs.

Normal State: All the other states except the three categories above.

In this scenario, COIN stores the category of each state and the
sequence number of Begin/End states while scanning each byte of traf-
fic. Then, it restarts the matching by finding the last appropriate posi-
tion marked with a Begin state instead of finding the position with the
depth in string matching. It also checks that whether there are any pat-
terns occurring in pointer completely by finding the pair of Begin/End
state with a same sequence number. COIN processes the pointer bytes
by three cases which is same as the string matching and the detail is
shown in Algorithm 3. The Proof is listed in Appendix C.

(1) Prefix: COIN checks the stored state category at the position in
front of the pointer. If it is an Initial State that means there is no pattern
started before pointer and it is no need to process this case. Otherwise,
COIN has to continue the scanning to find the possible pattern until the
FSA returns an Initial state.

(2) Inclusion: COIN finds the first position marked with a Begin state,
which is denoted as scanPos, and keeps curState as the state for restart-
ing scanning. It uses a set setBegin to store the sequence number of all
the Begin states found in the pointer. After that, When an End state is
found, COIN checks whether its sequence number matches the one in
setBegin. If it does, COIN records the End state and current position as
matching information, moves scanPos to the position followed by the
current one and changes curState to the End state.

(3) Suffix: If COIN finds an Initial state or repeated Begin state
which is the same as the one at scanPos. It moves scanPos to the cur-
rent checked position and changes curState only when finding an Initial
state. For any other situations, it keeps the position of scanPos. At last,
COIN restarts a new scanning with curState and the byte at scanPos.

125



X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

Algorithm 2 COIN - String Matching.

3.3. Example

We use the compressed data in Table 1 as input to compare the
pattern matching process. The first line is the plaintext and the second
line represents compression data to be scanned. Now, we will elaborate
the string and RegEx matching as follows.

• String Matching

We use string patterns in Fig. 2 for string matching and the values
of parameters of COIN and ACCH are shown in Fig. 5.

(1) Prefix: COIN shares the same process to scan pointer with ACCH.
The depth in front of the pointer is 0, so it does not need to process the

case of Prefix and moves to process the Inclusion case directly.
(2) Inclusion: COIN copies depth and status from the referred string

to the pointer. Then, it finds a byte marked with Match in the pointer,
thus mPos is 3 (the starting offset begins with 0) and the mLen is 3
(‖‘abc′‖). Therefore, there is an complete pattern in pointer and COIN
records it without scanning it again. It is the only complete pattern in
pointer, so COIN moves to process the case of Suffix.

When ACCH processes this case, it gets mPos = 3 by finding
the position marked with Match in the referred string and gets
unchkPos = 1 by locating the last occurrence of Uncheck before mPos.
Then, it resumes the scanning at the position of unchkPos− CDepth+
2 = 1, which is the first position marked with blue ‘u’ in the pointer.

126



X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

Algorithm 3 COIN - Regular Expression Matching.

127



X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

Table 1
Input data of example.

plaintext 11aabcdab22aabcdabcd33
compressed 11aabcdab22< 7, 9 >cd33

Fig. 5. Example of COIN and ACCH (CDepth=2) for string matching. The first
line is the decompressed traffic and the red bytes are the ones would match
the pattern ‘abc’. The second line represents the depth parameter and the last
two lines (COIN and ACCH) represent the status parameter defined by their
algorithms (‘u’, ‘c’ and ‘m’ are the flags of ‘Uncheck’, ‘Check’ and ‘Match’). The
greens mean the corresponding bytes would be skipped and the blues are the
positions of resuming scanning by ACCH. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this
article.)

So, the complete pattern “abc” has to be scanned again.
(3) Suffix: The depth of the last position is 2, so COIN begins a new

scanning at the position of lastPos − depth (‘a’ at 5). In ACCH, it finds
the last position marked with Uncheck within the referred string and
gets unchkPos = 5 in the pointer. Then, it begins a new scanning at
unchkPos− CDepth+ 2 = 5 which is the second blue ‘u’. It is the same
position as COIN in this example.

In this example, the scanning of bytes corresponding to the green
status are skipped by COIN or ACCH. It is clear to find the difference
between them from the number of skipped bytes. When ACCH finds a
complete pattern in pointer, it has to scan it again, but COIN does not.

• Regular Expression Matching

For convenience, we use the DFA in Fig. 6 and list the parameters
of the DFA for COIN and ARCH in Table 2. The depth is the length
of shortest path from current state to the start state and the complex
represents a simple or complex state (‘0’ for simple and ‘1’ for complex).
Begin and End are the sequence number of Begin and End states. All
these parameters can be obtained by the state. For example, the state
‘6’ is a complex state and its depth is 3. Its Begin and End sequence
number are ‘0’ and ‘2’.

Now, we will elaborate the details of COIN for RegEx matching with
Fig. 7.

Table 2
Parameters of the DFA for COIN and ARCH.

State 0 1 2 3 4 5 6

depth 0 1 2 3 1 2 3
complex 0 0 1 1 0 1 1
Begin 0 1 2 0 2 0 0
End 0 0 0 1 0 0 2

Fig. 7. Example of COIN and ARCH for regular expression matching. The first
line is the decompressed traffic and the red bytes would match the patterns. The
second line lists states of checking the bytes above. Particularly, the blues are
the Begin states, the reds are the End states and the greens represent the bytes
above them would be skipped. The last two lines list the parameters of Input-
Depth and status of ARCH. The values of Input-Depth in blue are calculated by
complex state and the others are obtained from Table 2. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

(1) Prefix: An Initial state is appeared in front of the pointer and
COIN won’t process this case.

(2) Inclusion and Suffix: When checking stored states in referred
string, COIN finds the first Begin state and gets scanPos = 0. The next
state is also a Begin state which is the same as the one at scanPos,
so COIN moves scanPos = 1. The third one is also Begin state but not
equals the one at scanPos, so it keeps scanPos = 1. While finding these
three Begin states, COIN puts their sequence number into a set which
contains 1 and 2.

After that, there is an End state and its sequence number is 1. So, it
is a complete pattern (‘abc’) for finding a pair of Begin/End state with
same sequence number. Then, COIN records this pattern information,
lets curState = 3 and moves scanPos = 4. The next one is also an End
state with sequence number 2, COIN records the information of the
complete pattern (‘bcd’) and gets scanPos = 5, curState = 6.

At this moment, it is a Begin state at scanPos with sequence number
1. The next one, which is also the last one, is a Begin state with sequence
number 2. So, scanPos = 5 will be kept.

After checked all the stored states, COIN copies the states (‘11236’)
before scanPos from the referred string to the pointer and restarts a
new scanning with curState (‘6’) and the byte at scanPos (‘a’). Thus,

Fig. 6. DFA for ‘(ab + c) ∣ (bc + d)’. The green circle state is Initial state, the blues are the Begin state, and double-circle states are the accepting state, i.e.End state.
We omit transitions leading to state 0 for convenience. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version
of this article.)

128



X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

Fig. 8. Influence of multi-referred string on string matching.

it will find the matched patterns (‘abc’, ‘bcd’) after the pointer. The
scanning of bytes corresponding to green states are skipped by COIN in
this example.

Since the process is similar to the example of ACCH after getting the
values of Input-Depth in ARCH, we just elaborate the calculation of the
Input-Depth instead of introducing all the details of ARCH. As shown
in Fig. 7, when ARCH scans the bytes“aa” in the referred string, the
returned states are simple states. Thus, the Input-Depth can be obtained
from Table 2 directly. Scanning the next bytes “bcd” would return com-
plex states and these Input-Depth values are incremented by one. Once
getting the values of Input-Depth, ARCH would mark the status param-
eter. Then, it will employ the algorithm of ACCH to find the position
for resuming scanning in the pointer.

3.4. Discussion

(1) Performance and cost

As the numbers of bytes skipped by ACCH and COIN in the above
examples, COIN skips more bytes in the Inclusion case. Actually, the
analysis at section 4.4 shows that more than 90% of patterns are pre-
sented in Inclusion case on string matching. Skipping the scanning of
bytes in Inclusion can bring lots of performance improvements.

The memory requirements of ACCH, ARCH and COIN are similar.
Considering string matching, both of COIN and ACCH need memory
spaces to store the matching information. The difference of them is
COIN needs a high performance for searching the matching results. But
it is a little difference in actual memory usage. For the stored param-
eters on string matching, COIN needs more space to preserve depth
parameter, but ACCH has to store it in each state of AC.

For RegEx matching, COIN holds states for scanned bytes and needs
some memory to hold category and sequence number in each state of
FSA. However, it also needs to keep some information in ARCH algo-
rithm and its FSA states, such as status, Input-Depth, Simple/Complex
state.

Moreover, only 32 K size of the parameters are needed and pre-
served for all the methods, because the maximum length of distance
between the pointer and referred string is 32768B, which is specified by
DEFLATE. Therefore, the requirements of space are scale invariant for a
determinate FSA. Compared with hundreds or thousands million bytes
memory usage of FSA, thousands bytes extra space is more insignificant.

(2) Influence of parameters

The number of skipped bytes in ACCH are not the same with differ-
ent CDepth. For example, if CDepth=1 when ACCH processes the case
of Inclusion and Suffix in Fig. 5, it will have to scan two more bytes,
which should be skipped under a well-chosen user-specified parame-
ter. So, ACCH would scan some redundant bytes with an inappropriate
parameter.

Fig. 8 shows a example of multi-referred string. The pointer1 and
referred2 have some overlapped bytes. Since the scanning process will
skip the first three bytes (‘bcd’) in pointer1, pointer2 cannot get the
exact depth from the referred2. Therefore, ACCH has to use CDepth to
represent the approximate depth.

In Prefix case of COIN, it only uses the depth of the byte before
the pointer and doesn’t use depth in Inclusion case. Thus, we only need

Table 3
Characteristics of experimental data sets.

Alexa.com Alexa.cn

Number of Pages 434 13747
Compressed Size (MB) 15.54 226.95
Decompressed Size (MB) 70.24 1190.99
Pointer ratio 91.21% 91.92%
Average pointer length (B) 14.89 19.84

to discuss the influence of depth in Suffix case. Assuming “bcdz” is a
pattern which needs to be matched in pointer2, we will lost the pat-
tern only if the depth of last byte (‘d’) in pointer2 is less than 3. In
other words, it occurs only if “bcd” has not been scanned in pointer2 or
referred2 and get a smaller depth from referred1.

However, if “bcd” is not a prefix of any other patterns, pointer2 will
get a larger depth from referred1. For example, we assume string “abcd”
is another pattern. The depth “234” will be copied from referred2 to
pointer2 and is larger than the actual value “123”. Otherwise, the depth
will be its actual value. So, no matter how many references, the depth
of final pointer won’t be smaller than its actual value, which means, it
won’t miss any patterns in the case of Suffix.

The parameter status of COIN is accurate in multi-referred situation.
Assuming “abcd” is a pattern, the third byte (‘d’) owns a Match status
in pointer1. COIN copies status from referred1 to pointer1 first. After
finishing processing the Inclusion case of pointer1, COIN will update the
Match status of the byte to “0” immediately. So, pointer2 will gets an
accurate status from referred2.

4. Evaluation

4.1. Implementation

As mentioned, ACCH accelerates pattern matching over compressed
traffic based on the AC algorithm and it did not specify the implemen-
tation of the algorithm. So, we build AC with a trie and keep depth
parameter in each state. After that, we implement the prototypes of
ACCH and COIN for string matching.

To have an straightforward comparison on RegEx matching, we
implement COIN over RegEx processor at (Becchi, 2016) which contains
an implementation of A-DFA used by ARCH. It is also used as the base-
line method, i.e.Naive. We implement ARCH with the Simple/Complex
method to calculate the Input-Depth parameter.

4.2. Settings

Before the evaluation, we have collected traffic by accessing the
Alexa top sites and upload them into GitHub (Sun, 2018). Their char-
acteristics are shown in Table 3. All the raw traffic data related to the
transferring home pages of top 500 Alexa.com (Alexa.com, 2017) (only
the list of top 500 sites is available publicly in October, 2016) and top
20000 Alexa.cn (Alexa.cn, 2017) sites using compression, which are
used as the input traffic in our experiments.

In addition, we take 1430 string patterns from Snort rules (Source-
Fire, 2017) for comparison of COIN and ACCH. Due to the same rea-
son for straightforward comparison on RegEx matching, we take three
RegEx sets, the Snort24, Snort31 and Snort34, which were taken from
Snort, published at (Becchi, 2016) and used by ARCH. Then, we use a
desktop PC (Intel i5-4460 and 8G RAM) for evaluation. All implemen-
tations are single-threaded programming and run over single core.

4.3. Performance

Firstly, COIN, ACCH and ARCH have matched the same number of
patterns as Naive does. Then, we compare their throughput over the

129



X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

Fig. 9. Throughput comparisons of Naive, ARCH and COIN on string matching
over the Alexa.com and.cn sets.

Alexa.com and Alexa.cn data set. Fig. 9 shows the throughput of COIN
and ACCH on string matching over the two data sets. COIN achieves an
average of 20.3% throughput improvement than ACCH. Fig. 10 shows
the throughput of COIN and ARCH over the two data sets and three
RegEx sets. It outperforms 17.0% averagely on the throughput than
ARCH. Therefore, COIN is more efficient than ACCH and ARCH for
string and RegEx matching over both of the data sets.

The next, we compare the memory overhead of the matching
engines which are implemented by these methods with the string and
RegEx sets. The results show in Table 4. From the table, we find that
COIN incurs a little extra memory space than ACCH or ARCH. For exam-
ple, COIN spends 30076 KB memory space and costs 32 KB more than
ACCH for string matching. All the accelerating methods (COIN, ACCH
or ARCH) cost about tens KB more space than Naive, which is negligi-
ble compared to the memory size of Naive. Moreover, the extra cost is
a fixed value for a specific matching engine and is independent of the
traffic size.

At last, for quantitative analysing the evaluation results, we com-
pare the methods with another indicator, skipped ratio (Rs). Namely,
the ratio of skipped bytes of applying the accelerating algorithm to the
total size of the decompressed traffic. Obviously, Rs = 0 for Naive and
the maximum of Rs is equal to the pointer ratio which is represented in
Table 3.

Table 5 lists the skipped ratio of COIN, ACCH and ARCH by process-
ing the two data sets with the string and RegEx sets. COIN skips 82.85%
bytes of decompressed traffic which have to be scanned by Naive on
string matching over the Alexa.cn data set. It also skips 72.84% bytes
over the Alexa.com data set. But ACCH only skips 78.17% and 70.02%
over the two data sets. It is clear that COIN also skips more bytes than
ARCH over both of the data sets and three RegEx sets. So, the more
bytes are skipped, the higher performance will be achieved.

Table 4
Memory size of the scanning engines built by the methods with
string and RegEx rules (KB).

Rules Naive COIN ARCH ACCH

Strings 29944 30076 – 30044
Snort24 5912 5968 5944 –
Snort31 5412 5504 5440 –
Snort34 5908 5980 5964 –

Table 5
The skipped ratio over the two data sets and the rules (%).

Data Set Rules COIN ARCH ACCH

Alexa.com Strings 72.84 – 70.02
Snort24 82.94 78.67 –
Snort31 84.30 78.41 –
Snort34 81.06 75.96 –

Alexa.cn Strings 82.85 – 78.17
Snort24 85.77 82.42 –
Snort31 87.08 82.52 –
Snort34 85.37 81.19 –

4.4. Analysis

In order to evaluate the influence of different patterns on the
throughput. We compare COIN, ACCH and ARCH with some synthetic
rules.

• String Matching

COIN skips the scanning of reoccurring patterns within the pointer
to accelerate the string matching. We will evaluate COIN and ACCH
with various number of patterns occurred in the Inclusion case while
keeping the other factors same. We choose Alexa.com data set as the
input traffic and select some groups of occurring patterns from the
string pattern set which is used above. The statistics are listed in Table 6
and each group only contains one string pattern. The length of these
patterns and the number of total matched patterns are similar in each
group. The inclusion matched column lists the number of patterns com-
pletely occurring in the Inclusion case.

When none of the patterns have been matched, the main difference
on the skipped ratio may be ascribed to the consideration that ACCH
determines safely the right boundary by resuming the scanning from
the position of unchkPos − CDepth + 2. Moreover, the first and the last
pattern which have the same prefix “width” produce a higher difference
on the boost of the skipped ratio. In general, COIN skips more bytes than
ACCH with the increasing of the patterns (the total and matched in the
Inclusion case).

Fig. 10. Throughput comparisons of the methods on RegEx matching over the two data sets (Alexa.com and.cn) and three RegEx sets (Snort24, Snort31 and Snort34).

130

Alexa.com


X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

Table 6
The variation of skipped ratio of COIN and ACCH with synthetic rules over Alexa.com. Rsc and Rsa
are the skipped ratio of COIN and ACCH. Boost = 100 × (Rsc∕Rsa − 1).

Rules Total Matched Inclusion Matched Rsc (%) Rsa (%) Boost (%)

widthxy 0 – 91.110 90.794 0.348
CDEFGI 0 – 91.176 90.843 0.366
MZXYZ 0 – 91.185 90.853 0.366
LOGIN 41 22 91.195 90.862 0.366
EMF 59 0 91.182 90.849 0.366
MZ 390 149 91.185 90.852 0.367
PK 604 218 91.192 90.859 0.367
host 1865 1434 91.078 90.742 0.370
slug 1919 1838 90.909 90.566 0.380
height 39109 38331 91.038 90.650 0.427
width 47416 46587 91.127 90.756 0.409

Fig. 11. Cumulative distribution function of the length of matched patterns
over the two data sets.

Fig. 11 is the cumulative distribution function of the matched pat-
terns’s length of inspecting the Alexa.com and.cn data sets with all the
1430 string patterns. It shows that the length of most matched patterns
is smaller than 12 bytes. But the average pointer length of the Alexa.cn
and Alexa.com is about 15 bytes, shown in Table 3. So most of the pat-
terns would be occurred in the Inclusion case. Besides, we have checked
the matched patterns over the two data sets and confirm that 92.61%
matched patterns of Alexa.com and 94.23% of Alexa.cn are entirely con-
tained in the Inclusion case. Therefore, the more patterns are occurred
in the Inclusion case, the higher skipped ratio will gain and the better
performance will achieve.

• Regular Expression Matching

ARCH may offer a lower performance gain when detecting patterns
that contain a short string prefix followed by the closure. Because, these

Table 7
The comparisons of throughput and skipped ratio between COIN and
ARCH over Alexa.com. The columns of T and Rs are the throughput and
skipped ratio. The Decreased rows are the decrease ratio of T and Rs.

Rule Set COIN ARCH

T (Mbps) Rs (%) T (Mbps) Rs (%)

Snort24 63.59 82.94 53.10 78.67
Snort24′ 60.32 82.13 45.82 75.46
Decreased (%) 5.14 0.98 13.71 4.08
Snort31 67.45 84.30 52.04 78.41
Snort31′ 67.56 84.32 51.55 77.91
Decreased (%) −0.16 −0.02 0.94 0.64
Snort34 55.46 81.06 53.51 75.96
Snort34′ 55.31 81.09 52.80 75.65
Decreased (%) 0.27 −0.03 1.33 0.41

rules would generate more complex states. To illustrate that, we append
“∗” behind the second characters in each RegEx rules above and denote
the new rule sets as Snort24′, Snort31′ and Snort34′. Then, we compare
the throughput and skipped ratio of COIN and ARCH over Alexa.com
data set. The results show in Table 7.

When we insert “∗” into the rule set of the Snort31 and Snort34,
the throughput and skipped ratio of COIN has only changed a lit-
tle (increased or decreased). But, there has been some decrease in
ARCH. Especially, when changed the Snort24, the throughput of ARCH
decreased 13.71% and the skipped ratio decreased 4.08%. The two mea-
sures of COIN changed less than half of ARCH’s. Therefore, COIN is not
as sensitive as ARCH in this situation.

4.5. Future work

COIN accelerates multiple pattern matching over compressed traf-
fic by reducing the redundant scanning of complete patterns within
the pointer. Finding the complete patterns also incurs some extra cost
which limits its throughput for wire-speed matching. In the future, we
will study some mechanism to reduce the cost, such as determining
the complete patterns in the pointer more quickly or implementing
COIN with a hardware platform. And then, we are going to integrate
the method into a full DPI system.

5. Related work

5.1. Deep packet inspection

The survey (Xu et al., 2016) has concluded matching methods about
DPI from applications, algorithms and hardware platforms. The paper
(Bremler-Barr et al., 2014) treats DPI as a service to the middleboxes,
implying that traffic should be scanned only once and all middleboxes
use the service. The paper (Thompson, 1968) provides an algorithm
for regular expression search and introduces a method of compiling
RegEx to NFA. To solve the state inflation problem, there are so many
researches on DFA state transition compression, such as (Becchi and
Crowley, 2007; Kumar et al., 2006; Smith et al., 2008). Snort (Source-
Fire, 2017) is an open source network intrusion detection and preven-
tion system based on DPI. Its rule sets are widely used in academic
and industry. However, all of these literature does not concern how to
accelerate the matching over compressed traffic.

5.2. With gzip/DEFLATE

ACCH and ARCH are the methods of accelerating string and RegEx
matching over compressed http traffic which have been described in
Section 2.3 and thus is omitted here. Besides, there are other works
that focus on inspection of the traffic compressed by LZ77. SPC (Brem-
ler-Barr et al., 2011) is another method for accelerating string match-
ing over compressed traffic which is based on Wu-Manber algorithm

131



X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

(Sun and Udi, 1994) and is similar to ACCH with the same basic idea.
SOP algorithm (Afek et al., 2012) was proposed to reduce the mem-
ory usage on pattern matching after decompressing traffic, however the
speed is relatively lower than even ACCH without any optimization
on cutting the matching redundancy. The two papers studied in (Klein
and Shapira, 2001) and (Daptardar and Shapira, 2004) to match on
Huffman-encoded data, but they only applied to single-pattern match-
ing rather than multi-pattern matching.

All the methods above are concerned to accelerate string matching
over compressed traffic. Except for them, Sun and Kim (2011) presents
a method to accelerate RegEx matching over compressed traffic. But, it
relies on the compression DFA which have reduced its number of path
pairs significantly. That limits its application scenarios.

5.3. With other compression methods

The paper (Kida et al., 1998) achieved multi-pattern matching over
the compressed data with LZW, but it cannot work on LZ77 compres-
sion algorithm and thus cannot support inspections over HTTP traffic.
In (Shibata et al., 2000), the authors applied the Boyer-Moore algorithm
(Boyer and Moore, 1977) to compress traffic as well as the pattern
for fast matching. However, the compressing method is also a single-
pattern matching and fails to inspect the web traffic nowadays. In addi-

tion, Google proposed a compression method called SDCH (Butler et
al., 2008), which is available primarily in Google’s related servers and
browsers but has not been widely used by other web site as shown in our
experiments. The usage of (Bremler-Barr et al., 2012), which can make
decompression-free inspection over the traffic compressed by SDCH is
also limited since it cannot be extended to LZ77.

6. Conclusion

In this paper, we have presented a method called COIN for multi-
pattern matching over compressed traffic. Unlike the previous works
that check the same pattern each time when it appears in the com-
pressed data segment, COIN only matches the pattern once and skips
its future appearance within the compressed segment. It is much faster
than the state-of-the-art approaches on the string and RegEx matching
with real traffic from Alexa top sites.

Acknowledgement

This work is supported by the National Key Research and Develop-
ment Program of China (2016YFB0800101), the NSFC (No.61672425,
61402357) and the Fundamental Research Funds for the Central Uni-
versities.

Appendix A. Classification completeness of COIN

Theorem 1. The classification of COIN processing pointer bytes is complete.

Proof. We prove the completeness through the relative position of pattern and pointer. Let U be a universal set that represents the pattern and
pointer intersect. Proving this theorem is equivalent of proving the union of classification is equal to U.

At first, we consider the start position of pattern and divide U to two parts. Let p be the situation that start position of pattern before the pointer.
Thus, ¬p means its start position in the pointer and U = p ∨ ¬p.

Then, we divide ¬p by the end position of pattern. Let q be the situation that the end position in the pointer. So, ¬q means its end position
behind the pointer and ¬p = q ∨ ¬q.

Therefore, It can be derived that U = p ∨ q ∨ ¬q. Obviously, p can be regarded as the Prefix of COIN. q means that the start and end position of
pattern are both in pointer. In other words, pointer contains pattern completely, defined as Inclusion of COIN. ¬q represents Suffix of COIN. So, it
is proved. □

Appendix B. Correctness of string matching algorithm in COIN

Theorem 2. COIN detects all the string patterns in compressed traffic as the Naive method does.

Proof. COIN scans the literals by AC scanner when pattern and pointer are not intersect and scans the pointer bytes according to the classification
of COIN when they are intersect. With the Theorem 1, it’s easy to verify the completeness of Algorithm 2. So, we prove Theorem 2 through the
following four cases.

Fig. B.12 The relative position of pattern and Pointer2 belong to the Prefix case.

(1) Non-intersect: In this case, all the bytes are literals. COIN scans them by AC which also used by the Naive method. So, they must have the
same result.

Before discussing the other three cases, we introduce an auxiliary function 𝜎 called suffix function (Cormen et al., 2012). For a given pattern
p[1,… ,m], the function maps string x to {0,1,… ,m} such that 𝜎(p, x) is the length of the longest prefix of p that is also a suffix of x. Along with
the suffix function, we can formally describe the parameter depth as max{𝜎(pi, x) ∣ pi ∈ P}, where P is the set of patterns.

132



X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

(2) Prefix: As shown in Fig. B.12, the prior byte of Pointer2 may be located in literals or Pointer1. Compared to the Naive method, COIN will get
a same depth value in Fig. B.12(a) and get a same or bigger value in Fig. B.12(b) with the discussion (3.4). COIN won’t make a wrong decision even
the depth is greater than its actual value.

If depth = 0 at the prior byte of pointer, it means 𝜎(p, x) = 0,∀p ∈ P. It also means there is no pattern starts before pointer. So, it is not necessary
to process this case. Otherwise, COIN will continue scanning the pointer bytes.

The depth will be bigger than the number of scanned bytes in pointer, because the start position of pattern is before pointer. Otherwise, COIN
have ended up scanning of current pattern. The remaining bytes do not belong to Prefix. So, COIN could find all the possible patterns in Prefix.

Fig. B.13 Relative position of pattern and the depth in Suffix.

(3) Inclusion: It is observed that if there are any complete patterns in the pointer, they must be found from its corresponding referred string.
Thus, COIN could find all the string patterns in Inclusion case by estimating whether the length of pattern out of the boundary of the pointer.

(4) Suffix: As shown in Fig. B.13, we assume l is the length of pointer and the depth at last position in the pointer is d. At first, We make an
opposite assumption that COIN would miss some patterns in this situation. So, it must exist a pattern P and its start position is before the red area,
thus d < dp < l. According to the definition of the suffix function 𝜎, there is depth = max{d, dp} = dp at the last position in pointer. It derives a
contradiction with depth = d. Therefore, COIN could find all the patterns in Suffix.

From all the above, it is proved that COIN detects all the string patterns in compressed traffic as the Naive method does. □

Appendix C. Correctness of regular expression matching algorithm in COIN

Theorem 3. Suppose that w[0,1,… , n] are the bytes of a matched pattern in the referred string and p[0,1,… , n] are the returned states of scanning w. As
shown in Fig. C.14, the states before pk are known and the states q, which locate in pointer, are unknown. Thus, there is qx = 𝛿(pk,wax) = 𝛿(pn, ax), where
𝛿 is the transition function and 𝛿 is the extended transition function of DFA.

Proof. We prove it through two cases.

(1) pk = pm: it is obvious that 𝛿(pk,wax) = 𝛿(pm,wax) = 𝛿(pn, ax).
(2) pk ≠ pm: We have learned that pn and qn are accepting states of the same RegEx. So we can get that p0 and q0 are equivalent from the

definition of equivalence of states. That is means we can always find a way to rename the states so that the two states become the same. It
derives that 𝛿(pk,w0) = q0 = p0 = 𝛿(pm,w0). Therefore, qx = 𝛿(pk,wax) = 𝛿(𝛿(pk,w0),w1 · · ·wnax) = 𝛿(𝛿(pm,w0),w1 · · ·wnax) = 𝛿(pn, ax).

Therefore, it is proved. □

Fig. C.14 Scanned bytes and returned states in the pointer and referred string.

Theorem 4. COIN detects all the RegEx patterns in compressed traffic as the Naive method does.

Proof. From the algorithm 2, we can find that COIN detects literals with FSA scanner which is also used in Naive. If the returned state after
processing pointer bytes by COIN is equal to the one returned by Naive, COIN must detect all the patterns in compressed traffic as Naive does. So,
we can prove the theorem from the three cases of COIN for processing pointer bytes in algorithm 3.>

(1) Prefix: If the returned state at prior position before the pointer is an Initial state. It means none of the patterns start before the pointer and is
no need to process Prefix case. If not, COIN will detect the following bytes in the pointer until it returns an Initial state. So, it must return an Initial
state before processing Inclusion or Suffix cases. Otherwise, it means COIN has detected all the bytes in the pointer and there is no need to process
Inclusion and Suffix cases. So, COIN will return the same state as the Naive method does after processing Prefix case.

(2) Inclusion and Suffix: As mentioned, there is an Initial state before processing the two cases which is same as Naive. Besides, COIN finds the
first position with Begin state as the re-scanning position (scanPos). It will return Initial states by scanning bytes before scanPos, because the Begin
state is the first state by reading the first symbol of any patterns. Therefore, q0 is the correct state for starting a new scanning if scanPos does not
change. Then, we will prove that it is safe to move scanPos when COIN meets an Initial or repeated Begin state or matched an End state after
checking some bytes.

It is obvious that COIN could move scanPos to the current position when it meets an Initial or repeated Begin state, because the states are equal
at scanPos and current position. Through the Theorem 3, we can learn that the scanning of bytes of a complete pattern can be skipped if the pattern

133



X. Sun et al. Journal of Network and Computer Applications 127 (2019) 122–134

has been matched in its referred string. And COIN also gets a correct state by continue scanning the following bytes with the accepting state of this
pattern. So, it could move scanPos to the next position of the complete matched pattern which is found by a pair of Begin/End state. Therefore,
COIN and Naive also return the same state in these two cases.

From all the above, COIN detects all the RegEx patterns in compressed traffic as the Naive method does. □

References

Afek, Y., Bremler-Barr, A., Koral, Y., 2012. Space efficient deep packet inspection of
compressed web traffic. Comput. Commun. 35 (7), 810–819.

Aho, A.V., Corasick, M.J., 1975. Efficient string matching: an aid to bibliographic
search. Commun. ACM 18 (6), 333–340.

Alexa.cn, 2017. Alexa Top china Sites. http://www.alexa.cn/siterank/” accessed Feb.
2017.

Alexa.com, 2017. Alexa Top 500 Global Sites. http://www.alexa.com/topsites/”
accessed May. 2017.

Becchi, M., 2016. Regular Expression Processor. http://regex.wustl.edu accessed Dec.
2016.

Becchi, M., Bremler-Barr, A., Hay, D., Kochba, O., Koral, Y., 2015. Accelerating regular
expression matching over compressed http. In: Proceedings of the 2015 IEEE
Conference on Computer Communications (INFOCOM). IEEE, pp. 540–548.

Becchi, M., Crowley, P., 2007. An improved algorithm to accelerate regular expression
evaluation. In: Proceedings of the 3rd ACM/IEEE Symposium on Architecture for
Networking and Communications Systems (ANCS). ACM, pp. 145–154.

Boyer, R.S., Moore, J.S., 1977. A fast string searching algorithm. Commun. ACM 20 (10),
762–772.

Bremler-Barr, A., David, S., Hay, D., Koral, Y., 2012. Decompression-free inspection: dpi
for shared dictionary compression over http. In: Proceedings of the 2012 IEEE
Conference on Computer Communications (INFOCOM). IEEE, pp. 1987–1995.

Bremler-Barr, A., Harchol, Y., Hay, D., Koral, Y., 2014. Deep packet inspection as a
service. In: Proceedings of the 10th ACM International on Conference on Emerging
Networking Experiments and Technologies (CoNEXT). ACM, pp. 271–282.

Bremler-Barr, A., Koral, Y., 2012. Accelerating multi-pattern matching on compressed
http traffic. IEEE/ACM Trans. Netw. 20 (3), 970–983.

Bremler-Barr, A., Koral, Y., Zigdon, V., 2011. Shift-based pattern matching for
compressed web traffic. In: Proceedings of the IEEE 12th International Conference
on High Performance Switching and Routing (HPSR). IEEE, pp. 222–229.

Butler, J., Lee, W.-H., McQuade, B., Mixter, K., 2008. A Proposal for Shared Dictionary
Compression over. https://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/
att-0441/Shared_Dictionary_Compression_over_HTTP.pdf accessed Feb. 2017.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2012. Introduction to Algorithms,
third ed. China Machine Press.

Daptardar, A., Shapira, D., 2004. Adapting the knuth-morris-pratt algorithm for pattern
matching in huffman encoded texts. In: Proceedings of the Data Compression
Conference. IEEE, p. 535.

Deutsch, L.P., 1996. Rfc 1951: Deflate Compressed Data Format Specification Version
1.3. https://www.rfc-editor.org/rfc/rfc1951.txt accessed Feb. 2017.

Deutsch, L.P., 1996. Rfc 1952: Gzip File Format Specification Version 4.3. https://www.
rfc-editor.org/rfc/rfc1952.txt accessed Feb. 2017.

Hogawa, D., Ishida, S.-i., Nishi, H., 2013. Hardware parallel decoder of compressed http
traffic on service-oriented router. In: Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA), pp. 1–7.

Hopcroft, J.E., Ullman, J.D., 2007. Introduction to Automata Theory, Languages, and
Computation, third ed. China Machine Press.

Hu, C., Li, H., Jiang, Y., Cheng, Y., Heegaard, P., 2016. Deep semantics inspection over
big network data at wire speed. IEEE Netw. 30 (1), 18–23.

Kida, T., Takeda, M., Shinohara, A., Miyazaki, M., 1998. Multiple pattern matching in
lzw compressed text. In: Proceedings of the Data Compression Conference. IEEE, pp.
103–112.

Klein, S.T., Shapira, D., 2001. Pattern matching in huffman encoded texts. In:
Proceedings of the Data Compression Conference. IEEE, pp. 449–458.

Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J., 2006. Algorithms to
accelerate multiple regular expressions matching for deep packet inspection.
Comput. Commun. Rev. 36 (4), 339–350.

Levandoski, J., Sommer, E., Strait, M., 2008. l7-filter. http://l7-filter.clearos.com/
accessed May. 2017.

Shibata, Y., Matsumoto, T., Takeda, M., Shinohara, A., Arikawa, S., 2000. A
boyer–moore type algorithm for compressed pattern matching. In: Annual
Symposium on Combinatorial Pattern Matching. Springer, pp. 181–194.

Smith, R., Estan, C., Jha, S., 2008. Xfa:faster signature matching with extended
automata. In: Proceedings of the 2008 IEEE Symposium on Security and Privacy.
IEEE, pp. 187–201.

SourceFire, 2017. Snort. https://www.snort.org/ accessed Feb. 2017.
Sun, W., Udi, M., 1994. A Fast Algorithm for Multi-pattern Searching. Tech. Rep.

TR-94-17. University of Arizona.
Sun, X., 2018. Compressed Traffic Data Sets. https://github.com/xiuwencs/depict

accessed May. 2018.
Sun, X., Hou, K., Li, H., Hu, C., 2017. Towards a fast packet inspection over compressed

http traffic. In: Proceedings of the 2017 IEEE/ACM International Symposium on
Quality of Service. IEEE, pp. 1–5.

Sun, Y., Kim, M.S., 2011. Dfa-based regular expression matching on compressed traffic.
In: Proceedings of the 2011 IEEE International Conference on Communications
(ICC). IEEE, pp. 1–5.

Thompson, K., 1968. Programming techniques: regular expression search algorithm.
Commun. ACM 11 (6), 419–422.

Xu, C., Chen, S., Su, J., Yiu, S., Hui, L.C., 2016. A survey on regular expression matching
for deep packet inspection: applications, algorithms, and hardware platforms. IEEE
Commun. Surv. Tutor. 18 (4), 2991–3029.

Ziv, J., Lempel, A., 1977. A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. 23 (3), 337–343.

Xiuwen Sun is a Ph.D. student in the Department of Computer Science and Technology at
Xi’an Jiaotong University. His research interests are network measurement and network
security.

Hao Li received his Ph.D. degree in computer science from Xi’an Jiaotong University
in 2016 and is now an assistant professor in the Department of Computer Science and
Technology at the same university. His research interests are network measurement and
software defined networking.

Dan Zhao is a Ph.D. student in the Department of Computer Science and Technology at
Xi’an Jiaotong University and also works in Xi’an University of Finance and Economics.
Her research interests are network measurement and network security.

Xingxing Lu received his M.S. degree in computer science from Xi’an Jiaotong University.
His research interest is software defined networking.

Kaiyu Hou received his M.S. degree in computer science from Xi’an Jiaotong University
in 2017 and is now a Ph.D. student in the Department of Electrical Engineering and Com-
puter Science at Northwestern University, USA. His research interests are networking and
system.

Chengchen Hu received his Ph.D. degree from Tsinghua University, China, in 2008. He
worked in Tsinghua University as an assistant professor (July. 2008–Dec. 2010) and then
later severed in Xi’an Jiaotong university as associated professor (Dec. 2010–Jan. 2016)
and professor since 2016, all are with the Department of Computer Science and Technol-
ogy. Since the summer of 2017, he has been on leave and directing the Xilinx Research
Labs Asia Pacific (XLAP). This work was mainly completed before his on-leave to XLAP.
His research interests include network measurement, data center networking, and soft-
ware defined networking. He is the recipient of a fellowship from the European Research
Consortium for Informatics and Mathematics (ERCIM), New Century Excellent Talents in
University awarded by the Ministry of Education, China.

134

http://refhub.elsevier.com/S1084-8045(18)30390-4/sref1
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref2
http://www.alexa.cn/siterank/
http://www.alexa.com/topsites/
http://regex.wustl.edu
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref6
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref7
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref8
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref9
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref10
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref11
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref12
https://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
https://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref14
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref15
https://www.rfc-editor.org/rfc/rfc1951.txt
https://www.rfc-editor.org/rfc/rfc1952.txt
https://www.rfc-editor.org/rfc/rfc1952.txt
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref19
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref20
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref21
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref22
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref23
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref24
http://l7-filter.clearos.com/
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref26
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref27
https://www.snort.org/
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref29
https://github.com/xiuwencs/depict
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref31
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref32
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref33
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref34
http://refhub.elsevier.com/S1084-8045(18)30390-4/sref35

	COIN: A fast packet inspection method over compressed traffic
	1. Introduction
	Acknowledgement
	Classification completeness of COIN
	Correctness of string matching algorithm in COIN
	Correctness of regular expression matching algorithm in COIN
	References


