
Parsing Application Layer Protocol with Commodity
Hardware for SDN

Hao Li†, Chengchen Hu†‡, Junkai Hong†, Xiyu Chen†, Yuming Jiang‡
†Xi’an Jiaotong University ‡Norwegian University of Science and Technology

ABSTRACT
The de facto implementation of Software Defined Network-
ing (SDN), i.e., OpenFlow, only parses L2-L4 headers, which
limits the use of SDN to employ control intelligence in ap-
plication layer. In this paper, we advocate content pars-
ing to empower SDN with finer grained control ability over
traffic. Specifically, we propose a scalable content parser,
called COPY, to identify and parse application layer proto-
cols. COPY creates a distinguishable counting context free
grammar (DCCFG) to specify the protocol’s semantics in
application layer, and translates multiple DCCFGs into one
distinguishable counting automaton (DCA). DCA is gener-
ated without semantic loss from the single DCCFG, and thus
provides accurate and scalable parsing ability. Our experi-
ments show that COPY precisely identifies every packet in
a labeled trace. When comparing with other six approaches
on the real traces, COPY performs 4.2Gb/s and 24.7Gb/s
with single- and eight-thread models, respectively, which im-
proves 20%–860% than others, and consumes acceptable off-
line overhead in time and space.

1. INTRODUCTION
Software Defined Networking (SDN) is recognized as a

promising direction of the future Internet, which separates
the control plane and the data plane physically, abstracts
network functions and controls the network with a global
view. OpenFlow is the de facto SDN southbound interface
between the control plane (controller) and the data plane
(Openflow Switch) [23].

Although the number of fields which OpenFlow checks
increases from 12 with OpenFlow 1.0 up to 41 with Open-
Flow 1.4, it is so far still limited to L2 – L4 and would be-
come very complicated to extended into more use cases [23].
To better support functions of higher layer appliances, it
is advocated to extend SDN with the capability of iden-
tifying arbitrarily user-defined protocols, i.e., application
layer protocols [10, 11, 30]. This empowers SDN more flexi-
ble programmability and finer-grained control with detailed
knowledge obtained from the traffic. A simple example is
fine-grained traffic engineering, e.g., distribute images and
videos in high definition to lightly loaded path, limit down-
load speed from certain applications, etc.

With the above motivation, we investigate, in the present
paper, application layer protocol parsing for SDN, which is
able to extract the field values of protocols up to L7. In the
literature, application layer parsing techniques have been
studied in the context of middleboxes located in the edge of
the network, but they have difficulties to satisfy the speed

and flexibility requirements with large fine-grained policy set
for SDN. Binpac [24] and Ultrapac [18] requires considerable
efforts on specifying new protocols, thus they are preferred
to serve as the intrusion detection system (IDS), where fewer
protocols are involved. FlowSifter [20] eases the specifica-
tion and provides higher throughput, but like Binpac and
Ultrapac, it focuses on the single protocol parsing, and its
scalability becomes the major concern with much more pro-
tocols. Simple extensions of these methods by introducing
a prior protocol identifier or sequential processing are not
valid, as demonstrated later in this paper.

Recently, several papers have proposed to use protocol-
independent parsers for SDN, whose implementations mainly
rely on specialized hardware to provide high throughput,
such as ASIC chip [30, 31] and vender-specialized network
processor [10, 11, 14]. Such none-commodity constraint on
hardware is rigid and expensive, which consequently causes
it hard to support high layer protocols that are often defined
with flexible structure. In addition, these methods are ba-
sically optimized for “binary-based” protocol and may face
difficulties to efficiently parse the “character-based” proto-
cols, e.g., HTTP.

In this paper, we present a novel COntent Parser method-
ologY (COPY) for application layer protocol parsing in SDN,
which is accurate, fast, flexible and scalable. Specifically,
COPY enables higher layer visibility (L7 header and pay-
load) and provides wire-speed processing ability without
compromise at the semantic level or of accuracy. In the con-
trol plane, COPY generates a parsing automaton according
to the application layer protocol specifications. The pars-
ing automaton is then issued into the data plane, where the
parsing component, based on the parsing automaton, ex-
tracts the network traffic knowledge and pipelines it to the
matching component or the network applications through
the northbound. We have implemented COPY in a com-
modity platform without any specialized hardware.

Overall, we have three key contributions in the design of
COPY (§3):

Expressive and distinguishable specification (§4). We
propose a distinguishable counting context free grammar
(DCCFG) to specify an application by its L7 header or pay-
load. This expressive and user-friendly grammar can distin-
guish multiple extracting behaviors across protocols. Our
evaluations show that DCCFG can express complex proto-
cols in the application layer within only tens of lines of code.

High speed parsing structure for multiple protocols
(§5, §6). We employ a distinguishable counting automa-
ton (DCA) to provide linear-complex parsing on the input

978-1-4673-6633-5/15/$31.00 © 2015 IEEE 51

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:35:41 UTC from IEEE Xplore. Restrictions apply.

length for multiple protocols. DCA identifies the protocol
and extracts the field values simultaneously, where the pars-
ing automaton is similar to the traditional deterministic fi-
nite automaton (DFA) with only minor overhead.

Commodity implementation and evaluations using
real traces (§7). We have built a real prototype imple-
mentation of COPY on a commodity platform, and evalu-
ated it using real traces. The experiments show that, with 38
complex L7 protocols, COPY achieves 4.2Gb/s with single
thread, and 24.7Gb/s with eight threads. A comprehensive
comparison of COPY with six related works further demon-
strates that COPY strikes the best performance, improving
the factual throughput, or goodput (i.e., throughput ex-
cluding the fault identification), by 23% – 860% only at a
memory cost of about 450MB.

2. GOALS AND CHALLENGES
In this section, we detail the goals as well as the corre-

sponding challenges mentioned in §1.

2.1 High layer visibility and programmability
Goal. A recent survey indicated that the number of L7
appliances (e.g., middleboxes) in SDN’s infrastructures is
comparable to the number of routers [29], making high layer
processing in SDN highly challenging. Particularly, to em-
power SDN with such functions, high layer visibility and
protocol parsing in the device are necessary. For example,
one operator aims to redirect the traffic of high-definition
videos on Youtube to lightly loaded paths so as to provide
better QoS based on the SLAs. To realize this, the opera-
tor could specify a rule {App:"Youtube",Resolution:"HD"}
with an action, e.g., forwarding to port 2 where sufficient re-
source is reserved. This function is like an intelligent load
balancer, which inspects not only L7 header (e.g., Host field
in HTTP request), but also L7 payload (e.g., a certain value
in HTML in the response) in the proprietary Youtube pro-
tocol. In addition, besides the visibility, the parser is also
required to offer the high layer programmability to avoid the
frequent update of supporting new protocols [10, 30].

Challenge. Unlike L2-L4 headers located in fixed posi-
tions, it is not easy to specify proprietary application pro-
tocols since they may be organized in a highly different
way. The most common such cases include using a recur-
sive grammar for markup languages (S→[S] in HTML), and
a type-length-value (TLV) field for counting-sensitive need
(Content-Length field in HTTP). In addition, the regular
grammar (RG) is widely used to describe a L7 protocol,
which is of low expressiveness. For example, RG uses GET

/index.html HTTP/1.1\r\n to represent an HTTP request
header with method “GET” and URI “index.html”, but it
also could appear in other L7 payload (intentionally or un-
intentionally). RG cannot handle the above recursive cases
and counting-sensitive cases, which brings risk of inaccuracy
and is not feasible for parsing the aforementioned SDN con-
tent. The context-free grammars (CFG) could handle the
recursive cases, but its recursive descent parsing needs to
maintain a symbol stack, which makes it much slower than
parsing the finite automaton generated by RG. Moreover,
due to the uncertain length of the stack, CFG cannot han-
dle the counting sensitive cases either. The counting sensi-
tive feature normally requires the context sensitive grammar
(CSG), but it is very expensive to implement a CSG parser.

SingleParser1

Specification Library

SingleParser2 SingleParserN...Payload

(a) Sequentially parsing tries each protocol one by one. The
payload will be parsed N times in the worst case (N is the
number of the protocols). Speed is the major concern.

Weak Specification Library

Prior Protocol Identifier
SingleParser2

SingleParser1

SingleParserN

...

Payload

Specification Library

(b) The prior identifier dispatches the payload by a much
weaker specification library such as RegEx, which may mis-
lead the single protocol parser. Besides, it still needs to
parse the whole payload in the single parser, bringing pars-
ing redundancy.

Figure 1: Two simple extensions to support parallel
parsing. Both suffer from one of two drawbacks:
accuracy and speed.

2.2 Fast, accurate, and scalable processing
Goal. The parser for SDN works in the core of the net-
work, which should process the packets in real time. Tra-
ditional middleboxes such as IDS also inspect L7 content
in the packets, while they are mainly deployed in the edge
of the network with low line rate. In addition, IDS typ-
ically cares about only a few protocols, while our goal is
to have a parser that is scalable when new protocols are
added, which happens ordinarily in the era of SDN. Fur-
thermore, many other middleboxes work on the mirror traf-
fic that will not impact the real network, or provide lower
visibility level that barely makes mistake. To accelerate the
flexible parser, many works proposed hardware-specialized
approaches, which either are based on the elaborately de-
signed ASIC chip [14] or rely on the vender-specialized hard-
ware [30]. These approaches set an uncertain timetable for
their practical use. In general, for use in SDN, we need a
parser that has accurate processing ability at wire-speed and
is scalable with the number of protocols.

Challenge. The fundamental challenge to achieve the above
goal is to provide high parsing speed without compromis-
ing the accuracy when handling multiple protocols, denoted
as “parallel parsing”. If it can be realized, the approach
then meets both the accuracy and the speed goals. Actu-
ally, despite the L2-L4 parsers and the inaccurate RG-based
parsers, most current parsers focus on single protocols, and
they can only support parallel parsing in two degraded ways.
They either parse each application specification sequentially
until it hits the input, or need a prior identifier to dispatch
the packets to a specific application parser [18, 26]. The
former sequential parsing (SP), depicted in Figure 1(a), ob-
viously cannot scale with the number of protocols. The lat-
ter prior identification (PI), shown in Figure 1(b), is based
on regular expressions (RegExs) or well-known ports, which
lowers the accuracy and may mislead the post-parsers. To
be specific, SP will try N times on a same payload in the

52

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:35:41 UTC from IEEE Xplore. Restrictions apply.

DCA
Generation

DCCFG
Library

Controller

SDN Switch

Parsing
Component

Matching
Component

Extracted
Knowledge ActionTraffic

TranslatorTranslatorTranslator

DCCFGDCCFGDCCFG

DCRG
DCRG

DCRG Merge AST

DCAST

Generate DCA

DCA

Figure 2: COPY architecture.

worst case (N is the number of parsers), if none of the can-
didate parsers hits the payload. PI distributes the packets
to their single parser by a weak specification library (well-
known ports or RegExs mostly), which risks the accuracy
of the whole approach. Since the parsing result will im-
pact the SDN immediately with its corresponding actions,
PI is not best suitable for parallel parsing in SDN in the
first place. Besides, the single parser needs to re-parse the
payload that the prior identifier has checked, which brings
redundant parsing. In general, the trade-off between accu-
racy and speed in the traditional L7 awareness schemes does
not meet the above goal, i.e., the challenge remains open.

3. OVERVIEW OF COPY
Our goal in this paper is to address the challenges de-

scribed in §2 and realize a real prototype for the existing
SDN switches on the commodity platforms. Our solution,
called COPY, is a parsing component for SDN with higher
layer awareness ability, which provides user-friendly specifi-
cations for complex proprietary protocols, and implements
a fast and scalable parsing scheme for multiple protocols
without any semantic loss.

Figure 2 gives an overview of the COPY architecture show-
ing the inputs and outputs, as well as the basic workflow. In
the control plane, the operators specify application specifi-
cations in DCCFG, and COPY translates them into DCA,
which is issued to the data plane. In the data plane, the
switches utilize DCA as the parsing structure, and pipeline
the obtained knowledge to the matching component for fur-
ther actions. Basically, we need to add message between the
controller and the switches for issuing DCA. And if using
current OpenFlow version, experimental message in Open-
Flow can be used for this purpose.

Specifically, COPY consists of three stages: the first stage
takes DCCFG as the input, and translates it into the dis-
tinguishable counting regular grammar (DCRG); the second
stage merges multiple DCRGs and constructs a distinguish-
able counting abstract syntax tree (DCAST); the third stage
generates the DCA, which is utilized as the parser of SDN.
The basic idea in this process is to transform and main-
tain the unique identifiers specified in the DCCFGs. We
use these identifiers to record the possibilities across mul-
tiple protocols and to determine the extraction behavior

1 S → T L V

2 T → <key, 0, “[A-Z]”>

3 L → “[0-9]” [len=getnum()]

4 [len>0]V → <value,0,“[A-Za-z]*”> [len=reduce()]

5 [len=0]V → ε

Figure 3: A TLV specification Γ in DCCFG.

when parsing with DCA. Therefore, COPY will not bring
on-line overhead for distinguishing protocols, and it is able
to achieve high throughput and good scalability on the grow-
ing protocols, and keep their original semantics at the same
time. Note that the off-line construction of DCA in the
controller will bring some acceptable overhead in time and
space, which will be discussed in our evaluations.

In the next sections, we will first present DCCFG and its
translation process to DCRG (§4), then merge them into
DCA (§5), and show the parsing process with it (§6).

4. DCCFG: MAKE IT EXPRESSIVE AND
DISTINGUISHABLE

4.1 DCCFG Formulation
We propose a new specification form DCCFG, which can

be formulated as a six-tuple, Γ = (N,Σ,C,R, S,E), where N,
Σ, C, R, S, E are the finite set of non-terminals, terminals,
counters, production rules, start non-terminal, and extrac-
tion tokens, respectively. The non-terminals are the symbols
where the terminals can be derived. The terminals can be a
single character or a RegEx. The production rules can be de-
scribed as<guard>:<non-terminal>→<body><action>.
The guard and action denote the constrains and opera-
tions on the counters. The production rules can be derived
only if the guard is true, and the action will be executed
simultaneously [20]. The body consists of the terminals,
non-terminals, and the extraction tokens. The extraction
tokens are a set of three-tuples, denoted as <type, id,

value>. The type indicates the extracted characters should
be treated as a key or a value. There are three extracting
types: key type extracts the value as a field key, value type
treats the value as a field value, and key named type indi-
cates a new key with a self-defined name. The key and value
of the same field are with the same id, according to which
they can be correctly paired. The value indicating the ex-
tracting target can be an existing terminal/non-terminal, an
action-defined variable or a self-defined name, which can be
paired in type way.

Figure 3 illustrates a simple TLV specification example,
which uses a counter to control the length of V and two
extraction tokens to extract the type-value pair. The gram-
mar could produce the string “A5hello”, and (“A”, “hello”)
will be extracted. To be specific, rule 2 can produce “A”
which will be extracted as a key with the id 0. Then rule 3
produces the number “5”, and stores it in the counter len.
After that, rule 4 and rule 5 will produce the rest string and
update the counter until it meets enough characters, which
be extracted as a value with the same id 0.

Note that DCCFG can resolve both character- and binary-
based protocols. RegEx is natural for the character-based
protocols, and DCCFG can use action to parse the binary-
based protocols by shifting the current character. For ex-
ample, we can specify an action like [bit = cur ch >> 7]

53

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:35:41 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Translate(G)

1: G′ ← Regularize(G)
2: Push the start terminal S of G′ into Q
3: while Q contains non-terminals do
4: T ← Pop(Q)
5: if T is terminal then
6: Push T into Q
7: else
8: for Each rule R whose head is T do
9: for Each terminal/non-terminal N in R do
10: Push N into Q
11: if T is extractive and T is R’s head then
12: Set a start extraction token for N
13: if T is extractive and T is R’s tail then
14: Set an end extraction token for N
15: if T contains actions for counters then
16: Set the actions for N
17: if T contains conditions for counters then
18: Set the conditions for N
19: return Q

<key,start,0,0>[A-Z]<key,end,0,0>[0-9]
<len:=getnum()><value,start,0,0><len:>0>

[A-Za-z]*<len:=reduce()><value,end,0,0>

Figure 4: The DCRG translated from the DCCFG in
Figure 3.

to obtain the first bit of the character, and an extraction
token like <value, 0, bit> to extract that bit. In this way,
DCCFG can support all protocols, as long as the protocol is
octet-aligned. And to our best knowledge, all protocols are
octet-aligned for easier transmission.

4.2 DCRG Translation
It is well known that parsing CFG is very expensive, since

CFGmaintains an unknown-length stack to track the deriva-
tion. CCFG extended from CFG can be translated into
counting regular grammar (CRG), which can be parsed with-
out a stack, bringing much faster speed [20]. We translate
DCCFG into DCRG in a similar way. First, we regularize
the DCCFG to remove the recursions. Second, we construct
the DCRG from the non-recursive grammar by inheriting
the counters and extraction tokens. The extraction tokens
in DCRG are transformed into a new four-tuple, <type,

pos, id, app>. The type and id can be inherited from
the extraction tokens in DCCFG. The pos indicates this
character is a start or an end. The app is an auto-generated
unique id to distinguish different applications. Notice the
type in DCRG does not include key named, since no char-
acter carries such information. The key named keys are
stored independently and will not be used until pairing the
keys and values.

Algorithm 1 demonstrates the pseudo-code of construct-
ing DCRG from DCCFG, which regularizes the DCCFG
firstly to remove the recursive cases, and inherits the counter
and extraction tokens into the target DCRG. Figure 4 illus-
trates the DCRG translated from the DCCFG in Figure 3.
The non-terminals are derived sequentially, and the extrac-
tion tokens are correctly set in their positions, as well as the
counter conditions and actions.

[A-Z] [0-9]

*

[A-Za-z]

#

<len:=getnum()>

<len:>0>
<len:=reduce()>
<value,start,0,0>
<value,end,0,0>

<key,start,0,0>
<key,end,0,0>

Pro:=0

Figure 5: The DCAST translated from the DCRG
in Figure 4.

1 S → T L V

2 T → <key,0,“[A-Z]”>

3 L → “[0-9]*” [len2=getnum()]

4 [len2>0]V → <value,0,“[A-Za-z]*”> [len2=reduce()]

5 [len2=0]V → ε

Figure 6: An alternative TLV specification Γ′ in DC-
CFG.

5. DCA: MERGE TO ACCELERATE

5.1 Generate and Merge AST
We have demonstrated that the parallel parsing needs a

merged automaton from multiple protocol specifications. In
this section, we firstly translate DCRG into its abstract syn-
tax tree, called distinguishable counting abstract syntax tree
(DCAST), and further merge multiple DCASTs, according
to which the DCA can be generated.

The translation from DCRG to DCAST is similar to that
from RG to AST [8], since the extraction tokens and the
counters are attached with the characters, which are the
leaf nodes in the target AST. Thus, we first ignore these
extended information in DCRG, and construct the original
AST. After that we attach the extraction tokens and coun-
ters in the related nodes. The DCAST translated from the
DCRG in Figure 4 is illustrated in Fig 5. Notice that there
is an end mark “#” indicating the protocol’s unique id (0
in this case).

We use OR operation to merge multiple DCRGs. A se-
quence of DCRGs Θi can be rewritten into Θ′ as Θ1|Θ2|...|Θn,
which has the equivalent semantics with the original se-
quence due to the uniqueness of the extraction tokens and
counters. Consequently, we can also use OR node to merge
multiple DCASTs. Consider an alternative TLV grammar
Γ′ shown in Figure 6, it requires none or multiple characters
for L instead of one character in Γ. We build its DCAST
and merge it with the DCAST in Figure 5 as depicted in
Figure 7, where app in Γ′ is 1 to distinguish it from Γ.

5.2 Generate DCA
Previous works have demonstrated that RegEx and DFA

are equivalent [8]. Based on a given AST, we can obtain its
DFA by computing the first and follow positions of each leaf

54

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:35:41 UTC from IEEE Xplore. Restrictions apply.

[A-Z] [0-9]

*

[A-Za-z]

#

<len:=getnum()>

<len:>0>
<len:=reduce()>
<value,start,0,0>
<value,end,0,0>

<key,start,0,0>
<key,end,0,0>

Pro:=0

[A-Z]

[0-9]

*

[A-Za-z]

#

<len2:=getnum()>

<len2:>0>
<len:=reduce()>
<value,start,0,1>
<value,end,0,1>

<key,start,0,1>
<key,end,0,1>

Pro:=1

|

*

Figure 7: The merged DCAST from Γ and Γ′.

Algorithm 2 ConstructDCA(root)

1: root ← The root node of the DCAST
2: states ← firstpos(root)
3: while states contains non-tagged state n do
4: Tag n
5: for Each input m in n do
6: i ← The node for m in the DCAST
7: s ← ∪followpos(i)
8: r ← ∪(Every app in s)
9: e ← ∪(Every extraction token in s)
10: c ← ∪(Every condition in s)
11: a ← ∪(Every actions in s)
12: if s is not in states then
13: Untag s and push s into states
14: endsets[s] ← r
15: trans[n,m] ← s
16: extracts[n,m] ← e
17: conds[n,m] ← c
18: actions[n,m] ← a
19: return root

node [12]. The extraction tokens and counters in DCAST
are independent of those positions, thus we can construct
DCA from DCAST in a similar way but adding extended in-
formation. First, the extraction tokens and counters are only
attached with the transitions in the automaton. The coun-
ters’ conditions are checked before activating a transition,
and the extraction is triggered if the conditions are true.
After that, the counters’ actions are executed accordingly.
Thus, we need to map the extraction tokens and counters to
the corresponding transitions. Besides, the original position
automaton is not distinguishable: it does not keep the proto-
cols’ id and thus loses the end nodes’ information [38]. The
automation can only accept or reject the input, but cannot
give the hit protocol id in some cases, which is important to
determine the extraction. As a result, we need to separate
the end nodes when building the position automaton.

The pseudo-code of constructing the DCA from DCAST is
demonstrated in Algorithm 2. The firstpos() and followpos()

functions calculate the related node positions, which are
defined in position automaton algorithms [12]. After this
process, all the transitions are stored in trans and the re-
lated conditions, actions and extraction tokens are stored
in conds, actions and extracts, respectively, which can be
paired with their indexes. And we save the end nodes’ infor-

[0-9]

[0-9]

[A-Za-z]

[A-Za-z]

4

3

52

0

[A-Z]

1

[A-Za-z]

[A-Za-z]

[0-9]

[A-Za-z]

<value,start,0,1>
<value,end,0,1>

<len2:>0>
<len2:=reduce()>
<value,start,0,1>
<value,end,0,1>

<key,start,0,0>
<key,end,0,0> <len:=getnum()>

<len2:=getnum()>

<len2:=getnum()>

<len2:=getnum()>

<len2:>0>

<len:>0>
<len:=reduce()>
<value,start,0,0>
<value,end,0,0>

<len2:>0>
<len2:=reduce()>
<value,start,0,1>
<value,end,0,1>

<key,start,0,1>
<key,end,0,1>

Figure 8: The DCA generated from the merged
DCAST in Figure 7.

A 0 2 a b
len := 0
len2 := 0 len2 := 02 len2 := 2-1 := 1

<key,start,0,0>
<key,end,0,0>

<key,start,0,1>
<key,end,0,1>

<value,start,0,1>
<value,end,0,1>

#

len2 := 1-1 := 0

<value,start,0,1>
<value,end,0,1>

Figure 9: Parsing process with the input string A02ab

in Figure 8’s DCA

mation in endsets to distinguish different protocols, where
one node may contain multiple extraction/counter informa-
tion across different protocols.

Take Figure 7 as an example, we use Algorithm 2 to cal-
culate the transitions and other information. The gener-
ated DCA is illustrated in Figure 8. All the extraction and
counter information are attached with the transitions, and
we can easily obtain the protocols’ end nodes as well: node
1 and node 4 are the end nodes for Γ′; node 2, node 3 and
node 5 are the end nodes for both of Γ and Γ′, which means
if the DCA stops at these nodes, both protocols accept the
input payload.

Complexity analysis. It has been proven the first and
follow positions can be computed in O(N2) time, where
N is the unique leaf nodes’ number in AST [12]. Algo-
rithm 2 further checks the extraction tokens and counters in
each node, making the complexity O((|extracts|+ |conds|+
|actions|)N+N2), where the denotation “|·|” means the size
of the operand. Since |extracts|, |conds| and |actions| are
limited to much smaller constants compared with N , it still
needs quadratic time to construct the DCA from DCAST.
However, the growth of DCCFGs does not linearly increase
the unique leaf nodes because of the very similarities be-
tween multiple DCCFGs. As a result, the real cost is far
lower than O(M2) (M is the number of DCCFGs), which
will be shown in our experiments in §7.

6. PARSING WITH DCA
There are two stages when parsing with DCA: (1) parse

the input payload to get the accepted protocol(s), and (2)
filter the extraction tokens obtained through the parsing and
give the final extraction result. In the first stage, DCA
jumps to the proper states by checking the current input

55

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:35:41 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Parse()

1: s ← The start state of DCA
2: c ← The first character of the input payload
3: pos ← 0
4: while c is not null do
5: pos ← pos+ 1
6: if trans[s, c] is null or conds[s, c] is false then
7: return Not acceptable
8: if extracts[s, c] is not null then
9: for Each extraction token ef in extracts[s, c] do
10: push ef into e
11: push pos into p
12: if actions[s, c] is not null then
13: Execute actions[s, c]
14: s ← trans[s, c]
15: c ← next character in the input.
16: if endsets[s] is null then
17: return Not acceptable
18: M ← endsets[s]

Algorithm 4 Extract()

1: i ← 0
2: for Each ef in e do
3: i ← i+ 1
4: r ← The app of ef
5: if r is not in M then
6: Continue
7: n ← The id of ef
8: t ← The type of ef
9: if t is start then
10: E[r][n][0] ← p[i]
11: if t is end then
12: E[r][n][1] ← p[i]

and the counters’ conditions, and stops when the input is
accepted or rejected. Meanwhile, it records all the extrac-
tion tokens and their positions in the input, which will be
used in the second stage. We use M to denote the accepted
protocols, e and p to denote the extraction tokens and their
positions. Algorithm 3 demonstrates the first parsing stage
to get these values. Taking Figure 8 as an example, assume
an input string A02ab, the DCA activates node 0, node 1,
node 2, node 4, node 3, sequentially, and finally stops at
node 3. Thus, M = endsets(3) = 1, which means this input
is accepted by Γ′ only. We can further compute e and p from
the node path. Figure 9 shows the parsing process with this
input. We can see that len controls the length of the value
part. The DCA saves 8 extraction tokens in total, including
ones from Γ and Γ′. It also saves their positions in the input
string.

After the first stage, we get all the extraction tokens and
their positions. We can further filter these tokens accord-
ing to M . The idea is to drop all the tokens whose app is
not in M , and pair the rest to construct a key-value map.
Algorithm 4 illustrates the second stage to obtain the set
of the final extraction tokens, denoted as E. Taking Fig-
ure 9 as an example, we have obtained M = 1 and eight
extraction tokens with their positions. For Γ′ is the ac-
cepted protocol, all the extraction tokens whose app is 0
should be ignored. And the rest extraction tokens would
be paired by their id. Notice the extraction tokens with
the same type and id should be merged as one extrac-

tion. Therefore, the final extraction tokens are paired as
follows: {<key,start,0,1>,<key,end,0,1>} in position {1,1},
{<value,start,0,1>,<value,end,0,1>} in position {4,5}. The
DCA identifies the input string as Γ′, and extracts {A, ab}
according to its DCCFG correctly.

Complexity analysis. The time complexity of Algorithm 3
is O(L + |conds| + |actions|), where L is the input length,
|conds| and |actions| are the size of conds and actions, re-
spectively. The time complexity of Algorithm 4 is O(|E|).
Since |conds|, |actions| and |E| can be bounded to much
smaller constants compared with L in practice, the parsing
complexity remains O(L).

7. PERFORMANCE EVALUATION

7.1 Experimental Settings

7.1.1 Methodologies
In this section, we compare the performance of COPY

with related works in three aspects: accuracy, parsing through-
put, and memory consumption. We use a piece of trace with
known ground truth, i.e., the protocol proportion, which
is used to compare with the output of the prototypes to
evaluate the accuracy. In throughput experiments, we de-
fine a new metric named “goodput” to evaluate the real
performance of the involved approaches, which denotes the
throughput with correct parsing result. In addition, we
preload the testing traces without changing their segments’
order into memory to remove the effect of packet capturing.
In memory cost experiments, we define a static memory cost
to denote the size of parsing structures such as DCA(s) and
prior DFA, and a real-time memory cost to illustrate the
dynamic memory used for the parsing.

We involve two parsing models for multiple protocols in
the comparisons: SP in Figure 1(a), and PI in Figure 1(b).
To the best of our knowledge, FlowSifter performs the high-
est throughput with expressive protocol specification [20],
so we extend FlowSifter to SP and PI processing models.
To fairly compare the parallel model embedded in COPY,
we also build DCA-based parser with single DCCFG in the
above models. In PI model, we combine all the RegExs
in its weak library to accelerate the identification. We use
lexertl [3] as the RegEx engine.

We implement the prototype of COPY with about 3,000
lines C++ code, and directly use the executive binary of
FlowSifter provided by its authors. We perform all the ex-
periments on a platform with Intel i7 920 (8-core 2.66GHz),
12GB memory and Linux 3.3 kernel. Note that while most of
the experiments are performed with single thread, we have
also implemented a multiple thread prototype of COPY us-
ing the model proposed in [22] to tap the potential of this ap-
proach. We use libnids [4] to reassemble packets in layer-4,
which dispatches segments to multiple cores in multi-thread
implementation.

7.1.2 Protocol specifications
We have investigated 38 protocols specifying various ap-

plications in L7 header or payload. We give their DCCFG
forms as our protocol specifications. The average #lines of
code of these specifications is 39.4. This is because many
protocols share the common semantic of HTTP, which can
be imported as a protocol library. This simple statistic

56

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:35:41 UTC from IEEE Xplore. Restrictions apply.

Table 1: The Selected Specifications and Extraction Tokens
L7 Protocol Applications Extractions

HTTP

Video: Youku, Youtube, etc Name, Duration, Resolution
SNS: Weibo, Facebook, etc Account name, Repost count

Online Shopping: Taobao, eBay, etc Item name, Price
App Market: AppStore, GooglePlay, etc App name, Download count

.

QQ QQ Sender/Receiver id

DNS DNS Domain name, Name server

Total 38

Table 2: The Features of the Selected Real Traces
Univ. trace ISP trace

Time 15/12/2012 11/17/2013

Duration 58 min. 70 min.

Size 22GB 7.9GB

Avg. length 818B 566B

Table 3: The Proportion of the Tiny Trace
HTTP

QQ DNS
Weibo Youku Tudou Amazon Taobao

23.6% 11.4% 3.1% 1.4% 25.9% 30.2% 4.4%

Total: 100%

echoes the demonstration in §1 that COPY can express com-
plex protocols within tens of lines of code.

The extraction tokens in DCCFG depend on the purpose
of the applications. For example, Youku-HTTP extracts the
video name, duration and resolution, while Weibo-HTTP
extracts the account name, repost and reply count. Table 1
summarizes the specification library and its major extrac-
tion information. Notice some protocols are defined in L7
header, some others are defined in L7 payload. DCCFG
provides the flexibility to specify the applications in both
layers. All the DCCFGs are translated and merged to be a
combined DCA for the parsing. The translation and com-
bination are pre-computed, thus they will not impact the
parsing throughput. More impact from the pre-computation
will also be checked in this section. We also generate the
corresponding CCFG specifications for FlowSifter-based ap-
proaches by removing the extraction tokens in DCCFGs. In
the context of single protocol parsing, DCCFG and CCFG
are of the same expressiveness.

In PI model, the accuracy of the whole system relies on
the accuracy of the prior identification specifications, i.e.,
the RegExs. However, more accurate RegExs may lead to
a much larger DFA, consuming larger memory. Besides,
such RegExs tend to check more payload, which aggravates
the parsing redundancy as we have discussed in §2. To
demonstrate the effect of the RegExs, we give two RegEx
libraries according to our DCCFG library. The first one is
coarse-grained from l7-filter [2], in which the RegExs only
specify the very first bytes of the protocol, such as the re-
quest/response line in HTTP protocol. The second is much
finer than the first one, that we give the RegExs by only
removing the extraction tokens and counters in the corre-
sponding DCRGs.

7.1.3 Traces
We use two traces to evaluate the prototypes, each of

which contains all or partial above applications. One trace

Table 4: The Involved Approaches in the Experi-
ments

SP PI-Coarse PI-Fine

FlowSifter SP-FS PI-FS-Coarse PI-FS-Fine

DCA-based SP-DCA PI-DCA-Coarse PI-DCA-Fine

Table 5: The Fault Ratios of the Four Approaches
on Univ. trace

SP-based PI-Coarse PI-Fine COPY

HTTP 0.0% 7.1% 1.1% 0.0%

QQ 0.0% 22.2% 4.9% 0.0%

DNS 0.0% 8.4% 5.4% 0.0%

Overall 0.0% 11.7% 2.4% 0.0%

is captured from an edge switch of a university named as
“Univ. trace”, and the other comes from a mobile service
provider named as “ISP trace”. Table 2 lists the features of
these two traces. We further give a tiny piece of trace with
known application proportion named “Tiny trace”, which is
used in accuracy evaluation, as depicted in Table 3.

7.2 Experimental Results
As we mentioned above, we involve six approaches in the

comparisons besides COPY. The denoting names and set-
tings are depicted in Table 4.

7.2.1 Accuracy
We measure the accuracy by the fault ratio, which is de-

fined as the percentage of the “mis-identified” packets. The
packet is “mis-identified” if it is parsed by a misleading pro-
tocol parser or is ruled out by the prior identifier mistakenly.
Notice that if the packets not related to any applications are
sent to a misleading protocol parser, it will not produce any
false positives, since the single protocol parser filters them
and gives negative results. Such mis-identifications will only
affect the throughput due to the aggravated parsing redun-
dancy. In contrast, if the packets carrying useful information
are dispatched to a wrong parser or are mistakenly ruled out,
it will lose the traffic semantic and will impact the network.
In our experiments for accuracy, we only count the second
case to depict the real impact of the network.

The DCA-based parsers are of same expressiveness with
FlowSifter parsers with the single protocol, thus we compare
COPY with SP-based, PI-Coarse, and PI-Fine approaches.
We use the Tiny trace shown in Table 3 as the input. Table 5
demonstrates the fault ratios compared with the ground
truth, where we cluster the applications by their L7 pro-
tocols to summarize the results.

According to the experimental results, COPY and SP pre-
cisely classifies every packet into the correct application,
while PI-based approaches mis-identify 11.7% and 2.4% with

57

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:35:41 UTC from IEEE Xplore. Restrictions apply.

4212
3907

3423 32213226
2825

3169 30162929 2698

522 455489 412

Univ. trace ISP trace
0

2000

4000

6000
G
oo
dp
ut
(M
bp
s)

COPY PI-FS-Coarse
PI-DCA-Coarse PI-FS-Fine
PI-DCA-Fine SP-FS
SP-DCA

Figure 10: The goodput of seven prototypes on the
two real traces.

coarse-grained and fine-grained libraries, respectively. It is
shown that SP is of equivalence semantic of the original
protocol specifications, which is also assured in the DCA of
COPY. On the contrary, PI-based approaches use incom-
plete regular expressions as the specification library, which
inevitably brings identification error through parsing. In PI-
Coarse-based approaches, most faults result from the QQ
protocol, which specifies a TLV field in the very beginning
of the packets. In addition, RegEx fails to handle the proto-
cols that need binary parsing, e.g., DNS. And this limitation
is also the major cause to the mis-identifications in PI-Fine-
based approaches. The fault ratios of the prior identifier
would be even higher if single protocol parsers do not filter
the possible false positives. In SDN, the parsing component
guides the matching process and actions of the real pack-
ets in the core of the network, so the mis-identifications will
significantly impact the real network there and then.

7.2.2 Parsing goodput
As we have mentioned in §2, SP- and PI-based approaches

actually trade off the speed and accuracy. To compare the
real parsing speed of the involved approaches, we define a
new metric named “goodput” instead of the throughput.
The goodput is defined as the total parsed bits of the pay-
load with correct parsing result divided by the used time.
This metric removes the effect of the trade-off between the
speed and accuracy, showing the factual parsing speed of the
system. In practice, we can get the goodput for approach i
in the following way:

goodputi =
TotalBits−DiffBitsSP (i)

timei
(1)

DiffBitsSP (i) calculates the #bits with different parsing
results between SP-based approaches and approach i. For
the accuracy experiments suggest the SP-based approaches
can accurately resolve every protocol, we use them as the
baseline in goodput calculation.

Figure 10 demonstrates the goodput of the seven approaches
on the two real traces. The results show that COPY is the
fastest one, which achieves 4.2Gb/s and 3.9Gb/s on Univ.
trace and ISP trace, respectively. Not surprisingly, the SP-
based approaches are the slowest, since they try all protocol
parsers (38 in total) until one/none of them is accepted.
The PI-based approaches benefit from the linear-complex
prior DFA on the input and achieve much faster goodput
than SP-based ones. However, it is also affected by the
RegEx libraries. To be specific, all PI-based approaches are
slower than COPY because of their parsing redundancy, as
depicted in Figure 1(b). Besides, RegEx-based specification
may mislead the protocol identifier to parse the meaningless

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000 COPY PI-DCA-Coarse
PI-DCA-Fine SP-DCA

G
oo
dp
ut
(M
bp
s)

#Applications

Figure 11: The scalability of COPY and other three
prototypes on Univ. trace. To fairly compare our
parallel parsing model with SP and PI, we only in-
volve DCA-based prototypes.

0 2 4 6 8

5

10

15

20

25

4.21
6.83

13.09

19.05

24.7

3.91
6.15

12.3

18.24

22.1

G
oo
dp
ut
(G
bp
s)

#Threads

Univ. trace
ISP trace

Figure 12: The goodput of COPY with multiple
threads on the two real traces.

packets, which increases DiffBitsSP in Eq (1), and lowers
the goodput. Due to the similar reason, PI-Coarse-based
approaches are only slightly faster than PI-Fine-based ap-
proaches, since they produce much more false results. On
the other aspect, FlowSifter parsers are slightly faster than
DCA-based parsers with the same configurations, because
FlowSifter parsers do not filter extraction tokens across mul-
tiple protocols. Generally, COPY using the combined pars-
ing structure avoids the parsing redundancy and performs
better than others. The gap of parsing speed would be en-
larged when the specifications get more complex.

To test the scalability of the goodput, we perform these
approaches with the shifting numbers of applications (1 to
38). We only involve DCA-based approaches to exclude
other factors impacting the scalability. The experimental
results of the two real traces show similar trends, and we
only use the result of Univ. trace due to the page limita-
tion, as depicted in Figure 11. In the figure, COPY scales
with the number of applications very well, keeping its good-
put while more applications are involved. It mostly benefits
from the combined DCA with the linear-complexity on the
input length. PI-based approaches also show their scalabil-
ity because the combined RegEx is also liner-complex on
the input. In contrast, the goodput of SP-DCA drops sig-
nificantly with more applications.

To tap the potential of COPY, we further implement
an eight-thread prototype and evaluate it with the above
traces. The results show that COPY achieves 24.7Gb/s
and 22.1Gb/s on the two real traces, respectively, which
approves the feasibility of deploying such approach in the
real network. Figure 12 shows the goodput trend with the
growth of the threads used in the prototype.

58

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:35:41 UTC from IEEE Xplore. Restrictions apply.

420.3
366.3

397.5

670.3 654

178.6
212.6

474.3

398.7
446.5

721.5703.8

204.5
233.7

C
O
PY

PI
-F
S-
C
oa
rs
e

PI
-D
C
A-
C
oa
rs
e

PI
-F
S-
Fi
ne

PI
-D
C
A-
Fi
ne

SP
-F
S

SP
-D
C
A

C
O
PY

PI
-F
S-
C
oa
rs
e

PI
-D
C
A-
C
oa
rs
e

PI
-F
S-
Fi
ne

PI
-D
C
A-
Fi
ne

SP
-F
S

SP
-D
C
A

Univ. trace ISP trace
0

200

400

600

M
em

or
y
C
os
t(
M
B)

Real-time
Static

Figure 13: The memory costs on the seven ap-
proaches in stacked columns.

7.2.3 Memory consumption
We classify the memory cost into two catalogs. One is

to keep the parsing structures, such as the DCA(s), CAs
(for FS-based approaches) and the prior identifier, i.e., the
DFA constructed by the weak specifications in PI-based ap-
proaches. This memory cost is called “static memory con-
sumption”. The other is used for maintaining the inter-
mediate results or conditions through the parsing, such as
DCA’s or CA’s current state, and its counters and extrac-
tion tokens, called “real-time memory consumption”. We
evaluate both memory costs of the seven prototypes on the
aforementioned two real traces. Figure 13 shows that COPY
occupies slightly more memory with PI-based approaches
using coarse-grained RegEx library, but much less than the
ones using fine-grained RegEx library. It is because COPY
combines the DCCFGs into one big DCA, which could use
more static memory than building them independently. On
the other hand, PI-based approaches build single protocol
parsers separately, but employ a combined DFA. The fine-
grained RegExs will bring much larger DFA than the coarse-
grained ones, due to their similarities to the DCRGs used
in COPY. When parsing in real time, COPY does not need
to maintain the conditions of the prior DFA, and uses less
real-time memory. No extra space is needed in SP-based ap-
proaches, since they do not construct any new structure or
combine the existing ones. That is why SP-based approaches
consume the least memory in both static and real-time cases.

7.2.4 Comprehensive comparison
To comprehensively compare the involved approaches, we

draw a bubble chart to demonstrate all the metrics in Fig-
ure 14. The horizontal axis represents the goodput, the ver-
tical axis denotes the memory cost. Note that the goodput
metric takes the factor of the accuracy into account, thus
these two metrics can show a big picture in every aspect.
COPY occupies the bottom right corner, which means it
performs the highest goodput with relative small memory,
striking the best performance-to-cost ratio.

In fact, COPY’s benefits are achieved by the merged DCA,
which embeds the distinguishable information of the pro-
tocols and can be pre-constructed off-line, bringing extra
time and space of construction. On the contrary, other ap-
proaches leveraging PI and SP model avoid such off-line
overhead and distinguish the protocols on-line. In other
words, COPY compromises between the off-line time and
space for higher real-time processing speed. To the time
cost, as discussed in §5.2, the construction costs quadratic
time on the node numbers, but the application numbers and
the node numbers are not linear-related. To the space cost,

0 1000 2000 3000 4000 5000

200

400

600

COPY

PI-FS-Coarse

PI-DCA-Coarse

PI-FS-Fine

PI-DCA-Fine

SP-FS

SP-DCA

M
em

or
y
C
os
t(
M
B)

Goodput (Mbps)

Figure 14: The bubble chart of the seven ap-
proaches. COPY’s bubble lies in the bottom right
corner, striking the best performance-to-cost ratio
among all the approaches.

0 5 10 15 20 25 30 35 40

0

80

160

240

320

Time
Static Memory

#Applications
Ti
m
e
(s
)

0

30

60

90

120 Static
M
em

ory
(M
B)

Figure 15: The time and memory cost trends of
building DCA in COPY.

the COPY’s static memory consumption is determined by
the similarity of the protocols: more similar protocols lead
to a smaller DCA. In practice, most applications are with
the same L7 protocols (HTTP), and this feature reduces
the risk of high memory usage. The trends of the above two
costs with the application growth is depicted in Figure 15,
which shows that COPY would not consume unacceptable
time and memory with more applications in practice.

8. RELATED WORK AND DISCUSSIONS
SDN implementation. The latest OpenFlow specification
defines 41 match fields that determine the corresponding ac-
tions, all of which are in L2-L4 [23]. To parse these fields
in the fixed positions, hardware approaches such as Net-
FGPA [6, 21] and ONetSwitch [16] and software approaches
such as CPqD [1], LINC [5] and trema [7] identify the pro-
tocols and extract the values by counting the offsets in the
packets, which are not sufficient in flexibly-defined L7 ap-
plications.

Recent works propose the programmable parser, a.k.a.,
protocol-independent parser, such as P4 [10] and PoF [30].
However, it is hard and expensive to achieve the high-layer
programmable parser, since their implementations rely on
specialized hardware [11, 14, 31].

Many languages for the network are proposed to ease com-
posing SDN [13, 15, 32, 35, 36], whose flexibility is limited
by the current parser. They need to update their languages
to specify more actions in higher layers.

L7 Appliances. Automated parsing technique has been
proved more accurate than hand-coded parsing [17, 28]. GAPA
defines a protocol language which is type-safe and recursion-

59

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:35:41 UTC from IEEE Xplore. Restrictions apply.

free [9]. Binpac uses recursive descent method to parse a
pre-constructed AST [24]. Ultrapac improves Binpac’s per-
formance by selectively parsing the leaf node in the AST [18].
FlowSifter is the closest work to COPY, which proposes
CCFG and CA to translate the counting sensitive gram-
mar into a corresponding automaton, improving the parsing
speed on a single specification [20]. CCFG is much like DC-
CFG but lacks the distinguishable extraction information,
which is the key to support parallel parsing ability. Addi-
tionally, simple extensions such as SP and PI cannot satisfy
the requirements in SDN as shown in §7.

On the other hand, many works propose high performance
architectures for traffic classification and intrusion detec-
tion, which has achieved over 10Gb/s throughput with GPU
acceleration or on a commodity platform [19, 27, 33, 34].
The contribution of these approaches is the elaborately de-
signed architectures/pipelines, instead of the core process-
ing component, i.e., classification and detection component,
which is insufficient for fine-grained control in SDN. COPY
can gain more improvements if implemented with such ar-
chitectures as a hybrid approach.

Discussions. There is a debate that high level parsing
should be handled in the edge by middleboxes, leaving the
core network to push packets only. Though several tech-
niques have been proposed to ease the deployment of mid-
dleboxes in the edge, directly embedding parser into the data
plane of SDN is obviously more flexible and fine-grained. Be-
sides, the throughput of a board router can also reach tens
of Gb/s, and to the best of our knowledge, few middlebox
can satisfy such high speed in the context of application
layer parsing. COPY scales with the #specifications and
the #cores (Figure 11, 12, 15), and costs much lower price
and power comparing with hardware-based approach, stand-
ing the best chance to realize the content parsing in SDN.
Generally, no matter from where, efficiently grasping the se-
mantics from the traffic helps the control plane to better
manage SDN, and our motivation in §1 still holds.

Writing a protocol specification takes lots of manual ef-
forts. There have been some algorithms to extract the pro-
tocol format from the training traffic [25, 37], yet none of
them can generate the fine-grained specifications like DC-
CFG. The number and accuracy of the protocol specification
determine the capacity of the parser and the whole SDN. We
will look into this question in our future work.

Encrypted traffic increases continuously in today’s Inter-
net for better security performance, which obstructs the fine-
grained identification on the packets. However, we argue
that the content parsing is still necessary and feasible for
SDN. Generally, content providers encrypt their traffic for
the security sensitive connections only to save the computing
resources, e.g., connections of register, login, and purchase.
Other connections, especially the heavily loaded ones with
image and video content remain unencrypted. Even all these
traffic is encrypted, in since the traffic has been decrypted
in the gateway, so SDN can still parses the content of the
packets inside content provides’ own data center networks.

9. CONCLUSION
In this paper, we have proposed COPY as the content

parser for SDN in the application layer instead of L2-L4
headers. COPY employs DCCFG to specify the applica-
tions and generates DCA to distinguish protocols without

on-line overhead. In this way, COPY achieves fast and scal-
able parsing with accurate semantics. We have implemented
the prototype of COPY and evaluated it on real traces.
The experimental results demonstrate better performance
of COPY than related works with an accepted and scalable
off-line cost.

10. ACKNOWLEDGMENTS
This paper is supported by the 863 plan (2013AA013501),

the NSFC (No. 61272459), Program for New Century Ex-
cellent Talents in University, Jiangsu Future Internet In-
novation Project (BY2013095-1-12) and CETC 54 project
(ITD-U14001/KX142600008).

11. REFERENCES
[1] CPqD OpenFlow 1.3 switch.

https://github.com/CPqD/ofsoftswitch13.

[2] l7-filter. http://l7-filter.clearfoundation.com/.

[3] lexertl. http://www.benhanson.net/lexertl.html.

[4] Libnids. http://libnids.sourceforge.net/.

[5] LINC.
https://github.com/FlowForwarding/LINC-Switch.

[6] NetFPGA. https://www.netfpga.org.

[7] trema. https://github.com/trema/trema.

[8] A. V. Aho. Compilers: Principles, Techniques and
Tools (for Anna University), 2/e. Pearson Education
India, 2003.

[9] N. Borisov, D. J. Brumley, and H. J. Wang. A generic
application-level protocol analyzer and its language.
In In 14th Annual Network & Distributed System
Security Symposium, 2007.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., 44(3):87–95,
July 2014.

[11] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. In
Proceedings of the ACM SIGCOMM 2013, pages
99–110, New York, NY, USA, 2013. ACM.

[12] A. Brggemann-Klein. Regular expressions into finite
automata. Theoretical Computer Science, 120:87–98,
1996.

[13] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A
network programming language. In Proceedings of the
16th ACM SIGPLAN International Conference on
Functional Programming, pages 279–291, New York,
NY, USA, 2011.

[14] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown.
Design principles for packet parsers. In Proceedings of
the Ninth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’13,
pages 13–24, Piscataway, NJ, USA, 2013. IEEE Press.

[15] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell,
and S. Shenker. Practical declarative network
management. In Proceedings of the 1st ACM

60

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:35:41 UTC from IEEE Xplore. Restrictions apply.

Workshop on Research on Enterprise Networking,
pages 1–10, New York, NY, USA, 2009. ACM.

[16] C. Hu, J. Yang, H. Zhao, and J. Lu. Design of all
programable innovation platform for software defined
networking. In Presented as part of the Open
Networking Summit 2014, Santa Clara, CA, 2014.

[17] A. Kumar, V. Paxson, and N. Weaver. Exploiting
underlying structure for detailed reconstruction of an
internet-scale event. In Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement,
pages 33–33. USENIX Association, 2005.

[18] Z. Li, G. Xia, H. Gao, Y. Tang, Y. Chen, B. Liu,
J. Jiang, and Y. Lv. Netshield: massive
semantics-based vulnerability signature matching for
high-speed networks. In ACM SIGCOMM, pages
279–290, New York, NY, USA, 2010. ACM.

[19] Y.-s. Lim, H.-c. Kim, J. Jeong, C.-k. Kim, T. T.
Kwon, and Y. Choi. Internet traffic classification
demystified: On the sources of the discriminative
power. In Proceedings of the 6th International
COnference, Co-NEXT ’10, pages 9:1–9:12, New York,
NY, USA, 2010. ACM.

[20] C. Meiners, E. Norige, A. Liu, and E. Torng.
Flowsifter: A counting automata approach to layer 7
field extraction for deep flow inspection. In
INFOCOM, 2012 Proceedings IEEE, pages 1746
–1754, march 2012.

[21] J. Naous, D. Erickson, G. A. Covington,
G. Appenzeller, and N. McKeown. Implementing an
openflow switch on the netfpga platform. In
Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems, pages 1–9, New York, NY, USA, 2008. ACM.

[22] T. Nelms and M. Ahamad. Packet scheduling for deep
packet inspection on multi-core architectures. In
ANCS 2010, pages 1 –11, oct. 2010.

[23] ONF. Openflow switch specification version 1.4.0. In
Open Networking Founddation, 2012.

[24] R. Pang, V. Paxson, R. Sommer, and L. Peterson.
binpac: a yacc for writing application protocol
parsers. In IMC 2006, IMC ’06, pages 289–300, New
York, NY, USA, 2006. ACM.

[25] B.-C. Park, Y. Won, M.-S. Kim, and J. Hong. Towards
automated application signature generation for traffic
identification. In NOMS 2008, pages 160–167, 2008.

[26] V. Paxson. Bro: a system for detecting network
intruders in real-time. In USENIX Security
Symposium, pages 3–3, Berkeley, CA, USA, 1998.

[27] P. M. Santiago del Rio, D. Rossi, F. Gringoli, L. Nava,
L. Salgarelli, and J. Aracil. Wire-speed statistical
classification of network traffic on commodity
hardware. In Proceedings of the 2012 ACM Conference
on Internet Measurement Conference, IMC ’12, pages
65–72, New York, NY, USA, 2012. ACM.

[28] N. Schear, D. R. Albrecht, and N. Borisov. High-speed

matching of vulnerability signatures. In in Proc.
RAID, 2008, pages 155–174.

[29] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and
G. Shi. The middlebox manifesto: Enabling
innovation in middlebox deployment. In Proceedings of
the 10th ACM Workshop on Hot Topics in Networks,
HotNets-X, pages 21:1–21:6, New York, NY, USA,
2011. ACM.

[30] H. Song. Protocol-oblivious forwarding: Unleash the
power of sdn through a future-proof forwarding plane.
In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined
Networking, HotSDN ’13, pages 127–132, New York,
NY, USA, 2013. ACM.

[31] H. Song, J. Gong, and H. Chen. Coherent sdn
forwarding plane programming. In Presented as part
of the Open Networking Summit 2014 (ONS 2014),
Santa Clara, CA, 2014. USENIX.

[32] R. Soulé, S. Basu, P. J. Marandi, F. Pedone,
R. Kleinberg, E. G. Sirer, and N. Foster. Merlin: A
language for provisioning network resources. In
Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’14, pages 213–226, New York,
NY, USA, 2014. ACM.

[33] G. Szabó, I. Gódor, A. Veres, S. Malomsoky, and
S. Molnár. Traffic classification over gbit speed with
commodity hardware. IEEE J. Communications
Software and Systems, 5, 2010.

[34] G. Vasiliadis, M. Polychronakis, and S. Ioannidis.
Midea: A multi-parallel intrusion detection
architecture. In Proceedings of the 18th ACM
Conference on Computer and Communications
Security, CCS ’11, pages 297–308, New York, NY,
USA, 2011. ACM.

[35] A. Voellmy, H. Kim, and N. Feamster. Procera: A
language for high-level reactive network control. In
Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, HotSDN ’12, pages 43–48,
New York, NY, USA, 2012. ACM.

[36] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and
P. Hudak. Maple: Simplifying sdn programming using
algorithmic policies. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, pages 87–98, New York, NY, USA,
2013. ACM.

[37] Y. Wang, X. Yun, M. Z. Shafiq, L. Wang, A. X. Liu,
Z. Zhang, D. Yao, Y. Zhang, and L. Guo. A semantics
aware approach to automated reverse engineering
unknown protocols. In ICNP 2012, pages 1–10,
Washington, DC, USA, 2012.

[38] G. Xia, X. Wang, and B. Liu. Srd-dfa: Achieving
sub-rule distinguishing with extended dfa structure. In
Eighth IEEE International Conference on Dependable,
Autonomic and Secure Computing, pages 723 –728,

61

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:35:41 UTC from IEEE Xplore. Restrictions apply.

