
Journal of Network and Computer Applications 199 (2022) 103307

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Raze policy conflicts in SDN
Yadong Zhou a, Hao Li a,∗, Kaiyue Chen a, Tian Pan b, Kun Qian c, Kai Zheng d, Bin Liu c,
Peng Zhang a, Yazhe Tang a, Chengchen Hu e

a MOE KLINNS Lab, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, China
b State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, China
c Tsinghua University, China
d Huawei 2012 Labs, China
e Xilinx Labs Asia Pacific, Singapore

A R T I C L E I N F O

Keywords:
software-defined networking
Flow table compression
Policy conflict

A B S T R A C T

Software Defined Networking (SDN) enables flexible network management with a well-defined abstraction
between control and data plane. In this way, operators could issue the policies, e.g., forwarding path, flow
counting and rate limiting, from the control plane, which will be enforced by the flow table rules in the data
plane. However, multiple active policies with the same priority will potentially trigger conflicts among policies
with overlapped flow space, causing the flow table explosion. In contrast to the local switch conflict resolution
schemes proposed by previous works, this paper tackles the same problem from a different angle and resolves
the policy conflict problem by coordinating all switches under a global centralized view. Specifically, we
propose COnflict RAzor (CORA), which tremendously reduces the storage cost of conflicting policies leveraging
the global network information obtained in the controller. The basic idea of CORA is migrating policies causing
large explosions across the network if necessary, while keeping the semantics equivalence. We prove CORA’s NP
hardness and propose a heuristic to efficiently search a near-optimal policy migration strategy. Our experiments
demonstrate that, CORA can effectively reduce the flow table storage occupation by averagely 79.8% within
less than 40 s, which is 47.9% more efficient than the state-of-the-art.
1. Introduction

Software Defined Network (SDN) decouples switch’s control and
data plane, offering enhanced programmability via a higher-level ab-
straction, i.e., intent-based north-bound interface (NBI). The opera-
tor intents would be represented with native code like Python pro-
gram in Ryu controller, or domain specific languages (DSL) like SNAP
scripts (Arashloo et al., 2016). In either way, such intents would be
firstly compiled into distributed policies, associating the packet class
(i.e., flow) with the corresponding actions (e.g., forward, drop, count)
for each underlying switch. The policies would be further translated
into hardware-specific 𝑟𝑢𝑙𝑒𝑠 when loaded into a particular device,
e.g., prefix entries for Ternary Content Addressable Memory (TCAM).
However, policies issued by different controllers (NBIs) may specify
different actions on an overlapped flow space at the same network
device. The so-called ‘‘policy conflicts’’ should be resolved to perform
the correct combination of the actions. But, such conflict resolution will
potentially incur either performance penalty or resource inefficiency for
the underlying network.

∗ Corresponding author.
E-mail address: hao.li@xjtu.edu.cn (H. Li).

1 There are definitely other solutions to divide the flow space more efficiently. We will discuss them in the latter sections, and only demonstrate a base case
here.

We use a simple example to illustrate how the conflict happen
and how to resolve it. Consider that a QoS function and a monitoring
function coexist in a network, where the former has a policy at switch 𝑠
to limit the bandwidth to 10 Mbps for packets with DstPort range 1–6,
and the latter sets a policy to count the number of packets with DstPort
range 2–7 at the same switch. Such two policies are conflicting due
to the different actions on the overlapped port range 2–6. A straight-
forward method to cooperate these two policies in a single switch is
to split them into three sub-policies with non-overlapping flow spaces:
(𝑃1) 1–1→limit 10 Mbps, (𝑃2) 2–6→limit 10 Mbps and count, and (𝑃3)
7–7→limit 10Mbps1. Intuitively, fragmented policies will inevitably
be generated when resolving conflicts. In a bad case, each policy at
the switch would be conflicting with all others, producing many more
sub-policies on fragmented flow spaces. In addition, when it comes to
multi-dimension conflicts in many flow entry fields, things will get even
worse than the single-field scenario. As a result, the rule conflicting
problem aggravates heavily in the context of SDN, since the switch
vailable online 22 December 2021
084-8045/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2021.103307
Received 15 October 2020; Received in revised form 30 October 2021; Accepted 3
 December 2021

http://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:hao.li@xjtu.edu.cn
https://doi.org/10.1016/j.jnca.2021.103307
https://doi.org/10.1016/j.jnca.2021.103307
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2021.103307&domain=pdf

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.

t
a
g
g
t
s
s
a

e
f
c
k
C
t
i
(
c
o
w

s
p
t
f
n
t
t
m
d

2

2

t
T
o
i
i
t
a
p
t
a
h
c
d
t
N
l

i
a

checks more fields other than the traditional 5-tuples. Please notice that
the number of extra generated policies does not reflect the complete
overhead, because it may be much more costly when translating the
policies into hardware-specific rules. For example, to represent a value
range of packet fields like DstPort, a TCAM-based switch has to convert
the range into one or more prefix entries during the so-called ‘‘rule
expansion’’ process, e.g., at least three entries (110, 01*, 10*) are
needed for the above DstPort range 2–6.

In the literature, many works have investigated the mechanisms of
efficient conflict resolution. One possible way is to find a more efficient
cut of the flow space by creating a new policy on the overlapped
flow space with a higher priority while retaining the original ones
with a lower priority (Jin et al., 2015). This may avoid producing too
many flow space fragments, since the policies that are fully covered by
the higher-priority ones are redundant and can be eliminated to save
memory cost. However, even with this technique, extra policies would
be inevitably generated as long as one flow space does not fully cover
the other. Another attempt is to reduce/minimize the rule expansion
specifically for TCAM-based devices (Kogan et al., 2015; Liu and Gouda,
2010; Meiners et al., 2012; Bremler-Barr and Hendler, 2012; Katta
et al., 2014; Liu et al., 2010). However such low-level optimization
does not address the root cause of the policy conflicts either, and in
the worst case, a 𝑊 -bit range value (indexed by some policy) will
consume 𝑊 TCAM entries (Rottenstreich et al., 2013). Although the
OpenFlow specification (ONF, 2015) proposes the flow table pipeline
to mitigate the aftermath of policy conflicts, simply employing such
pipeline will dramatically increase either the number of flow tables
or the bit width for each flow table. Network slicing solutions (Al-
Shabibi et al., 2014; Koponen et al., 2014; Doriguzzi Corin et al.,
2012) provides individual flow spaces for each network function to
isolate the conflicts, which actually disables multiple network functions
to operate on the same traffic, i.e., functions can only manage the
disjoint flow space. Nowadays, many high-level SDN languages offer
the resource constraints in their syntaxes and compilation process,
which can be adopted to generate a more efficient placement of policies
to mitigate the conflicts beforehand (Arashloo et al., 2016; Prakash
et al., 2015). However, this requires the global view of all operators’
intents, which violates our assumption: the intents may be issued by
individual operators from different controllers that cannot cooperate
at the language level (Jin et al., 2015).

We observe that the policy/rule explosion is ascribed to the flow
space overlaps, and as a result, our basic idea is to move/migrate
the conflicting policies from the local switch to reduce the overlaps
and further decrease the #policies and entries. The prerequisite is to
ensure that all network function will always hold their semantics after
moving/modifying the policies, i.e., the flows should be forwarded to
he original destination along the same path with the same actions
pplied, e.g., rewrite, count, mirror to controller, etc. SDN offers the
lobal information of data plane policies, which can be utilized to
uarantee the above requirements. Recall the aforementioned example,
he conflicts can be eliminated if we move the counting policy from the
witch 𝑠 to an adjacent switch 𝑠′ along the routing path of the flow,
ince the flow forwarding behavior remains the same and the counting
ction can be applied at any switch along the path.

Based on the above insights, we propose COnflict RAzor (CORA) to
fficiently resolve the policy conflicts in SDN, which collects policies
rom all network functions, and migrates the conflict-makers from the
urrent switch to other feasible switches to relieve the conflicts while
eeping the equivalent semantics. In a nutshell, two designs make
ORA efficient. First, to the end of conflict elimination, CORA leverages
he cross-switch information from the data plane, which would dramat-
cally decrease the possible conflicts. Second, to the end of finding an
near-)optimal solution, CORA applies a simple yet effective heuristic to
onquer such an NP-hard problem. It is worth noting that CORA focuses
n efficiently eliminating the conflicts in the global network, thus can
2

ell cooperate with any existing solution that reduces/minimizes the i
#policies at a single switch. To be specific, the rule transferring enables
much more possibilities if cooperating with the local conflict resolver,
because we can find a ‘‘combination’’ to improve the optimization
performance, e.g., transferring specific rules to a certain switch, such
that the local conflict resolver can maximize its effect.

This is paper is an extension to our preliminary paper (Li et al.,
2018), in which we have made the following three contributions:

• We explore the potential benefits and technical challenges of
migrating policies across the network, and propose semantics-
preserving migration mechanisms to address the challenges, e.g.,
retaining the routing paths, slicing the endpoint actions, etc.

• We formally define the problem of finding an optimal policy
placement with many policy conflicts. After proving its NP hard-
ness, we give some heuristics to fast generate a near-optimal
placement.

• We implement a prototype of CORA, and use synthetic policy
configurations and topologies to evaluate its performance. The
experimental results show that CORA can reduce at least 49% of
the total conflict overhead within acceptable time, while retaining
the original intents.

We further make the following contributions in this paper.

• We check and port two typical local optimizations on CORA to
demonstrate its compatibility to existing local-switch rule com-
pression algorithms.

• We compare CORA with existing approaches including rule pack-
ing and local resolving to demonstrate its optimality.

The reminder of this paper is organized as follows. Section 2 demon-
trates the policy conflict problem and our basic idea. Section 3 pro-
oses the semantic-preserving transferring to retain the high-level in-
ents. Section 4 defines the problem of finding an optimal placement
rom the global view, and designs a heuristic algorithm to obtain a
ear-optimal solution within acceptable time cost. Section 5 presents
wo aggregation-based optimizations on local switch, and demonstrates
heir compatibilities with CORA. Section 6 evaluates CORA’s perfor-
ance. Section 7 discusses the possible extension of CORA. And after
iscussing the related work in Section 8, Section 9 concludes this paper.

. Transfer policy to raze the conflicts

.1. Policy conflict problem

SDN high-level languages specify two categories of operators’ in-
ents: the routing intent and the endpoint intent (Kang et al., 2013).
he routing intent is to specify the paths between the ingress and egress
f s packet class, driven by traffic engineering goals. The endpoint
ntent focuses on the end-to-end packet behaviors other than forward-
ng, e.g., counting, mirroring to controller, modifying header, etc. In
he single-controller scenario, such intents are issued by a same NBI,
nd the controller would compose and compile them into distributed
olicies, while the policies in each switch have been properly priori-
ized (Arashloo et al., 2016; Prakash et al., 2015). However, it has been
dvocated that multiple controllers should coexist in a network with a
ypervisor, which provides the ability of running any combination of
ontroller applications (Jin et al., 2015). Therefore, the policies from
ifferent controllers can have overlaps with a same priority, triggering
he policy conflicts. Notice that due to the language-barrier of different
BIs, the existing hypervisors cannot reconcile the policies at the

anguage level, but only resolve them in the local switch.
Formally, a policy can be denoted as 𝑝 = (𝑠𝑤, 𝑝𝑟𝑖, 𝑓𝑠, 𝑎), where 𝑠𝑤

s the switch storing the policy, 𝑝𝑟𝑖 is the priority of the policy, 𝑓𝑠 is
hyperspace with different fields to describe the flow space, and 𝑎
s the action set that applies on 𝑓𝑠. Two policies 𝑝1 and 𝑝2 conflicts,

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.
Fig. 1. Two policies conflict on two fields.

Fig. 2. More conflicts caused by a third policy.

iff 𝑝1.𝑠𝑤 = 𝑝2.𝑠𝑤, 𝑝1.𝑝𝑟𝑖 = 𝑝2.𝑝𝑟𝑖, 𝑝1.𝑓𝑠 ∩ 𝑝2.𝑓𝑠 ≠ ∅ and 𝑝1.𝑎 ≠ 𝑝2.𝑎2.
To resolve such conflict, a naive method is to fully decouple the over-
lapped space into continuous fragments, each of which performs the
combination of actions from corresponding policies. For example, the
above two conflicting policies would be decoupled into three ones: 𝑝′1 =
(𝑝1.𝑠𝑤, 𝑝1.𝑝𝑟𝑖, 𝑝1.𝑓𝑠 ⧵ 𝑝2.𝑓𝑠, 𝑝1.𝑎), 𝑝′2 = (𝑝1.𝑠𝑤, 𝑝1.𝑝𝑟𝑖, 𝑝2.𝑓𝑠 ⧵ 𝑝1.𝑓𝑠, 𝑝2.𝑎),
and 𝑝′3 = (𝑝1.𝑠𝑤, 𝑝1.𝑝𝑟𝑖, 𝑝2.𝑓𝑠 ∩ 𝑝1.𝑓𝑠, 𝑝1.𝑎 ∪ 𝑝2.𝑎). Notice that these three
policies may expand to more because the flow space like 𝑝1.𝑓𝑠 ⧵ 𝑝2.𝑓𝑠
may not be continuous, which will be further transformed into two
policies. In the worst case, one policy would conflict with all the other
policies, and the naive decoupling process will lead to a policy increase
at a complexity of 𝑂(𝑁2), where 𝑁 is the number of original policies.
Fig. 1 illustrates a simple example of policy conflict in two dimensions
DstIP and SrcIP, where 𝑃1 is a QoS policy to limit the bandwidth and
𝑃2 is to count the number of packets. The flow space would be cut into
five sub-spaces to fully resolve the conflict.

The naive method is not efficient enough when the conflicts result
from the inclusion of flow space. Taking the above two-dimension
conflict as an example, 𝑃2 includes 𝑃1 from the perspective of 𝑋 axis
(SrcIP). Therefore, it is not necessary to divide the 𝑋 axis into three
segments, instead, the original 𝑃2 can be retained and a new policy
would be added with higher priority that represents the overlapped
flow space in 𝑋 axis. We can apply similar analysis in 𝑌 axis, and as a
result, only one extra policy is needed to resolve the conflict (the solid
shadowed part in Fig. 1), i.e., 𝑃 ′ = (𝑃1.𝑠𝑤, 𝑃1.𝑝𝑟𝑖+1, 𝑃1.𝑓𝑠∩𝑃2.𝑓𝑠, 𝑃1.𝑎∪
𝑃2.𝑎).

However, the above priority-based method is still not efficient
enough to tame the explosive growth of policies. The reason lies in that
this method only works for inclusion cases, which would commonly
happen in IP fields due to the prefix representation. In contrast, some
fields like DstPort and SrcPort are represented by ranges, which leads to

2 In the following sections, we assume the involved policies have the same
priority if not specified.
3

Table 1
The policies to decouple the conflicts in Fig. 2.
𝑃 𝐹 𝑙𝑜𝑤𝑆𝑝𝑎𝑐𝑒 𝐴𝑐𝑡𝑖𝑜𝑛 𝑃 𝑟𝑖

1 𝑃1 .𝑓𝑠 ∩ 𝑃2 .𝑓𝑠 ∩ 𝑃3 .𝑓𝑠 𝑃1 .𝑎 ∪ 𝑃2 .𝑎 ∪ 𝑃3 .𝑎 3
2 𝑃1 .𝑓𝑠 ∩ 𝑃3 .𝑓𝑠 𝑃1 .𝑎 ∪ 𝑃3 .𝑎 2
3 𝑃2 .𝑓𝑠 ∩ 𝑃3 .𝑓𝑠 𝑃2 .𝑎 ∪ 𝑃3 .𝑎 2
4 𝑃1 .𝑓𝑠 𝑃1 .𝑎 1
5 𝑃2 .𝑓𝑠 𝑃2 .𝑎 1
6 𝑃3 .𝑓𝑠 𝑃3 .𝑎 1

overlaps rather than inclusions in most cases, and cannot be resolved by
the priority-based method. For example, Fig. 2 adds a third rule 𝑃3 with
the same priority to the example in Fig. 1, and they will be transformed
into six policies even we sophisticatedly prioritize the overlaps, as
shown in Table 1. Even worse, many switches use TCAM to implement
the flow tables, which would expands the entries to represent the range
values (Liu et al., 2010). Formally, each range defined over a 𝑊 -bit
field can be encoded in 𝑊 entries with the internal expansion in the
worst case, and if the flow space specifies 𝑊 ranges on 𝑑 fields, it will
consume up to 𝑊 𝑑 entries in TCAM (Rottenstreich et al., 2013). Since
the policy conflicts are producing more fragments on the flow space,
the overhead in the real scenarios would go far beyond the 𝑂(𝑁2)
complexity, and squeeze the limited TCAM resources.

2.2. Basic idea of CORA

All the existing techniques focus on how to minimize the over-
head when decoupling the conflicts. In contrast, CORA treat the same
problem from a different angle, aiming to eliminate the conflicts by
migrating the policies, i.e., to reduce the number of conflicts in global
network instead of the number of expanded policies in a local switch.

Considering a simple linear topology with two switches 𝑆1 and 𝑆2,
the policies at each switch are shown in Fig. 3. It needs 16 and 7 sub-
policies to fully decouple all the conflicts in 𝑆1 with naive and priority
method, respectively. However, if we transfer 𝑃2 to 𝑆2 as shown in
Fig. 4, only 4 sub-policies are produced in 𝑆1 with priority method,
and 𝑆2 generates no more policies other than 𝑃2 from 𝑆1, which means
the overall #policies decreases from 8 to 6. The performance gain can
be more significant for TCAM-based switches.

The above simple example shows the potential benefits if properly
migrating policies. However, arbitrarily migrating policies may break
the high-level intents from the operators. Recall the above simple
network configurations, there are many prerequisites to transfer 𝑃2 to
𝑠2. First, 𝑃2 cannot be a routing policy that forwards the packet, since
such transfer would produce a black hole at 𝑠1 for the packets that
match the flow space of 𝑃2. Second, 𝑃2 can be transferred to 𝑠2 only
when there is other routing policy that forwards all the packets in 𝑃2’s
flow space to 𝑠2 (e.g., 𝑃3), or 𝑃2’s action cannot be properly triggered.
These special cases need to be carefully addressed to retain the original
high-level intents. The other challenge is to find an optimal policy
placement with acceptable time cost. The #policy in network can easily
reach 1000+ with highly dependent conflicts, e.g., 𝑃2, 𝑃3 and 𝑃4 have
common overlaps, while they also pairwisely conflict with each other.
Simply exhausting all possible policy placements is obviously infeasible
in time cost, because the #policy combinations can be up to 2𝑛 for 𝑛
policies.

In summary, to well design CORA, we need to address the following
major challenges.

Semantics equivalence. The transferring operations should be
semantics-preserving, which guarantees the correct fulfillment of mul-
tiple network functions.

Optimal placement. After policy transferring, rules must satisfy
the constraint of the physical switch capacity, and is expected to be
minimal in the network.

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.
Fig. 3. The policy placement in two adjacent switches.
Fig. 4. The new policy placement solution if transferring 𝑃2 from 𝑆1 to 𝑆2.
3. Semantics-preserving transfer

It is not trivial to correctly transfer the policies because arbitrary
change of the policy placement may break the high-level intents, i.e.,
routing intent and endpoint intent.

3.1. Routing intent

The routing intent would be compiled into routing policies for
individual switches, each of which forwards the packet to the next hop.
That is, there lies strong dependencies between the those policies; if
we transfer one routing policy to another switch, we have to modify
the related routing policy at the previous hop, and we may need to
create new routing policies to fulfill a complete routing path. Besides,
we cannot guarantee the traffic engineering requirements are satisfied
by the new path, because such intents are hidden in the compilation
process, and cannot be reverse engineered from the policies. Therefore,
the routing policies are considered as fixed in CORA to ensure the
semantics equivalence of routing intent.

Please notice the conflicts between two routing policies are not
resolvable in CORA, because we cannot forward a single packet to
two different next hops. Such conflicts may happen if multiple con-
trollers decide the routing paths individually, and resolving them need
composing the routing intents at a higher semantics level (Li et al.,
2016). In this paper, we assume the routing intents are handled by a
single controller application, or the flow space is isolated for different
4

routing applications, i.e., the routing policies are not conflicting with
each other.

3.2. Endpoint intent

The endpoint intent is to perform specific actions on the packets,
and such intent will hold, as long as the actions is triggered for all the
packets whose headers fall in the flow space. Initially, the endpoint
intent would be compiled into several endpoint policies, each of which
covers partial flow space of the intent. The split of the flow space
depends on the placement of the routing intent, since it is possible that
not all packets in the flow space traverse a single switch. The intuitive
idea is to transfer the endpoint policy along the routing path, as long as
the target switch has the ability to perform the action. To be specific,
we have the following principles of transferring endpoint policies.

First, the flow space of the routing policy that covers the endpoint
policy should be consistent through the transferring, or the endpoint
policy needs to be further divided. Considering a routing policy 𝑃𝑓𝑤𝑑
that forwards the packets with DstPort 1–6 to port 1, and an endpoint
policy 𝑃𝑐𝑛𝑡 that counts all packets with DstPort 2–7, 𝑃𝑐𝑛𝑡 cannot be
directly transferred to the switch that connects to port 1, since it will
fail to count the packets with DstPort 7. As a result, we need to divide
𝑃𝑐𝑛𝑡 into two policies, 𝑃𝑐𝑛𝑡,1 = (𝑃𝑐𝑛𝑡.𝑝𝑟𝑖, 𝑃𝑐𝑛𝑡.𝑓𝑠 ∩ 𝑃𝑓𝑤𝑑 .𝑓𝑠, 𝑐𝑜𝑢𝑛𝑡) and
𝑃𝑐𝑛𝑡,2 = (𝑃𝑐𝑛𝑡.𝑝𝑟𝑖, 𝑃𝑐𝑛𝑡.𝑓𝑠 ⧵ 𝑃𝑓𝑤𝑑 .𝑓𝑠, 𝑐𝑜𝑢𝑛𝑡), and we can transfer 𝑃𝑐𝑛𝑡,1
through port 1. To this constraint, an endpoint policy (or a slice of
an endpoint policy) 𝑝 in switch 𝑠 can be transferred through port 𝑖,
𝑒

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.

𝑝

m

p
a

if there exists a routing policy 𝑝𝑓 in switch 𝑠, where 𝑝𝑒.𝑓𝑠 ∈ 𝑝𝑓 .𝑓𝑠 and
𝑓 .𝑎 = fwd(𝑖) (forward transferring), or there exists a routing policy 𝑝𝑏

in switch 𝑠′, where 𝑝𝑒.𝑓𝑠 ∈ 𝑝𝑏.𝑓𝑠, 𝑝𝑏.𝑎 = fwd(𝑗) and port 𝑗 in 𝑠′ connects
to port 𝑖 in 𝑠 (backward transferring). Here we only discuss the one-step
transferring to the pre or next hop, and the multi-hop transferring can
be seen as a combination of multiple one-step moves.

The above principle only ensures the semantics if there is only one
endpoint intent, because the dependency between endpoint intents may
further constrain the placement of endpoint policy. Considering an
endpoint policy 𝑝𝑚 modifies the VLAN id to 10 for the packets with
VLAN id 1, and another policy 𝑝𝑐 counts the packets with VLAN id 1,
the order of triggering the two policies reflects the high level intent;
if 𝑝𝑐 is triggered before 𝑝𝑚, the two policies just stick to their scripts;
otherwise, 𝑝𝑐 is only to verify whether 𝑝𝑚 correctly works. We assume
the initial placement has already satisfied the high level intent, and
therefore, the order of triggering the two policies cannot be violated.
More generally, we say 𝑝1 depends on 𝑝2, if 𝑝2.𝑎 will cut or produce
packets to be processed by 𝑝1. To maintain the original intents, the
order of two dependent policies cannot be changed. For example, if
an endpoint policy is conflicting with a header modifying policy, then
it can only be transferred between the ingress/egress and the header
modifying policy.

Please notice that this constraint also forbids the transferring of
header modifying policies, because the routing policies definitely de-
pend on header modifying policies; if we transfer it to the next hop, the
modification would break the routing path, because there is no routing
policy that handles the unmodified headers in next hop; likewise, the
pre hop is also infeasible, because there is no routing policy to forward
the modified headers in the current switch.

In summary, we say a policy (or a slice of policy) can be transferred
to a certain switch, if it satisfies the above two constraints, i.e., the rout-
ing policy restriction and the order of critical actions. Following this
definition, we further define a one-step semantics-preserving function
𝑆𝑇 , which takes a policy 𝑝 and an adjacent switch 𝑠 as the input, and
outputs a set of new policies. Specifically, 𝑆𝑇 (𝑝, 𝑠) = ∅, if neither 𝑝 nor
a slice of 𝑝 can be transferred to 𝑠; 𝑆𝑇 (𝑝, 𝑠) = {𝑝[𝑠𝑤 ↦ 𝑠]}, if 𝑝 can be
completed transfer to switch 𝑠; 𝑆𝑇 (𝑝, 𝑠) = {𝑝[𝑓𝑠 ↦ 𝑝.𝑓𝑠⧵𝑝′.𝑓𝑠], 𝑝′[𝑠𝑤 ↦
𝑠]}, if a slice of 𝑝, denoted as 𝑝′, can be transferred to switch 𝑠. The
notation 𝑝[𝑓 ↦ 𝑣] is to replace 𝑝.𝑓 with value 𝑣.

4. Finding optimal placement

4.1. Problem formulation

The optimal policy placement is a placement that the cost (i.e.,
the number of rules) of all switches is minimized. Previously, the
optimal policy placement has been discussed in several papers (Kang
et al., 2013; Arashloo et al., 2016), most of which models the problem
as follows: 𝑛 policies should be assigned to 𝑚 switches, while each
assignment (policy 𝑗 to switch 𝑖) has its profit 𝑝𝑖𝑗 and cost 𝑤𝑖𝑗 , and
each switch has its capacity 𝑊𝑖. The goal is to maximize the profits
while assuring each switch does not run out of its capacity. Such model
captures the well-known general assignment problem (GAP), thus is
also NP-Hard. However, the original GAP assumes the cost 𝑤𝑖𝑗 is fixed,
and not dependent of the placement of other policies, while in our
scenario, 𝑤𝑖𝑗 depends on the policies previously assigned to switch 𝑖,
because the number of rules varies to the conflicts between the policies
in the same switch.

In this paper, we define the above extended placement problem
as policy optimal placement problem with dependent cost (POPDC). To
address such problem, we divide POPDC into two sub-problems: (1)
decide the combinations of policies (DCP), and (2) assign the combina-
tions to the switches (ACS). These two sub-problems are independent,
because DCP only considers the penalty of putting certain policies
together, which determines the total the number of policies/rules of
the network, while ACS focuses on finding an optimal placement for
5

Algorithm 1 Divide the original policies into fragments.
1: 𝑃 ← 𝑃𝑒
2: for all 𝑝 in 𝑃 do
3: for all 𝑠 that connect to 𝑝.𝑠𝑤 do
4: if |𝑆𝑇 (𝑝, 𝑠)| > 1 then
5: 𝑃 ← 𝑃 ⧵ {𝑝} ∪ 𝑆𝑇 (𝑝, 𝑠)

the combinations to satisfy the capacity constraint. In the following,
we will first define the variables involved in POPDC, and address the
two sub-problems respectively.

Variables and notations. The first variable in POPDC is the policy
set that to be assigned, denoted as 𝑃 , which however cannot directly

ap to the original endpoint policy set 𝑃𝑒. The reason is that it is
possible that the policy cannot be assigned to a certain switch, or
only a slice of the policy can be transferred to that switch, due to
the semantics-preserving transfer restriction. To address this problem,
we utilize the one-step semantics-preserving function 𝑆𝑇 to divide the
olicies into fragments, each of which can be independently assigned to
switch. The set of these fragments forms the policy set 𝑃 . The divide

process is illustrated in Algorithm 1.
The other variables in POPDC is quite straightforward: there are 𝑚

switches in the network, each of which has a capacity 𝑊𝑖. We use 𝑆 to
denote a set of policies, and 𝑤(𝑆) represents the cost of decoupling 𝑆,
which can be measured with the number of decoupled policies or the
number of expanded rules.

DCP: decide the policy set to be assigned. To model DCP, we first
expand all the candidate policy set. Assume we have 𝑙 policies, there
are 2𝑙 candidate combinations of policies, the set of which is denoted
as 𝑆 = {𝑆𝑖}, 𝑖 = 1,… , 𝑛, where 𝑛 = 2𝑙. Our goal is to find a subset of
𝑆, denoted as 𝐶, to satisfy the following requirements: (1) the number
of selected sets must not be larger than the number of switches, (2)
the policy combinations in 𝐶 are pairwise disjoint, (3) the union of
𝐶 equals to 𝑃 , and (4) the total cost of 𝐶 is minimal. The first goal
constrains the number of sets to the number of switches, or the sets
cannot be assigned to switches independently. The second and third
goal is to seek a disjoint set cover of 𝑃 and the last goal is to minimize
the total costs, i.e., the number of policies/rules.

Based on the above analysis, we formulate DCP with the following
integer linear program.

maximize
∑

𝑠∈𝑆
(𝑥𝑠∕

∑

𝑝𝑠∈𝑠
𝑤(𝑝𝑠)) (1)

subject to
∑

𝑠∶𝑒∈𝑠
𝑥𝑠 = 1, for all 𝑒 ∈ 𝑃 (2)

∑

𝑠∈𝑆
𝑥𝑠 ≤ 𝑚, for all 𝑠 ∈ 𝑆 (3)

𝑥𝑠 ∈ {0, 1}, for all 𝑠 ∈ 𝑆 (4)

Eq. (1) is to maximize the profit of the selected policy sets, where
the profit is defined as the reciprocal of the policy set cost. Eq. (2)
restricts that every policy must be selected exactly once to produce
a set cover. Eq. (3) constrains the number of sets to the number
of switches. Eq. (4) defines a 0–1 variable to represent every set is
either selected or not. It is clear that DCP has the same representation
with weighted disjoint set cover problem, which has been proved to be
NP-Hard (Pananjady et al., 2015).

ACS: assign the policy sets to switches. Given an optimal policy
sets 𝐶 by DCP, the next step is to assign them to different switches. The
goal of ACS is to ensure the assignment will not exceed the capacity

of each switch. Assume we have 𝑛 policy sets in 𝐶, 𝑚 switches in the

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.

p

P

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2

t

b
o
a
i
p

5

b
p
t
c
o
p
w

t
w

network, 𝑛 ≤ 𝑚, we can formulate ACS with the following integer linear
rogram.

maximize
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
𝑥𝑖𝑗 (5)

subject to
𝑛
∑

𝑗=1
𝑟𝑖𝑗𝑥𝑖𝑗 ≤ 𝑊𝑖, 𝑖 = 1,… , 𝑚 (6)

𝑚
∑

𝑖=1
𝑥𝑖𝑗 = 1, 𝑗 = 1,… , 𝑛 (7)

𝑛
∑

𝑗=1
𝑥𝑖𝑗 = 1, 𝑖 = 1,… , 𝑚 (8)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑛 (9)

Notice we introduce a new cost parameter 𝑟𝑖𝑗 to represent the cost
of assigning set 𝑗 to switch 𝑖. Specifically, 𝑟𝑖𝑗 = 𝑤(𝐶𝑗), if all policies in
𝐶𝑗 can be transferred to switch 𝑖; 𝑟𝑖𝑗 = ∞, if at least one policy in 𝐶𝑗
cannot be transferred to switch 𝑖. With Eq. (5)–(9), ACS can be reduced
to GAP, if we assume the profit of assigning a policy set equals to 1.
Therefore, ACS is a NP-Complete problem.

In summary, due to the high complexity of both DCP and ACS,
POPDC cannot be solved in polynomial time.

4.2. Heuristics of near-optimal placement searching

As discussed above, POPDC is computationally hard, an intuitive
idea is to utilize the existing approximate algorithms to find near-
optimal solutions. However, the first step of modeling DCP, i.e., ex-
panding all the possible policy combinations as the candidates, would
largely impact the total complexity of solving DCP, because it ex-
ponentially increases the problem scale. Therefore, we do not use
existing approximate algorithms, but propose some simple heuristics
to approach the optimal policy placement, under the acceptable time
consumption. Specifically, the optimal placement is expected to satisfy
the following requirements: (1) the number of rules in each switch
should not go beyond the capacity of the switch, (2) the total the
number of rules are minimized for the entire network, and (3) the
standard deviation of the number of rules in each switch should be
minimized, so it is not likely to overflow when a new policy comes.

Our basic idea is to greedily find a ‘‘conflict-maker’’, i.e., the highest-
cost policy, among all endpoint policies 𝑃𝑒, and iteratively make a
one-step semantics transfer to the target switch that leads to the best
profit. The cost of policy 𝑝 is measured by the total cost decrement of
switch 𝑠 if we remove 𝑝 from 𝑠. To find a conflict maker, a straight-
forward method is to traverse all policies, while simple heuristics and
optimizations can be applied for this searching; we can use the number
of conflicts produced by the policy as the cost instead of measuring
the precise the number of rules, which may reduce the searching
time, especially for TCAM-based switches; we can pre-compute the cost
of all policies beforehand, because the transferring only impacts two
switches, and it does not need to re-compute the cost for policies in
the rest switches, which could accelerate the conflict-maker searching
in the next round. With the conflict maker, we have to choose where
to transfer it for larger profit. Specifically, we use 𝐾 to denote the
number of switches that exceeds the capacity in current placement, and
𝑂 to denote the total the number of exceeded rules in the network.
We further define 𝐷 as the standard deviation of the cost for each
switch, and use 𝐶 to denote the total cost of the placement, which
can be measured with the number of policies or the number of rules.
Based on these notations, we define the profit of a placement as 𝐵 =
𝑇 ∕(𝐶 ×𝐷) − 𝑂, where 𝑇 = 0, if 𝐾 > 0, and otherwise 𝑇 = 1.

The searching process is to seek a better profit through the
semantics-preserving transfer to the conflict-maker. If transferring any
policy under current placement would not lead to a larger 𝐵, the
6

process ends, and the current placement is an optimal solution if 𝐵 > 0.
Algorithm 2 Greedily searching for the optimal placement.
Procedure: Pre-Computing the Policy Cost
1: 𝑃𝑠𝑤 ← {{𝑝 ∈ 𝑃𝑒|𝑝.𝑠𝑤 = 𝑖}, 𝑖 = 1, ..., 𝑛}
2: for 𝑃𝑖 in 𝑃𝑠𝑤 do
3: for all 𝑝 in 𝑃𝑖 do
4: 𝑝.𝑐𝑜𝑠𝑡 ← 𝑐(𝑃𝑖) − 𝑐(𝑃𝑖 ⧵ {𝑝})
5: sort 𝑃𝑒 by the policy cost in descending order
rocedure: Greedy Searching for Optimal Placement
1: Pre-Computing the Policy Cost
2: Compute 𝐶, 𝐷, 𝐾, 𝑇 , 𝑂 according to the cost
3: 𝐵 ← 𝑇 ∕(𝐶 ×𝐷) − 𝑂
4: 𝑖 ← 0
5: while True do
6: while True do
7: 𝑐𝑚 ← 𝑃𝑒[𝑖]
8: 𝑡𝑠 ← 𝑐𝑚.𝑠
9: for all 𝑠 that connects to 𝑐𝑚.𝑠 do
0: 𝑆𝑇 (𝑐𝑚, 𝑠) and update 𝐶, 𝐷, 𝐾, 𝑇 , 𝑂 accordingly
1: 𝑏 ← 𝑇 ∕(𝐶 ×𝐷) − 𝑂
2: if 𝑏 > 𝐵 then
3: 𝐵 ← 𝑏; 𝑡𝑠 ← 𝑠
4: rollback the transfer of 𝑐𝑚 and restore 𝐶, 𝐷, 𝐾, 𝑇 , 𝑂
5: if 𝑡𝑠 = 𝑐𝑚.𝑠 then
6: break
7: 𝑆𝑇 (𝑐𝑚, 𝑡𝑠) and update 𝐶, 𝐷, 𝐾, 𝑇 , 𝑂 accordingly
8: update the cost of policies in original 𝑐𝑚.𝑠 and 𝑡𝑠
9: sort 𝑃𝑒 by the policy cost in descending order
0: 𝐵 ← 𝑇 ∕(𝐶 ×𝐷) − 𝑂
1: 𝑖 ← 0
2: 𝑖 ← 𝑖 + 1
3: if 𝑖 > |𝑃𝑒| then
4: break

The complete process is illustrated in Algorithm 2. Notice if 𝐵 ≤ 0, the
solution is not acceptable due to the exceeded capacity, which needs
to be reported to operators for further process.

Incremental placement update. The optimized placement needs
to be incrementally adjusted when adding or deleting policies. If a
policy 𝑝 is deleted from switch 𝑠, we just remove all the sub-policies
hat produced by 𝑝 (including 𝑝 itself). Since the cost of 𝑠 must be

reduced due to the removal, we only need to recompute the profit of the
adjacent switches of 𝑠, to see whether some additional transferring can
make larger profit. If a policy 𝑝 is added to switch 𝑠, we compute the
conflicts it produces with the existing ones, and since the cost of 𝑠 must
e increased, we only need to try limited policy transferring from 𝑠 to
btain a new optimal placement. The policy modification can be seen
s a combination of deleting a policy and adding a policy. In practice,
t is common that a group of policies are updated for an entire routing
ath, and we can re-perform CORA after that batch update.

. Cooperation of local optimizations

In a nutshell, when CORA decides whether a rule is ‘‘worthy’’ of
eing transferred to an adjacent switch, it will compute a profit for the
otential transferring, and performs the transferring only if the profit is
he big enough. In computing the profit, CORA could employ the local
onflict resolver to reveal the benefit of the transferring, i.e., the factual
verhead if transferring this rule to another switch. The computation of
rofit is extensible in CORA’s architecture. Thus CORA can cooperate
ith all existing local conflict resolvers, by adopting their computation.

In this section, we check two typical local optimizations based on
he policy aggregation, and demonstrate the compatibilities of CORA
ith these optimizations.

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.

B
2
a
i
t
b
t

5

e
F
c
t
n
c
t
s
n

i
f
d
a
w
a
p
C
1
[
c
o
r
1
w

5

i
o
t
E
t
W
r
s
h
a
e
b

6

6

t
C
c
p

T
T

s
a
b
t
l
C
r
w
i
c
m
T

o
g
c
s
p
e
r
I

t
p
r
f
g
C
a

6

l
c
i
t
t
i
h

6

a
T
t
W
a

Local TCAM compression algorithms fall into two categories in the
current study: tree-based algorithms (e.g., TCAM Razor Liu et al., 2010
and Ternary Razor Meiners et al., 2012) and list-based algorithms (e.g.,

it Weaving Meiners et al., 2012, Redundancy Removal Liu and Gouda,
010, Equivalent packet classifiers Dong et al., 2006). The former
lgorithms can aggregate rules with prefix format, as they convert rules
nto a decision tree and traverse it for optimal aggregations. Apart from
he prefix rules, there are also ternary rules, which can be aggregated
y list-based algorithms: they compare rules in a rule set and aggregate
hose with specific bit relations.

.1. Tree-based compression

We use the FIB aggregation algorithm (Khare et al., 2010; Zhao
t al., 2010) as the typical tree-based compression method. Specifically,
IB aggregation first transforms entries’ prefix into binary string, and
ompose them to a binary tree. Next, it can aggregate entries that have
he same next hop by inserting, deleting and combining binary tree’s
odes. As an example for the sibling nodes, the algorithm traverses the
ardinality tree: if one node has the same next hop with its sibling node,
hen these two nodes can be deleted, and a new parent node with the
ame next hop and a longest common subsequence prefix of those two
odes can be inserted.

The traditional method is designed for one-dimension rules, while
n our scenario, there would be many more in the flow table, e.g., 41
ields are supported in OpenFlow 1.5 (ONF, 2015). We assume a four-
imension case (SrcIP, DstIP, SrcPort and DstPort), and extend such
lgorithm to cooperate with the SDN-specific scenarios. Specifically,
e first focus on the entries that are same in three dimensions, and
ggregate the fourth by building a cardinality tree. Next, we repeat this
rocess for other dimensions, until none of them can be aggregated.
onsider the following two four-dimension policies, (192.168.2.2/32,
92.168.2.4/32, [1,5], [2,4]) and (192.168.2.3/32, 192.168.2.4/32,
1,5], [2,4]). Note that they have the DstIP, SrcPort and DstPort, we
an form the SrcIP field into a binary tree: since the two SrcIP fields
nly differ in the last bit, they are sibling node in the binary tree. As a
esult, we can aggregate these two entries into one: (192.168.2.2/31,
92.168.2.4/32, [1,5], [2,4]). This entry can be further aggregated
ith others, following the above process.

.2. List-based compression

The tree-based algorithms only work for prefix rules, i.e., each field
n a rule is specified as a prefix bit string (e.g., 01**) where the ‘‘stars’’
nly appear at the end of the string. In contrast, TCAM can work in
he way that combine entry’s every field and process it as a whole.
ach field of a TCAM rule is a ternary bit string (e.g., 0**1), where
he stars can appear at any position. List-based algorithms, e.g., Bit

eaving (Meiners et al., 2012), is designed for aggregating ternary
ules. To be specific, we mix four dimensions of entries into a long bit
tring, and adjacent TCAM entries that have the same decision with a
amming distance of one (e.g., differ in only one bit) can be merged into
single entry by replacing the bit with *. To improve the aggregation

fficiency, some optimizations like bit swapping and bit merging can
e applied.

. Performance evaluation

.1. Evaluation settings

In this section, we evaluate the semantics equivalence and optimiza-
ion performance of the migrating operation in CORA. We implement
ORA with ∼2000 lines of python code, which takes the topology, the
apacity of switches, and the current policy placement as the input, and
7

roduces a new placement as the output.
able 2
he policy configurations used in the evaluations.

Topology #expanded
policies

#rules Standard
deviation

#overflow
switches

𝐶1

Stanford 4193 4902 586.07 1
Fattree(4) 4094 5418 231.35 3
Fattree(8) 3507 4888 107.60 3

𝐶2

Stanford 11 375 12 876 2041.76 2
Fattree(4) 10 278 18 017 2811.52 3
Fattree(8) 8054 12 906 834.19 2

𝐶3

Stanford 45 175 47 719 5383.16 5
Fattree(4) 41 040 58 175 7913.27 4
Fattree(8) 32 592 34 479 2904.13 5

We test CORA in three topologies, Stanford Backbone (Kazemian
et al., 2012) and FatTree (𝑘 = 4, 𝑘 = 8), which have 26, 20, and 80
witches respectively. For each topology, we slice the global network
ddress (0.0.0.0–255.255.255.255) into 𝑛 sections, where 𝑛 is the num-
er of edge switches in the topology. We assign those network sections
o the edge switches as the host IP they connect to. We then simu-
ate abundant high-level intents for the topology. Specifically, we use
lassBench (Taylor and Turner, 2007) to generate packet classification
ules (SrcIP/Mask, DstIP/Mask, SrcPortRange, DstPortRange, Action),
hich can be regarded as the endpoint intent. The Action in the rules

s just an integer number indicating different endpoint actions, and we
hoose a specific number to denote the header modifying action, which
odifies the SrcIP and SrcPort randomly, to simulate an NAT function.
he default rules with long mask length are removed.

By mapping the SrcIP and DstIP ranges to the edge switch, we
btain the corresponding routing intent; the simple shortest path is
enerated by SrcIP and DstIP, and we split the intent if the IP ranges
ross network sections. Then we can generate routing policies for each
witch according to the routing intent, and randomly place an endpoint
olicy along the routing path by the endpoint intent. Notice if the
ndpoint policy is a header modifying policy, we need to adjust the
outing policies in the post switches to maintain the forwarding path.
n our evaluations, the capacity of each switch is set to be 500.

Based on the above settings, we generate three configurations for
he evaluations, as shown in Table 2, where the number of expanded
olicies is measured by the priority method, and the number of rules
epresents the entries used in TCAM-based switches. Note that CORA
ollows the heuristics to optimize the rule set, so given the pre-
enerated configurations, we could obtain a fixed optimized form from
ORA. As a result, we do not need to re-perform CORA to report the
verage performance.

.2. Semantics equivalence

We use header space analysis (HSA) to verify the semantics equiva-
ence of CORA (Kazemian et al., 2012). Specifically, we test all pairwise
onnectivity on the generated topologies and policy sets, and record the
nternal forwarding path as well as the ID of actions when traversing
he network. The results show that both the forwarding path and the
riggered actions are the same before and after performing CORA. That
s, the semantics-preserving transferring provided by CORA retains the
igh-level intents.

.3. Placement optimization

We apply the heuristic algorithm proposed in Section 4 to reconcile
n optimal placement that leads to lower cost of the global network.
wo key metrics are measured to evaluate the performance of CORA,
he global policy cost, and the standard deviation of policy placement.

e use the priority method to optimize the policies in the single switch,
nd assume the data plane uses TCAM-based switches to demonstrate

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.

t
e

t
c
m
F
C
m

T
s
b
o
t
i
C
t
b
t
l
8
i

i
l
f
r
a
o
c

s
o
c
4
c
i

Fig. 5. The number of total rules decrement after performing CORA.
6

w

p
b
n
c
t
t
i
p

6

c
a
w

t
c
n
t
w
d
T
i
w

t
p
r
w

he significance, so that the policy cost is measured by the number of
xpanded rules.

Fig. 5 shows the policy cost decrement after performing CORA for
hree policy sets on different topologies. On average, 79.78% policy
ost can be eliminated by properly transferring policies, and the decre-
ent can go up to 96.31% for severe conflicting policy placement.

ig. 7 depicts similar improvements of standard deviation obtained by
ORA, 96.22% and 99.73% decrements are achieved in average and at
ost, respectively.

In fact, the performance of CORA is determined by two factors.
he first is the maldistribution of policies in the first place; if the
tandard deviation is high for the original placement, large profit can
e expected by finding an even distribution solution. For example, 𝐶3
n Fattree (𝑘 = 4) has a higher deviation than it on Fattree (𝑘 = 8),
hus leads to a more significant decrement on the policy cost, as shown
n Figs. 7(b), (c) and 5(b), (c). Second, the optimization efficiency of
ORA is dependent on how many target switches can be transferred
o for a single policy; more targets means larger searching space and
etter chance of achieving a more optimal solution. For example, due
o the worse connectivity, policy sets on Stanford topology obtains
ower decrements than them on Fattree (𝑘 = 4) topology (80.15% vs.
5.42% in average), though it has more switches (26 vs. 20), as shown
n Fig. 5(a), (b).

We further compare CORA with two existing approaches, i.e., pack-
ng rules with rectangle (Kang et al., 2013) (referred as Pack), and the
ocal conflict resolver (referred as Local). Fig. 6 shows that CORA can
urther reduce 74.3% and 47.9% rules compared with Pack and Local,
espectively. The reason to the boost of CORA mainly comes from the
bility of arbitrary and flexible rule transferring. In contrast, Local only
ptimizes the local rule set, while Pack can only transfer the rules that
an be covered by a rectangle.

Finally we want to measure the gap between CORA and the optimal
olution. However, due to the extremely high complexity, we cannot
btain the optimal placement in feasible time for any of the three
onfigurations. Instead, we use a tiny configuration that consists of only
switches and 100 endpoint policies, and the results show that CORA

an achieve 100% optimality. We will quantify the optimality of CORA
8

n real configurations in our future work.
.4. Flow table aggregation

To check the compatibility with the existing local conflict resolvers,
e apply the tree-based aggregation algorithm to enhance CORA.

By profiling the basic case in Fig. 5, we find that the number of
olicies explodes because the naive priority-based optimization cuts the
ig policies into a set of much smaller ones, which may aggravate the
umber of rules in total. The aggregation-based compression method
an combine many of those policies into a new bigger policy, making
he policy migration more efficient. As shown in Figs. 8 and 9, the total
he number of rules and the standard deviation are further decreased
f applying this local optimization. This experiment proves that CORA
erforms better with the help of the local conflict resolver.

.5. Overhead

We measure the time cost of performing CORA on different policy
onfigurations to ensure the optimization can be done within accept-
ble overhead. Fig. 10 shows that most optimizations can be done
ithin 40 s.

The impact factors of the time cost of CORA are similar with
hem of optimization efficiency, i.e., the distribution of policy and the
onnectivity of the topology. Maldistribution and better connectivity
eed more time to achieve a good placement. Taking the two Fattree
opologies as an example, Fattree (𝑘 = 4) has a large deviation
ith a relative worse connectivity, while in contrast, the policies are
istributed more evenly in Fattree (𝑘 = 8) that has better connectivity.
herefore, the time cost of these two topologies are similar, as shown

n Fig. 10(b), (c). Such feature also improves the scalability of CORA
hen handling large topologies.

We next simulate the scenario that many policies are updated by
he high-level intents. Specifically, we randomly add policies and delete
olicies on an optimized placement, and measure how long it takes to
each a new optimal placement for CORA. Fig. 11 shows the time cost
hen modifying 10%–25% of the policies on Fattree (𝑘 = 4) topology.
Due to the incremental update algorithm used in CORA, limited policies

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.
Fig. 6. The number of total rules by performing CORA, Pack and the local resolver.
Fig. 7. The standard deviation decrement after performing CORA.
and switches are involved for recomputation, so the time cost is small
(< 15 s) and stable.

The above experiments also depict the minor additional time con-
sumed by the aggregation optimizations, which also benefits from the
incremental update strategy.
9

7. Discussion

In this paper, we only transfer endpoint policies, while the routing
policies are considered as fixed to ensure the semantics equivalence of
routing intent. Though there are many limits for us to transfer routing
policies, the effect will be better if we can take routing policies into

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.

a
w

s
o
s
I
s

Fig. 8. The number of total rules decrement after performing flow table aggregation.
Fig. 9. The standard deviation decrement after performing flow table aggregation.
ccount, there will be more space for us to migrate and the process
ill be more flexible.

The global optimization can be further optimized if policies are
eparable. In the global optimization, when we transform policy to
ther switch, the policy is assumed as an entire one. This assumption
implifies the optimization process but it suffers a bit of performance.
n some cases, the transformation of entire policy hardly decrease the
torage cost. However, if splitting corresponding policies into several
10
sub-policies, and translate part of them to other switch, flow table ex-
plosion can be extremely decreased. The process of global optimization
need to be further modified to work out the optimal solution.

Besides, in SDN scenario, not just transfer, much more work can
be done to further minimize the storage cost of conflicting policies
since we master the policy distribution, flow table situation and the

forwarding paths of the entire network in the control plane.

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.
Fig. 10. The time used for performing CORA and flow table aggregation on different policy sets and topologies.
Fig. 11. The time used when updating policies in Fattree (𝑘 = 4) topology.
8. Related work

Many work have been done for efficient policy placement in the
network. However, those works also have limitations in one or some
of the following aspects. Table 3 briefly classifies those works, and we
detail them in the following.

Although compressing the flow tables for IP lookup and firewall in
traditional network has been widely studied, only a limited number of
11
fields (mostly five tuples) are involved (Kogan et al., 2015; Liu and
Gouda, 2010; Meiners et al., 2012; Bremler-Barr and Hendler, 2012;
Katta et al., 2014; Liu et al., 2010). In SDN scenario, switches in the
data plane may check an unbounded number of match fields to realize
fine-grained flow control, which drastically increases the complexity of
applying the traditional compressing methods. This phenomenon can
be inferred from other approaches studying a broader range of SDN-
based architecture (Bhatia et al., 2019a,b, 2020; Trivedi et al., 2018).

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.

w
2
2
c
p
t
c
p
i
h
t
s
K

a
t
r
f
c
‘
t

e
s
c
n
G
t
m
d
c
o

9

I
o

Table 3
Previous literatures related to policy conflicts resolving.

Approaches Basic idea Weakness

Local compressor (Kogan et al.,
2015; Liu and Gouda, 2010; Meiners
et al., 2012; Bremler-Barr and
Hendler, 2012; Katta et al., 2014;
Liu et al., 2010)

Compress flow
tables in a single
switch

Less effective when
handling
high-dimension
conflicts in SDN

Network slicing (Al-Shabibi et al.,
2014; Koponen et al., 2014; Drutskoy
et al., 2013)

Isolate flow space
for each policy

Disable the
operation on the
same traffic

High-level DSL (Monsanto et al.,
2013; Arashloo et al., 2016; Prakash
et al., 2015; Amin et al., 2019; He
et al., 2017; Tian et al., 2019)

Resolve conflicts at
the language level

Cannot assume all
policies are
described with the
same DSL.

We believe with the global view offered by SDN, more benefit can
be gained by properly transferring the policies. Besides, as we have
mentioned in Section 1, all the existing optimizations for a single switch
can be expediently employed in CORA.

Another attempt to avoid the policy conflicts is to slice the net-
work into pieces, providing isolated flow spaces for different network
functions or tenants (Al-Shabibi et al., 2014; Koponen et al., 2014;
Drutskoy et al., 2013). However, such technique does not address the
root cause of policy conflict: it is common to observe that more than
one applications may be engaged in the same flow. Those applications
will issue policies for sharing resources, e.g., overlapped flow space.

Many SDN languages are proposed to facilitate composing network
ith individual program pieces (Foster et al., 2013; Monsanto et al.,
013; Voellmy et al., 2013; Arashloo et al., 2016; Prakash et al.,
015; Amin et al., 2019; He et al., 2017; Tian et al., 2019). The
orresponding controllers of these languages will carefully place and
rioritize the generated policies, so that the conflicts are resolved in
he first place. We believe in near future, the rule conflicts cannot be
ompletely avoided or detected at policy level, considering the SDN
rograms would not be unified by a single ‘‘perfect’’ language. As such,
f multiple controllers coexist in a single network, none of them can
andle the conflicts raise by the same-priority policies. Previous work
hat efficiently place the endpoint policies in different priorities are not
uitable for this scenario due to the similar reason (Kang et al., 2013;
anizo et al., 2013).

Ref. Kang et al. (2013) is the closest work to ours, which also
ddresses the problem of endpoint policy placement. The basic idea is
o recursively find a cost-effective ‘‘rectangle’’ to cover the overlapped
ules, process the covered flows in current switch, and leave the rest
lows to the next switch (next cover), such that the number of rules
an be reduced. However, since Ref. Kang et al. (2013) only selects
‘rectangles’’ in flow space, the space of ‘‘packing rules’’ is much smaller
han CORA that can move arbitrary (fractions of) rules.

The traditional placement problem is reduced to GAP, and many
xisting approximate algorithms can be leveraged to obtain an optimal
olution (Shmoys and Tardos, 1993). However, if we involve the policy
onflicts into the problem, the cost of assigning a policy to a switch is
ot independent, which cannot be transformed to the original version of
AP. Several papers have investigated GAP with dependent cost, while

hey either assume there is only pairwise dependency between assign-
ents (Mougouei et al., 2017; Burg et al., 1999), or just employ a global
ependent variable (Tariri, 2013). In contrast, POPDC introduces more
omplex dependency, where the cost of each assignment is dependent
n all previous assignments.

. Conclusion

In this work, we propose CORA, a conflict razor for policies in SDN.
n contrast to the policy conflict resolution in a local switch by most
12

f the previous works, CORA solve the same problem in a distributed
way. Specifically, it first detects the significant conflict-maker and then
migrates it from the local switch to other switches while retaining the
semantic equivalence. Since the centralized controller can grasp the
global view of the entire network, such global state coordination is
feasible. In this work, we identify CORA’s NP hardness and propose a
simple heuristic to approach the optimal solution within an acceptable
time bound. Our experiments demonstrate that, CORA can effectively
reduce the flow table storage occupation by at least 49% within less
than 40 s. CORA can well collaborate with the existing local conflict
resolver.

CRediT authorship contribution statement

Yadong Zhou: Conceptualization, Supervision. Hao Li: Method-
ology, Writing, Software. Kaiyue Chen: Software, Experiments. Tian
Pan: Writing, Polishing. Kun Qian: Methodology. Kai Zheng: Method-
ology. Bin Liu: Conceptualization. Peng Zhang: Conceptualization.
Yazhe Tang: Conceptualization. Chengchen Hu: Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (No. 62172323 and No. 61833015) and the National Top
Talent Training Program in Basic Sciences (No. 20180209).

References

Al-Shabibi, A., De Leenheer, M., Gerola, M., Koshibe, A., Parulkar, G., Salvadori, E.,
Snow, B., 2014. Openvirtex: Make your virtual sdns programmable. In: Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking. In: HotSDN
’14, pp. 25–30. http://dx.doi.org/10.1145/2620728.2620741, URL http://doi.acm.
org/10.1145/2620728.2620741.

Amin, R., Shah, N., Mehmood, W., 2019. Enforcing optimal acl policies using k-partite
graph in hybrid sdn. Electronics 8 (6), 604.

Arashloo, M.T., Koral, Y., Greenberg, M., Rexford, J., Walker, D., 2016. Snap: Stateful
network-wide abstractions for packet processing. In: Proceedings of the 2016 ACM
SIGCOMM Conference. In: SIGCOMM ’16, pp. 29–43. http://dx.doi.org/10.1145/
2934872.2934892, URL http://doi.acm.org/10.1145/2934872.2934892.

Bhatia, J., Dave, R., Bhayani, H., Tanwar, S., Nayyar, A., 2020. Sdn-based real-time
urban traffic analysis in vanet environment. Comput. Commun. 149, 162–175.

Bhatia, J., Kakadia, P., Bhavsar, M., Tanwar, S., 2019a. Sdn-enabled network coding-
based secure data dissemination in vanet environment. IEEE Internet Things J. 7
(7), 6078–6087.

Bhatia, J., Modi, Y., Tanwar, S., Bhavsar, M., 2019b. Software defined vehicular
networks: A comprehensive review. Int. J. Commun. Syst. 32 (12), e4005.

Bremler-Barr, A., Hendler, D., 2012. Space-efficient tcam-based classification using gray
coding. IEEE Trans. Comput. 61 (1), 18–30.

Burg, J.J., Ainsworth, J., Casto, B., Lang, S.-D., 1999. Experiments with the ‘‘oregon
trail knapsack problem’’. Electron. Notes Discrete Math. 1, 26–35.

Dong, Q., Banerjee, S., Wang, J., Agrawal, D., Shukla, A., 2006. Packet classifiers in
ternary cams can be smaller. In: ACM SIGMETRICS.

Doriguzzi Corin, R., Gerola, M., Riggio, R., De Pellegrini, F., Salvadori, E., 2012.
Vertigo: Network virtualization and beyond. In: 2012 European Workshop on
Software Defined Networking (EWSDN). IEEE, pp. 24–29.

Drutskoy, D., Keller, E., Rexford, J., 2013. Scalable network virtualization in software-
defined networks. IEEE Internet Comput. 17 (2), 20–27. http://dx.doi.org/10.1109/
MIC.2012.144.

Foster, N., Guha, A., Reitblatt, M., Story, A., Freedman, M.J., Katta, N.P., Monsanto, C.,
Reich, J., Rexford, J., Schlesinger, C., et al., 2013. Languages for software-defined
networks. IEEE Commun. Mag. 51 (2), 128–134.

He, B., Dong, L., Xu, T., Fei, S., Zhang, H., Wang, W., 2017. Research on network
programming language and policy conflicts for sdn. Concurr. Comput.: Pract. Exper.
29 (19), e4218.

Jin, X., Gossels, J., Rexford, J., Walker, D., 2015. Covisor: A compositional hypervisor
for software-defined networks. In: Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation. In: NSDI’15, pp. 87–101, URL

http://dl.acm.org/citation.cfm?id=2789770.2789777.

http://dx.doi.org/10.1145/2620728.2620741
http://doi.acm.org/10.1145/2620728.2620741
http://doi.acm.org/10.1145/2620728.2620741
http://doi.acm.org/10.1145/2620728.2620741
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb2
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb2
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb2
http://dx.doi.org/10.1145/2934872.2934892
http://dx.doi.org/10.1145/2934872.2934892
http://dx.doi.org/10.1145/2934872.2934892
http://doi.acm.org/10.1145/2934872.2934892
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb4
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb4
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb4
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb5
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb5
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb5
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb5
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb5
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb6
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb6
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb6
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb7
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb7
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb7
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb8
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb8
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb8
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb9
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb9
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb9
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb10
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb10
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb10
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb10
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb10
http://dx.doi.org/10.1109/MIC.2012.144
http://dx.doi.org/10.1109/MIC.2012.144
http://dx.doi.org/10.1109/MIC.2012.144
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb12
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb12
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb12
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb12
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb12
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb13
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb13
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb13
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb13
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb13
http://dl.acm.org/citation.cfm?id=2789770.2789777

Journal of Network and Computer Applications 199 (2022) 103307Y. Zhou et al.
Kang, N., Liu, Z., Rexford, J., Walker, D., 2013. Optimizing the one big switch
abstraction in software-defined networks. In: Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies. ACM, pp.
13–24.

Kanizo, Y., Hay, D., Keslassy, I., 2013. Palette: Distributing tables in software-defined
networks. In: INFOCOM, 2013 Proceedings IEEE. pp. 545–549. http://dx.doi.org/
10.1109/INFCOM.2013.6566832.

Katta, N., Alipourfard, O., Rexford, J., Walker, D., 2014. Infinite cacheflow in software-
defined networks. In: Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking. ACM, pp. 175–180.

Kazemian, P., Varghese, G., McKeown, N., 2012. Header space analysis: Static checking
for networks. In: Presented as Part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). pp. 113–126, URL https://www.
usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian.

Khare, V., Jen, D., Zhao, X., Liu, Y., Massey, D., Wang, L., Zhang, B., Zhang, L., 2010.
Evolution towards global routing scalability. IEEE J. Sel. Areas Commun. 28 (8),
1363–1375.

Kogan, K., Nikolenko, S., Rottenstreich, O., Culhane, W., Eugster, P., et al., 2015.
Exploiting Order Independence for Scalable and Expressive Packet Classification.
IEEE.

Koponen, T., Amidon, K., Balland, P., Casado, M., Chanda, A., Fulton, B., Ganichev, I.,
Gross, J., Gude, N., Ingram, P., et al., 2014. Network virtualization in multi-tenant
datacenters. In: USENIX NSDI.

Li, H., Chen, K., Pan, T., Zhou, Y., Qian, K., Zheng, K., Liu, B., Zhang, P., Tang, Y.,
Hu, C., 2018. Cora: Conflict razor for policies in sdn. In: IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications. pp. 423–431.

Li, H., Hu, C., Zhang, P., Xie, L., 2016. Modular sdn compiler design with intermediate
representation. In: Proceedings of the 2016 Conference on ACM SIGCOMM 2016
Conference. ACM, pp. 587–588.

Liu, A.X., Gouda, M.G., 2010. Complete redundancy removal for packet classifiers in
tcams. IEEE Trans. Parallel Distrib. Syst. 21 (4), 424–437.

Liu, A.X., Meiners, C.R., Torng, E., 2010. Tcam razor: A systematic approach towards
minimizing packet classifiers in TCAMs. IEEE/ACM Trans. Netw. 18 (2), 490–500.

Meiners, C.R., Liu, A.X., Torng, E., 2012. Bit weaving: A non-prefix approach to
compressing packet classifiers in tcams. IEEE/ACM Trans. Netw. (ToN) 20 (2),
488–500.

Meiners, C.R., Liu, A.X., Torng, E., 2012. Bit weaving: A non-prefix approach to
compressing packet classifiers in TCAMs. IEEE/ACM Trans. Netw. 20 (2), 488–500.

Monsanto, C., Reich, J., Foster, N., Rexford, J., Walker, D., et al., 2013. Composing
software defined networks. In: NSDI. pp. 1–13.

Mougouei, D., Powers, D.M., Moeini, A., 2017. An integer programming model for
binary knapsack problem with value-related dependencies among elements. arXiv
preprint arXiv:1702.06662.

ONF, 2015. OpenFlow Switch Specification Version 1.5.1, https://opennetworking.org/
wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

Pananjady, A., Bagaria, V.K., Vaze, R., 2015. The online disjoint set cover problem
and its applications. In: 2015 IEEE Conference on Computer Communications
(INFOCOM). pp. 1221–1229. http://dx.doi.org/10.1109/INFOCOM.2015.7218497.

Prakash, C., Lee, J., Turner, Y., Kang, J.-M., Akella, A., Banerjee, S., Clark, C.,
Ma, Y., Sharma, P., Zhang, Y., 2015. Pga: Using graphs to express and auto-
matically reconcile network policies. SIGCOMM Comput. Commun. Rev. 45 (4),
29–42. http://dx.doi.org/10.1145/2829988.2787506, URL http://doi.acm.org/10.
1145/2829988.2787506.

Rottenstreich, O., Cohen, R., Raz, D., Keslassy, I., 2013. Exact worst case tcam rule
expansion. IEEE Trans. Comput. 62 (6), 1127–1140. http://dx.doi.org/10.1109/TC.
2012.59.

Shmoys, D.B., Tardos, E., 1993. An approximation algorithm for the generalized
assignment problem. Math. Program. 62 (1–3), 461–474.

Tariri, G., 2013. The Assignment Problem with Dependent Costs (Ph.D. thesis).
University of Louisville.

Taylor, D.E., Turner, J.S., 2007. Classbench: A packet classification benchmark.
IEEE/ACM Trans. Netw. 15 (3), 499–511. http://dx.doi.org/10.1109/TNET.2007.
893156.

Tian, B., Zhang, X., Zhai, E., Liu, H.H., Ye, Q., Wang, C., Wu, X., Ji, Z., Sang, Y.,
Zhang, M., et al., 2019. Safely and automatically updating in-network acl config-
urations with intent language. In: Proceedings of the ACM Special Interest Group
on Data Communication, pp. 214–226.

Trivedi, H., Tanwar, S., Thakkar, P., 2018. Software defined network-based vehicular
adhoc networks for intelligent transportation system: Recent advances and future
challenges. In: International Conference on Futuristic Trends in Network and
Communication Technologies. Springer, pp. 325–337.
13
Voellmy, A., Wang, J., Yang, Y.R., Ford, B., Hudak, P., 2013. Maple: Simplify-
ing sdn programming using algorithmic policies. In: ACM SIGCOMM Computer
Communication Review, Vol. 43. ACM, pp. 87–98.

Zhao, X., Liu, Y., Wang, L., Zhang, B., 2010. On the aggregatability of router forwarding
tables. In: IEEE INFOCOM.

Yadong Zhou is an Associate Professor of School of Automation Science and Engineer-
ing at Xi’an Jiaotong University. He received his B.S. and Ph.D. degrees in Control
Science and Engineering from Xi’an Jiaotong University, China, in 2004 and 2011,
respectively. He was a postdoctoral researcher at The Chinese University of Hong Kong
in 2014. His research focuses on Data Driven Network Security, Network Science and
its Applications.

Hao Li received his Ph.D. degree in computer science from Xi’an Jiaotong University
in 2016 and is now an associate professor in the School of Computer Science and
Technology at the same university. His research interests are network functions and
programmable network.

Kaiyue Chen received his M.S. degree in computer science from Xi’an Jiaotong
University in 2019 and is now working at Tencent. This work was mainly completed
before joining Tencent. His research interests is networked system.

Tian Pan received his Ph.D. degree in computer science from Tsinghua University in
2015 and is now an assistant professor in Beijing University of Posts and Telecom-
munications. His research interests are software defined networking and high-speed
networks.

Kun Qian received his Ph.D. degree in computer science from Tsinghua University in
2020. His research interests are lossless networks and programmable networks.

Kai Zheng received the M.S. and Ph.D. degrees from Tsinghua University, China, in
2003 and 2006, respectively. His Ph.D. thesis received the first outstanding Ph.D. thesis
award from the Chinese Computer Federation in 2006. He joined Huawei Technologies
Co., Ltd., in 2015, as the Chief Architecture and the Director, Protocol R&D. Before that,
he was a Senior Research Staff Member at IBM Research. His current research interests
include data center networking, protocol intelligence, software defined (transport)
protocols, WAN accelerations, and IoT protocols.

Bin Liu received the M.S. and Ph.D. degrees in computer science and engineering
from Northwestern Polytechnical University, Xi’an, China, in 1988 and 1993, respec-
tively. He is now a Full Professor with the Department of Computer Science and
Technology, Tsinghua University, Beijing, China. He had led his teams to prototype
numerous equipment such as large capacity of ISDN/ATM switches and high speed/core
routers and transferred these prototypes to industries. His current research areas
include high performance switches/routers, network processors, traffic measurement
and management, in-network computing and high speed network security.

Peng Zhang received the Ph.D. degree in computer science from Tsinghua University
in 2013. He is currently an Associate Professor with the School of Computer Science
and Technology, Xi’an Jiaotong University. His research interests include verification,
measurement, privacy, and security in computer networks.

Chengchen Hu received his Ph.D. degree from Tsinghua University, China, in 2008.
He worked in Tsinghua University as an assistant professor (July. 2008–Dec. 2010) and
then later severed in Xi’an Jiaotong university as associated professor (Dec. 2010–Jan.
2016) and professor since 2016, all are with the Department of Computer Science and
Technology. Since the summer of 2017, he has been directing the Xilinx Research Labs
Asia Pacific (XLAP). This work was mainly completed before joining XLAP. His research
interests include network measurement, data center networking, and software defined
networking.

http://refhub.elsevier.com/S1084-8045(21)00296-4/sb15
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb15
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb15
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb15
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb15
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb15
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb15
http://dx.doi.org/10.1109/INFCOM.2013.6566832
http://dx.doi.org/10.1109/INFCOM.2013.6566832
http://dx.doi.org/10.1109/INFCOM.2013.6566832
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb17
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb17
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb17
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb17
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb17
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb19
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb19
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb19
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb19
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb19
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb20
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb20
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb20
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb20
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb20
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb21
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb21
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb21
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb21
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb21
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb22
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb22
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb22
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb22
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb22
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb23
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb23
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb23
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb23
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb23
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb24
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb24
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb24
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb25
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb25
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb25
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb26
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb26
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb26
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb26
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb26
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb27
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb27
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb27
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb28
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb28
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb28
http://arxiv.org/abs/1702.06662
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
http://dx.doi.org/10.1109/INFOCOM.2015.7218497
http://dx.doi.org/10.1145/2829988.2787506
http://doi.acm.org/10.1145/2829988.2787506
http://doi.acm.org/10.1145/2829988.2787506
http://doi.acm.org/10.1145/2829988.2787506
http://dx.doi.org/10.1109/TC.2012.59
http://dx.doi.org/10.1109/TC.2012.59
http://dx.doi.org/10.1109/TC.2012.59
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb34
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb34
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb34
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb35
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb35
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb35
http://dx.doi.org/10.1109/TNET.2007.893156
http://dx.doi.org/10.1109/TNET.2007.893156
http://dx.doi.org/10.1109/TNET.2007.893156
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb38
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb38
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb38
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb38
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb38
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb38
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb38
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb39
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb39
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb39
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb39
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb39
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb40
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb40
http://refhub.elsevier.com/S1084-8045(21)00296-4/sb40

	Raze policy conflicts in SDN
	Introduction
	Transfer policy to raze the conflicts
	Policy conflict problem
	Basic idea of CORA

	Semantics-preserving transfer
	Routing intent
	Endpoint intent

	Finding optimal placement
	Problem formulation
	Heuristics of near-optimal placement searching

	Cooperation of local optimizations
	Tree-based compression
	List-based compression

	Performance evaluation
	Evaluation settings
	Semantics equivalence
	Placement optimization
	Flow table aggregation
	Overhead

	Discussion
	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

