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A Scalable Approach to SDN Control Plane
Management: High Utilization Comes

With Low Latency
Victoria Huang , Gang Chen , Peng Zhang , Hao Li , Chengchen Hu, Tian Pan , and Qiang Fu

Abstract—One major research challenge for Software-Defined
Networking is to properly deploy and efficiently utilize
multiple controllers to improve resource utilization and main-
tain high network performance. While addressing this Controller
Placement Problem (CPP), many existing studies overlooked the
importance and influence of the Controller Scheduling Problem
(CSP) with the central focus on proper distribution of requests
from all switches among all controllers. In this paper, we define
a new Controller Placement and Scheduling Problem (CPSP),
emphasizing on the necessity and importance of tackling both
CPP and CSP simultaneously in a coherent framework. To solve
CPSP, we must seek a combination of solutions to both prob-
lems. Particularly, CSP is addressed based on a given solution to
CPP and a Gradient-Descent-based (GD-based) scheduling algo-
rithm is developed to optimize the probabilistic distribution of
requests among all controllers. Built on the GD-based approach
for controller scheduling, a Clustering-based Genetic Algorithm
with Cooperative Clusters (CGA-CC) is further proposed to
address CPP. In comparison to the majority of heuristic meth-
ods developed in the past, CGA-CC has two unique strengths.
Specifically, it partitions a large network to substantially reduce
the search space of the Genetic Algorithm (GA), resulting in fast
identification of high-quality CPP solutions. Moreover, a greedy
load re-distribution mechanism is developed to handle unexpected
demand variations by dynamically forwarding bursting requests
to neighboring sub-networks. Extensive simulations showed that
our algorithms can significantly outperform several existing
algorithms, including a recently proposed approach called Multi-
controller Selection and Placement Algorithm (MSPA), in terms
of both response time and controller utilization.
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I. INTRODUCTION

AS AN emerging networking paradigm, Software-Defined
Networking (SDN) is notable for extracting the network

control from the distributed data plane to form a logically cen-
tralized control plane [1], [2]. With its support of centralized
network management and rapid deployment of new network
policies, SDN has been widely applied to many real-world
networks (e.g., Google B4 [3]). To enhance network scalabil-
ity and reliability, the control plane is commonly implemented
based on a distributed controller architecture (e.g., ONOS [4]
and Onix [5]) where multiple controllers can be deployed. In
response to the industry requirement, in the recent literature,
many researchers have studied the problem of deploying a
large number of controllers, up to 2500 as reported in [6].

With the wide adoption of distributed controller architec-
tures, the Controller Placement Problem (CPP) becomes a
critical research issue. Although over-provisioning can be con-
sidered as a possible strategy to solve CPP, solely applying
over-provisioning is not economical and effective for the day-
to-day operation of many real networks due to the network
traffic dynamics. As defined by Heller et al. [7], CPP has
the goal to identify both the number and locations of con-
trollers in any given network so as to achieve some important
objectives, such as minimizing propagation latency [7], [8],
[9] and improving resource utilization [10]. For instance, a
suitable number of controllers must be placed in proximity
to demanding switches in accordance with the dynamic fluc-
tuations of traffic workload. This is critical to the overall
network reliability and performance, especially for wide-area
networks [6], [8], [11].

However, even with appropriate placement of controllers,
we may still run into the risk of poor network performance
if the requests cannot be properly distributed among con-
trollers. In this paper, the Controller Scheduling Problem
(CSP) is defined as the problem of optimizing the distri-
bution of requests from all switches among all controllers
so as to achieve certain objectives, such as load balanc-
ing and minimizing request response time. Without solving
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CSP properly, controllers can easily experience high work-
load and, as a result, the response time of a controller can
increase significantly to 15 times of its normal value under
light workload, as reported in [12] and our simulation study
in Section VI-A. Such a controller will become sensitive to
its workload changes. A slight increase in request arrival rate
can easily cause the controller to be overloaded, resulting in
high variation in response time.

Motivated by the above understanding, Yao et al. [13] intro-
duced the capacitated K-center problem where the controller
workload is treated explicitly as a controller placement con-
straint. Several research works following similar ideas can also
be found in the literature [6], [8], [10].

Although considerable efforts have been made to address
CPP, the importance of CSP has always been underestimated
and sometimes ignored [7], [14]. Only a few recent works have
explicitly quantified the impact of CSP on the performance
of the control plane [8], [15]. Most of these studies assume
a fixed switch-controller connection. In other words, the
requests from one switch can only be processed by one
binded controller, restricting the opportunity to properly dis-
tribute workload across all controllers. This restriction among
previous approaches may cause poor network performance and
degrade resource utilization as reported in [16].

From a practical point of view, CPP and CSP should
be simultaneously investigated. In this paper, we present a
new problem definition that explicitly captures the strong
inter-dependencies between CPP and CSP. To differentiate
from the CPP studied before, we name our new problem
the Controller Placement and Scheduling Problem (CPSP).
We assume that each switch can flexibly dispatch requests
to any deployed controllers, providing flexible and effective
controller scheduling. However, because we need to con-
sider controller scheduling at the request level instead of the
switch level, our CSP becomes more complicated. Apart from
that, CPSP highlights the necessity and importance of simul-
taneously addressing both CPP and CSP within the same
framework. Motivated by this understanding, when we tackle
the placement problem, the distribution of switch requests
among controllers is simultaneously optimized in our work.

To precisely measure the influence of CSP on network
performance in a realistic manner, the controller processing
latency is explicitly modeled through a mathematical queuing
model in this paper. Based on the model, CPSP is subse-
quently formulated as a constrained optimization problem with
the aim to improve the control plane utilization while sat-
isfying the constraint on low network response time. CPSP
can be dissected into two strongly coupled sub-problems, i.e.,
CPP and CSP. A full solution to CPSP is hence obtained as a
combination of solutions to both CPP and CSP.

In consideration of the fact that the quality of a solution
to CPP depends on the workload distribution among con-
trollers (i.e., the solution to CSP), CSP was investigated first
in our work. Based on the assumption that a number of con-
trollers have already been deployed in multiple locations in
a network, CSP aims to reduce the average response time
of request processing to a reasonably low level. Rather than
directly optimizing the distribution of every request across

multiple controllers which is unfeasible in large networks,
we choose to optimize the probabilistic distributions for any
switch to dispatch their requests to all available controllers.
In line with this idea, we further develop a Gradient-Descent-
based (GD) scheduling algorithm to achieve a good balance
between scheduling performance and problem scalability.

Driven by our GD-based scheduling algorithm, a new
algorithm called Clustering-based Genetic Algorithm with
Cooperative Clusters (CGA-CC) is further proposed to tackle
CPP. Since CPP is NP-hard [7], [13], we consider Genetic
Algorithm (GA) as a cost-effective method for identify-
ing near-optimal controller placement solutions. When we
apply GA to solving CPP, we need to evaluate the network
performance (in terms of control plane utilization and the
average request response time) with respect to any controller
placement solution. For this purpose, we will use the workload
distribution identified by our GD-based approach. However,
direct application of GA is not ideal for large networks since
the corresponding search space is too large for GA to han-
dle effectively. In order to solve CPP scalably, CGA-CC is
proposed in this study by utilizing a general purpose clus-
tering algorithm to split the network into non-overlapping
sub-networks. Subsequently, GA is applied to tackling CPP
in each sub-network. Within a sub-network, each switch
is forced to use local controllers most of the time. Thus,
long-distance switch-controller communication is prevented.
However, there are special cases when long-distance commu-
nication is deemed helpful. For example, when all controllers
in a sub-network are overwhelmed by unexpected traffic surge,
the only hope for the network to continue function efficiently
is to seek help from remote controllers. Motivated by this
understanding, we develop a greedy algorithm to strategi-
cally forward bursting requests in one sub-network to selected
controllers in neighboring sub-networks. In this way, we can
effectively cope with unexpected demand variations, ensuring
good workload balance across all sub-networks and improving
the robustness of our approach.

To evaluate the effectiveness of our GD-based schedul-
ing algorithm and CGA-CC, simulation studies have been
performed in a range of controller settings and network topolo-
gies provided by Sprint [17], a global Tier 1 Internet Service
Provider (ISP). The results show that, compared with weighted
round-robin and other popular scheduling algorithms, our
GD-based scheduling algorithm can effectively reduce the
response time by up to 37.5% while keeping the control plane
throughput at a high level. Meanwhile CGA-CC significantly
outperforms K-center [7] and the recently-proposed Multi-
controller Selection and Placement Algorithm (MSPA) [8] in
terms of both response time and control plane utilization under
various network settings. Moreover, in comparison to GA,
CGA-CC clearly performs better in large-scale networks by
substantially reducing the computation cost while maintaining
low response time and high control plane utilization.

II. RELATED WORK

When CPP was first proposed [7], it was framed as a
problem of identifying the number and locations of controllers
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without considering CSP, which can easily overload controllers
due to sudden increases of network traffic. Aimed at preventing
controllers from being overloaded, controller load balancing
has always been a popular topic in the research community.
For example, a number of works [12], [16], [18] have been
proposed lately to improve controller load-balancing whenever
uneven load distributions occur.

Recent literature clearly acknowledges the importance of
CSP [8], [10], [11], [13], [19]. For example, Yao et al. [13]
addressed the CPP while taking the controller capacity as a
constraint. However, most of the previous approaches for solv-
ing CPP relied on simple solutions to CSP. In Yao et al.’s
work [13], they required that requests from switches never
exceed the capacity of their associated controllers with-
out considering the workload distribution among controllers.
Therefore, some controllers are more vulnerable to poor uti-
lization due to the underloaded issue. In comparison, we aim
to make the best use of controllers by maximizing the con-
troller utilization while maintaining low network response
time. Although CPP and CSP have been jointly addressed
in [20], the authors only focused on the propagation latency
between controllers and switches while the processing latency
was completely neglected despite of its practical impor-
tance. To address this limitation, the processing latency is
explicitly modeled in our work through a queuing model.
Follow-up studies [11], [19] subsequently argued that the
workload among controllers should always be balanced. This
idea is useful when all controllers are evenly deployed in the
network with identical capacity. However, in a network where
controllers with different capacities are located unevenly, dis-
patching more requests to nearby low-capacity controllers
without overloading them can be an ideal option.

Moreover, most of the existing approaches for CPP are
designed for binding-based controller architectures (e.g.,
ONOS [4] and Onix [5]) that require every switch to always
contact its binded controller [16]. One limitation of binding-
based architectures is the difficulty for the control plane
to quickly adapt to traffic load variations. Although it can
be alleviated by the switch migration mechanism [18] to
re-associate switches from overloaded controllers to under-
utilized ones, the migration itself is complex and time-
consuming. Furthermore, its balancing granularity only limits
to the switch level.

To tackle the above issues, more sophisticated approaches
have been proposed recently. Our previous work [15] inves-
tigated CPP together with CSP, aiming to simultaneously
optimize the controller utilization and response time with
the help of a GA-GD-combined algorithm. However, the
minimization of response time is not always necessary in
practice (e.g., the benefits of optimizing the response time
is negligible when it is sufficiently low). Furthermore, the
direct application of GA cannot effectively handle CPP in large
networks.

Recently, a Multi-controller Selection and Placement
Algorithm (MSPA) [8] was proposed to address CSP together
with CPP. Specifically, to minimize the maximum end-to-end
latency between controllers and switches, MSPA partitioned
the full network into a given number of sub-networks. To make

the request response time model accurate and realistic, MSPA
considered the queuing latency in controllers which is cap-
tured by an M/M/c queuing model. In particular, a centralized
scheduler which can be easily implemented as Virtual Network
Function (VNF) components is established for distributing
requests received from any switch to arbitrary controllers
within a sub-network, which can effectively avoid the switch
migration issue. In their work, the queuing model assumes that
within a sub-network, all requests must go through the sched-
uler before reaching any controllers. Apparently, the location
of the scheduler must be carefully selected, which presents
another challenge for CPP. Furthermore, only one single queue
is maintained by the scheduler and the scheduler makes dis-
patching decisions solely based on the controller workload
without considering propagation latency, potentially increas-
ing the response time if the request is forwarded to a remote
controller. Experimental studies of MSPA will be conducted
in Section VI-F.

Despite the limitations, MSPA sheds new light on our
research. In this paper, we adopt a recently proposed multi-
controller architecture [16] where multiple lightweight sched-
ulers can be easily deployed in the network. Meanwhile each
controller manages its own processing queue, greatly simpli-
fying the operation of distributed schedulers. In Section VI-F,
empirical comparisons with MSPA will be performed to
further demonstrate the potential advantage of our algorithm.

III. PROBLEM FORMULATION

In this section, we will present a model of the network
environment and formulate CPSP.

A. Network Environment

In this paper, we considered a large enterprise global com-
munication backbone network G = <V, E, D> where V is
a set of M nodes and E is a set of bidirectional physical
links between nodes. The distance function D : V × V → IR
defines the one-way propagation latency between any pair of
nodes. Each v ∈ V is a switching node (one switch or a
switch group) and is responsible for handling all backbone
related communication requests generated by local switches.
Requests generated by v follow a Poisson distribution at the
rate of λv .1

In addition to the data plane, controllers in the control plane
can be deployed at any node in the network [7], [8], [13].
Depending on where a controller is deployed, the controller
can have varied capacities. This is because controllers are
not always supported by the same type of server machines
at different locations [21]. We hence use αv to measure the
maximum number of requests processable by the controller
located at node v within one second. A full solution to CPP
can subsequently be represented as a binary vector x where

1We assume that requests generated by every local switch follow Poisson
distributions. Mathematically, when requests from multiple independent
Poisson sources are combined, the aggregated requests to be handled by each
node in the backbone network still follow Poisson distribution.
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Fig. 1. Request processing procedure.

each element of x is denoted as

xv =

{
1, if v is selected
0, otherwise

Therefore, the number of deployed controllers is N = ‖x‖1.
Given x, the set of N deployed controllers can be easily
identified and denoted as Ṽ .

Unlike [7], [11], [13], we assume that each switch can
flexibly dispatch requests to any deployed controllers with
the help of a locally installed scheduler as shown in Fig. 1.
This assumption can be easily supported as an extension of
existing distributed controller architectures (e.g., ONOS and
Onix) as demonstrated by the prototype network developed
in [16]. Since the network we considered is a large enterprise
global communication backbone, frequent changes in network
topology are unlikely to happen. Apart from that, since traffic
generated by each node is aggregated from local networking
devices, the traffic variation is supposed to be smooth. Thus,
similar to many existing studies [22], [23], weak/eventual
consistency is sufficient in our work.

Note that introducing schedulers into existing SDN archi-
tectures will not affect the clear logic distinction between the
control and data planes. Specifically, from an architectural
and operational point of view, the newly-introduced sched-
ulers are transparent to both controllers and switches because
no switch modification is required. Moreover, schedulers will
make request dispatching decisions completely independently
and in a fully decentralized manner. Therefore, they incur low
communication and computation cost and can be easily imple-
mented as light-weight VNF components, hence guaranteeing
the scalability of the scheduling plane.

Although we assume that the schedulers are deployed on
the data plane, we did not rule out the possibility of placing
them in other network locations. In fact, the use of VNF gives
ISPs the flexibility about where the schedulers can/should be
placed based on their understanding of the network dynamics.
Such flexibility is supported by both MSPA and the newly
proposed approach in this paper.

After processing a request, a response will be sent from the
controller back to the switch. The time interval measured by
the switch between sending a request and receiving a response
is defined as the request response time.

To measure the performance of any solution x to CPP, we
must find the corresponding solution to CSP as well. Given
the job of scheduling R requests within a specific time period,
the complexity of CSP is O(NR) and is intractable in prac-
tice. To solve the problem scalably and efficiently, we decide

to distribute requests to every controller according to some
pre-calculated probabilities. In this way, we can dramatically
reduce the problem complexity from O(NR) to O(MN ).

Let P be an M × N matrix which is always guaranteed to
exist. Pv ,v ′ is the probability for switch v to dispatch any new
requests to controller at node v ′ for processing. As illustrated
in Fig. 1, guided by P, we can highly efficiently distribute
requests from any switches to any controllers, achieving real-
time requirements for fast request processing. To ensure P is
well-defined, the sum of each row of P must equal 1:

∑
v ′∈ ˜V

Pv ,v ′ = 1, ∀v ∈ V

Note that our CSP provides the flexibility and flow-level gran-
ularity of controller scheduling. It is also compatible with
existing binding-based network architectures. This is easily
realized with additional constraints on P to force switches to
send all their requests to binded controllers. We did not explore
this scenario for the sake of high scheduling flexibility and fine
scheduling granularity.

B. Problem Formulation

As showed in Fig. 1, we can model each controller as an
independent M/M/1 queue [24]. According to Little’s Law, the
long-term average number of customers in a stationary system
can be calculated as the product of the arrival rate and the
average customer waiting time. On the other hand, the mean
queue length in a stationary system equals to the arrival rate
divided by the difference between the processing rate and the
arrival rate. Then the average waiting time can be calculated
as the inverse of the difference between the processing rate
and the arrival rate [25]. Similarly, considering each request
as a customer, the average processing latency of the controller
at node v ′ can be calculated

τv ′ =
1

αv ′ −∑
v∈V λvPv ,v ′

Note that in an SDN network, events can be divided into
topology-altered and topology-unaltered events. To maintain
a global synchronized view of the full network topology,
only topology-altered events (e.g., switches go up and down)
should be synchronized among controllers. As we mentioned
in Section III-A, frequent changes in network topology are
unlikely to happen [26], [27]. Thus, the number of topology-
related events is limited. Nevertheless, to measure the syn-
chronization impact on the network, the worst case scenario
is considered here, i.e., each controller directly communicates
with all other controllers regularly for synchronization and
each time it takes up to N rounds of communications for all
controllers to synchronize their local views. Thus, the syn-
chronization cost for the worst case is proportional to N 2.
Specifically, we model the synchronization cost Fsyn for each
controller as the product of N 2 and the synchronization fac-
tor γ that captures the number of topology-altered events
generated within every simulated second of the Sprint network.

Fsyn = γN 2 (1)
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Note that the synchronization cost can be considered as part
of the controller’s workload. Hence the controller processing
latency can be refined to become:

τv ′ =
1

αv ′ −∑
v∈V λvPv ,v ′ − Fsyn

The response time generally consists of five components:
transmission latency, propagation latency, switch processing
latency, scheduler processing latency, and controller process-
ing latency. In a high-speed network (e.g., a backbone network
considered in this paper), the transmission latency is trivial.
Apart from that, with recent advancement of hardware technol-
ogy, high-performance switches have become prevalent (e.g.,
NoviSwitch and EZchip), resulting in negligible switch pro-
cessing latency [28], resulting in negligible switch processing
latency. Note that schedulers are solely responsible for request
dispatching according to the pre-determined probability distri-
bution, incurring negligible computation overhead (simply toss
a coin for every request to be dispatched). Nevertheless, to
make our problem formulation accurate and realistic, we use
ε to jointly capture the transmission latency, switch processing
latency and scheduler processing latency.

Thus, the average request response time of the controller
at node v ′ is calculated by averaging the request response
time over all requests sent by all switches to the controller.
The response time of each request includes the controller
processing latency, the round-trip propagation latency, and ε:

tv ′ = τv ′ + 2 ·
∑

v∈VD
(
v , v ′

)
λvPv ,v ′∑

v∈V λvPv ,v ′
+ ε (2)

The average response time of the network is calculated by
averaging the response time of all requests processed by all
controllers:

tavg =

∑
v ′∈ ˜V

tv ′
(∑

v∈V λvPv ,v ′
)

∑
v∈V λv

(3)

Meanwhile, given a solution x to CPP, the control plane uti-
lization is calculated as the proportion of controller capacities
used for request processing in the control plane:

u =

∑
v∈V λv∑
v ′∈ ˜V

αv ′
(4)

In consideration of realistic requirements from network
operators [6], [29], we formulate our problem with the main
goal of minimizing the network operation cost, which is
realized through maximizing the control plane utilization.
Accordingly, CPSP aims to find the controller placement x and
workload distribution P so as to maximize u without dete-
riorating the network performance measured by the average
response time tavg in (3). This requirement gives rise to the
constrained optimization problem below:

max
x ,P

u(x ) (5)

s.t. tavg (x ,P) ≤ tth (6)∑
v∈V

λvPv ,v ′ ≤ β
(
αv ′ − Fsyn

)
, ∀v ′ ∈ Ṽ (7)

∑
v ′∈ ˜V

Pv ,v ′ = 1, ∀v ∈ V (8)

0 ≤ Pv ,v ′ ≤ 1, ∀v ∈ V , ∀v ′ ∈ Ṽ (9)

Since the improvement of control plane utilization should
not come at the expense of network performance, (6) guar-
antees that response time should remain below a threshold
tth . In particular, the latency value for a network depends
on several factors, such as the network geographic cover-
age, access speeds, and the class of service associated with
the data [30]. According to [31], Sprint’s committed network
round trip backbone delay is 55 ms within North America
while the delay increases up to 105 ms within Asia. (7)
ensures that the workload of each controller never exceeds its
capacity. Moreover, a proportion of capacity must be reserved
for each controller, as determined by a decay factor β, in
order to withstand unexpected traffic bursts. For example, in
a network where controller workload varies significantly and
quickly, β should be set to a relatively high level. Thus, β
enables network operators to impose high-level control over
the long-term network operation, as required by most produc-
tion networks [24]. Finally, both (8) and (9) guarantee that P
is well-defined. Note that no assumptions about the type of
networks are made in the problem formulation to ensure its
generality.

Our formulation of CPSP (5)-(9) produces two sub-
problems. The first one is to identify the number and locations
of controllers (i.e., CPP) while the second one requires us
to determine the workload distribution among deployed con-
trollers (i.e., CSP). Accordingly, our solution to CPSP is made
up of two inter-dependent parts: one for CPP and the other one
for CSP. In consideration of the fact that the quality of a solu-
tion to CPP depends on the corresponding solution to CSP, we
will first investigate different approaches for solving CSP. A
study on various methods for solving CPP will be presented
subsequently.

IV. CONTROLLER SCHEDULING ALGORITHMS

In this section, we assume that a solution x to CPP is given
in advance. In other words, the CSP is solved based on all
deployed controllers. Our task for CSP is to effectively sched-
ule the requests generated by all switches among the deployed
controllers to reduce the response time so as to satisfy (6).
Accordingly, CSP can be formulated as:

solve
P

tavg (P) ≤ tth

s.t. (7), (8), (9) (10)

In order to achieve low average request response time, a
switch will send most of its requests to nearest controllers
rather than remote controllers as verified by our simulation
studies in Section VI-B. To solve (10), several approaches
will be studied, ranging from simple heuristics to a newly
proposed approach that periodically calculates the suitable dis-
tribution probability P through a gradient-descent-based (GD)
technique. We will also analyze the pros and cons of adopting
each approach.
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A. Weighted Round-Robin Scheduling

Speaking of heuristics, random and round-robin are two
widely used scheduling methods. However, they are expected
to only perform well when all controllers have identical capac-
ities and are located close to each other, which may not
always be true in reality. Thus, Weighted Round-Robin (WRR)
scheduling is considered to be more flexible, since it can han-
dle imbalanced controller workload and different controller
capacities more effectively.

Similar to many existing research works [32], Pv ,v ′ can be
made proportional to the controller capacity, as shown below:

Pv ,v ′ ∝ (
αv ′ − Fsyn

)
, ∀v ∈ V (11)

Such a Capacity-based WRR (CWRR) can effectively han-
dle the situation when controllers differ in capacities but have
similar propagation latencies. However, scheduling requests
solely based on capacity information may not be sufficient,
especially in a large-scale network where propagation latency
contributes significantly to response time. This understanding
is further verified by our simulation studies in Section VI-B.

Motivated by this, Pv ,v ′ can also be determined as:

Pv ,v ′ ∝ αv ′ − Fsyn

D(v , v ′) (12)

This technique is utilized by the Capacity-Delay-based WRR
(CDWRR). With CDWRR, the preference of choosing a con-
troller depends not only on its processing capacity but also on
its propagation latency with a switch. Thus, a switch has the
tendency to send its requests to powerful and close controllers
so as to reduce the response time.

It should be noted that Pv ,v ′ can be calculated indepen-
dently by each switch. Since the propagation latency varies
for different pairs of controllers and switches, each switch
dispatches its requests to the same controller with different
probabilities.

B. Gradient-Descent-Based Scheduling

According to (10), tavg can be reduced through adjust-
ing P. To further handle the constraints (7)-(9), we adopt
the most commonly used penalty function method [33].
Specifically, (10) is transformed into a constraint-free
optimization problem by introducing the term in (13) to
penalize any constraint violation [33].

Fcon(P) = μ1
∑
v ′∈ ˜V

min

{
0, β

(
αv ′ − Fsyn

)− ∑
v∈V

λvPv ,v ′

}

+ μ2
∑
v∈V

∣∣∣∣∣∣1−
∑
v ′∈ ˜V

Pv ,v ′

∣∣∣∣∣∣
+ μ3

∑
v∈V

∑
v ′∈ ˜V

min
{
0,Pv ,v ′

}
(13)

where μ1, μ2, and μ3 are penalty parameters.
Consequently, (10) becomes:

min
P

Fcsp(P) = min
P
{tavg (P) + Fcon (P)}

To solve this optimization problem, we develop a GD-
based scheduling algorithm. In each iteration, the gradient of
Fcsp(P) with respect to P is calculated to guide the search
of P. Instead of updating P using a constant learning rate l, l
is gradually reduced from a high value lH to a low value lL
based on the following equation for the algorithm to converge
reliably:

l = lH −
(lH − lL)

NI
· i

where NI is the maximum number of iterations and i repre-
sents the current number of iterations. We can update P as:

Pi+1 ← Pi −
∂Fcsp

∂P
· l (14)

so that the optimization process can gradually shift from
constraint satisfaction to tavg (P) minimization.

The whole process repeats until the stopping criterion (i.e.,
tavg (P) ≤ tth ) is reached. It is important to note that the
algorithm can be executed efficiently in practice with the help
of advanced learning/optimization tools such as Theano or
TensorFlow. During our simulation, we noticed that our algo-
rithm converges quickly (i.e., around one second). With the
support of high-performance computers in industry, the con-
vergence time can be further reduced. Moreover, one second of
delay is only required when all the controllers currently being
used by a switch become unavailable at the same time, which
is unlikely to happen. Even such a rare situation happens, the
delay will only affect new flows. Any ongoing flows will not
experience the delay. Hence, in terms of user experience, end
users may not even experience the one second of delay at all,
in addition to being acceptably short. Thus, the GD running
time can be safely ignored in practice.

Once P that solves (10) is found, it will guide request
distribution for all switches.

V. CONTROLLER PLACEMENT ALGORITHMS

Facilitated by a method for solving CSP, we can now
address CPP for the purpose of improving controller uti-
lization. As we explained previously, it is unfeasible to find
the optimal solution to CPP in a large network. Existing
approaches attempted to simplify CPP [7], [13] by assuming
that either the number of required controllers is pre-determined
or all controllers have identical capacities so that the required
controller number can be easily calculated. In this work, we
instead study a more realistic scenario where the number of
controllers is unknown in advance and controllers with vary-
ing capacities can be deployed in the network. To address this
CPP, different approaches will be explored.

A. K-Center

K-center is currently one of the most well-known CPP
strategies [7] which aims to deploy k controllers so as to min-
imize the worst-case propagation latency from any switch to
its closest controller. However, determining a suitable value
for k is a challenging task. In this work, we introduce an extra
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constraint to guarantee that the total capacity of selected con-
trollers discounted by β in (7) must be larger than the total
request arrival rate.

This modified K-center approach will be further compared
with other methods in Sections VI-C and VI-D. Obviously
K-center does not explicitly handle the CSP. Given two con-
trollers with similar propagation latencies but significantly
different capacities, K-center will choose the controller with
less propagation latency despite its low capacity, resulting
in increased average network response time. Furthermore,
K-center overlooks the control plane utilization.

B. Genetic Algorithm

Recently, Evolutionary Computation (EC) techniques have
been widely exploited to effectively solve various NP-hard
problems [34], [35], [36]. The promising results reported
in the literature inspired us to tackle CPP (5) through an
EC method. Among all EC techniques, we prefer Genetic
Algorithm (GA) for two main reasons. (1) The solution x
to CPP in the form of a fixed-length binary array can be
easily implemented by standard chromosomes in GA. (2)
Many previous research clearly demonstrated that GA has been
widely exploited to effectively solve constrained optimization
problems [34], [35], [36]. However, existing studies [34], [35],
[36] developed memetic algorithms which combine evolution-
ary algorithm (e.g., GA) for new solution exploration and local
search (e.g., greedy strategy) for existing solution improve-
ment. Different from these works, GD in our algorithm is
purely for fitness evaluation instead of improving any existing
solutions.

In this study, we follow the GA framework introduced
in [37]. We first transform the CPP objective (5)-(9) into a
constraint-free optimization problem:

max
x ,P

Fcpp(x ) = max
x ,P

{
u(x )− F̂con (x ,P)

}
(15)

where

F̂con (x ,P) = Fcon (P) + μ4 min{0, tth − tavg (P)}
In line with the CPP objective in (15), the fitness value of

any solution x can be calculated as Fcpp(x ). Given a candi-
date solution x to CPP, the control plane utilization u(x) can be
directly obtained via (4). Additionally, the solution P to (10)
will be obtained from the GD-based scheduling algorithm.
Consequently, Fcpp(x ) can be easily calculated.

After evaluating the fitness of all solutions in the current
population, a new population is created by performing genetic
operators (e.g., crossover and mutation) on the current pop-
ulation. The whole process repeats over multiple generations
until the maximum number of generations is reached. In terms
of scalability, the fitness evaluation of all candidate solutions
in a GA population can be performed in parallel.

C. Clustering-Based Genetic Algorithm

In order to effectively solve CPP in large networks, both
the population size and the generation number in GA need
to be extremely large, significantly prolonging the algorithm

running time. To reduce the complexity of the search space
in CPP, we adopt the famous divide-and-conquer strategy [38]
and develop the Clustering-based Genetic Algorithm (CGA) in
this paper. In particular, network partitioning is first applied to
group network nodes (switches) into k sub-networks accord-
ing to their mutual distance. Afterwards, GA is utilized to
solve CPP in each sub-network. This approach allows us to
effectively control the maximum propagation latency within
each sub-network. Furthermore, the search space complexity
of GA can be significantly reduced. For example, in a network
with M nodes, the complexity of the search space is O(2M ).
After network partitioning, each sub-network has on average
M
k nodes. In this case, the complexity of the search space

is reduced to O(k2M
k ). With network partitioning, no sched-

ulers will be overwhelmed by requests generated within each
sub-network that they belong to.

Following this idea, the goal of network partitioning is to
divide a network G = < V, E, D> into k non-overlapping
sub-networks Gi =< Vi ,Ei ,D > (i = 1, . . . , k) so that the
intra-sub-network latency can be minimized:

min
G1,...,Gk

k∑
i=1

∑
v∈Vi

D(v , ci ) (16)

s.t.

k⋃
i=1

Vi = V , ∀i (17)

Vi

⋂
Vj = φ, ∀i 	= j (18)

where ci ∈ C is the center of sub-network Gi . (17) and (18)
ensure complete network partitioning. After partitioning, the
requests generated within a sub-network will be processed
most of the time by controllers deployed in the same
sub-network.

Inspired by the previous research [8], the Clustering-based
Network Partition Algorithm (CNPA) is adopted in this paper
to tackle the network partitioning problem. CNPA first ini-
tializes C as an empty set. In other words, CNPA considers
the whole network as a sub-network and starts by choosing a
node with minimal total propagation latency given in (19) as
the initial center c which will be added into C:

c = argmin
v∈Vi

∑
v ′∈Vi

D
(
v , v ′

)
(19)

Afterwards, the node that has the highest propagation latency
with existing centers C is chosen from remaining nodes as a
new center c′ and subsequently added into C.

c′ = argmax
v∈V

∑
c∈C

D(v , c) (20)

After determining the first two centers according
to (19) and (20) respectively, other network nodes will
be grouped into two sub-networks based on their respective
propagation latency from the two centers. Note that after all
nodes are assigned, the centers will be recalculated based
on (19) and updated in C. After that, if the number of
sub-networks is less than k, a new center will be selected
using (20). The whole process repeats until k sub-networks
have been obtained. The effectiveness of CNPA has been
widely demonstrated [39].
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The whole process of CGA is summarized as follows:
Specifically, CGA uses CNPA to partition the network into k
sub-networks. For each sub-network Gi , GA will be utilized
to find the CPP solution xi . Because xi for each sub-network
is independent with each other, multiple GA runs can be
performed in parallel, ensuring the overall scalability of CGA.

Note that a controller may miss the most up-to-date global
network information because of weak consistency. However,
it does not mean that the local information maintained by
each controller is not useful. Especially with the help of
network partitioning, a controller can easily obtain the latest
information about its sub-network which is sufficient to make
routing decisions within its sub-network.

D. Clustering-Based Genetic Algorithm With Cooperative
Clusters

Despite of CGA’s benefits of preventing long-distance
switch-controller communication, when the traffic within a
sub-network suddenly and substantially increases, existing
controllers in the sub-network cannot handle the extra work-
load, which may significantly slow down the control plane.
Hence, in the event of high workload in a sub-network, it is
a common practice to seek help from remote controllers.

Specifically to cope with the traffic burst, we can adopt
either a proactive or reactive approach. For the proactive
approach, a fine-tuned sophisticated traffic prediction model
is required to accurately predict the future traffic trend based
on historical data. Apart from that, the proactive approach
requires us to develop complicated techniques for planning and
uncertainty handling. This is beyond the scope of the controller
placement problem in this work. Instead, a simple-yet-effective
reactive offloading scheme is developed here.

CGA with Cooperative Clusters (CGA-CC) extends CGA
to facilitate workload sharing between adjacent sub-networks.
For this purpose, we must decide which adjacent controllers
should process burst requests. Driven by this requirement,
a greedy but efficient approach with two steps have been
developed. The first step is to identify the controller candidates
to handle the extra requests. In this paper, we take advantage of
the piggybacking mechanism. Inspired by [40], a no-forward
flag plus extra bits for workload information can be piggy-
backed in the Type of Service (ToS) field (or option field) in
the IP header of every controller response packet. In this way,
candidate controllers can be identified effortlessly.

The second step of our greedy approach is controller selec-
tion. We first rank the candidate controllers based on their
latency to the overloaded sub-network Gj , which is defined
as the total propagation latency between the controller node
and all nodes in Gj . Controllers with low latency will be added
into the deployed controller set of Gj until the total controller
capacity matches the processing demand of bursting requests.

Upon obtaining the controller set, we proceed to distribute
the requests among chosen controllers by solving the corre-
sponding CSP through the GD-based scheduling algorithm. To
avoid overloading any controllers, we only use the remaining
capacities of these controllers as the input to the scheduling
algorithm.

Compared to a proactive approach, our approach does not
rely on any sophisticated prediction model and the overall
workload-offloading process is simple and effective. It also
provides operational flexibility by allowing the network oper-
ators to control the threshold for kicking start the workload-
offloading process.

Note that in rare cases when controllers in neighboring
sub-networks must lend a helping hand to the overloaded sub-
network, those helping controllers can receive updates from
the sub-network under question more frequently than usual.
Due to this reason, CGA-CC eliminates the necessity for
strong network-wide controller consistency and incurs no extra
synchronization cost.

VI. EVALUATION

Given that no physical WAN (the central focus of this
paper) testbed is currently accessible to us, simulation is
adopted as the main evaluation tool due to its flexibility, fea-
sibility, and validity. This section presents the performance
evaluation of our proposed algorithms. In particular, after
introducing the simulation setting, the effectiveness of the GD-
based scheduling approach is demonstrated in Section VI-B
and the performance of GA, CGA and CGA-CC is shown in
Sections VI-C–VI-E. We also compare CGA-CC with MSPA
in Section VI-F. The simulation setup2 and our algorithm
implementation3 have been uploaded to Github.

A. Evaluation Setup

Simulator: The simulation starts with an idle network (all
controllers are idle and no packets are transmitted in the
network). Immediately after the simulation starts, the requests
are generated randomly based on a pre-determined fixed
request arrival rate for each network node. The simulation
runs for 240 seconds. We observed in our simulation study
that after 10 seconds of simulation, the throughput of the
network reaches a stable level. Thus, 240 seconds is consid-
ered to be sufficiently long for the network to enter and stay
in a stationary condition. Whenever a packet is received at
the data plane, the following packet dispatching flow is simu-
lated: (1) The switch forwards the requests to its scheduler.
Each request is associated with a timestamp Tgnr indicat-
ing its generation time from the switch. (2) Upon receiving
requests, the scheduler dispatches them to controllers cho-
sen by the scheduling algorithm. (3) The controller sends a
response back to the scheduler after it finishes processing a
request. (4) The scheduler directs the responses back to the
switch. (5) At time Trcv when a response is received by the
switch, the response time of the request under question will
be calculated as Trcv − Tgnr . The whole simulation keeps
running until the simulation time reaches 240 seconds. More
details can be found in our simulation code.2

Topology: All simulations will be conducted using the
topology information provided by Sprint [17] including the
propagation latency, network links, and the numbers of switch

2https://github.com/VictoriaWong/sdn-simulator
3https://github.com/VictoriaWong/SDN-Controller-Placement
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nodes. The sizes of the networks are 14 nodes with 23 links
(Asia Sprint network), 15 nodes with 22 links (Europe Sprint
network), and 82 nodes with 1056 links (i.e., global Sprint
network) respectively, which are comparable to the widely
adopted Internet2 OS3E topology (34 nodes with 42 links)
in the existing literature [7].

Each node is responsible for handling all backbone
related communication requests generated by local switches.
Furthermore, a broad spectrum of request arrival rates has been
considered in our simulation study. For example, to demon-
strate the performance of different CPP approaches, the request
arrival rate ranges from 220 k pkt/s to 620 k pkt/s in the Asia
Sprint Network, see Fig. 4. The propagation latency between
any two nodes is calculated by Dijkstra’s algorithm [41]. A
set of heterogeneous controllers with capacities ranging from
60 k to 120 k pkt/s is considered.

Apart from that, the control plane traffic consists of (C1) the
inter-controller traffic and (C2) the switch-controller traffic. As
pointed out by existing studies [13], C2 is generally regarded
as the most significant part of the control plane workload.
Following our problem formulation in Section III, the impact
of C2 is taken care of by the synchronization cost in (1).

Parameter setting: During our simulation, we tried different
parameter settings for both GA and GD. For example, the
population size for GA is tested from 10 times to 50 times
of the total number of nodes in the network. The maximum
generation number for GA is tested from 100 to 500. The
number of iterations run by GD is tested from 10 to 50. But we
did not notice significant performance differences. The results
reported in this section are based on the following setting:
GA uses a population size of 10 times of the total number
of network nodes and evolves for up to 100 generations. For
each generation, the mutation and crossover rates are 0.1 and
1 respectively. Roulette wheel selection with elitism is used
for selection. For CSP, GD is performed for 10 iterations, the
decay factor β is set to 0.85, and the synchronization factor γ
is set to 0.1 following existing studies [24].

Trace: Note that using traffic trace datasets is not flexible
because they were captured at a certain arrival rate while dif-
ferent arrival rates are required to evaluate the performance of
our algorithms. To address this issue, a network traffic gener-
ator was implemented in this work to simulate the real world
traffic as described in Section III. To justify the performance of
our traffic generator, we compared the network performances
obtained by using the traffic it generated and the real-world
network traces [42].

As demonstrated in Fig. 2, the corresponding throughput
achieved is indistinguishable regardless of whether real-world
or artificial traffic is used. In addition, their response time is
indistinguishable when the control plane utilization is below
96%. After that, significant difference can be spotted. In par-
ticular, when the arrival rate reaches 270 k pkt/s, the response
time of real-world traffic shows larger fluctuation (400 ms -
600 ms) compared to simulated traffic (100 ms - 150 ms).
Note that our problem formulation presented in Section III-B
carefully preserves a small portion of capacity on each con-
troller as determined by β. Thus, as long as a controller’s
workload does not exceed a certain threshold, we can confirm

Fig. 2. Performance comparison with real-world traffic and traffic generated
by Poisson distribution.

TABLE I
AVERAGE RESPONSE TIME (MS) IN EUROPE AND ASIA SPRINT NETWORK

that any performance deviation introduced by the use of our
traffic generator in the simulation studies is marginal.

B. Effectiveness of GD for CSP

We first compare the performance of our proposed GD-
based approach with CWRR and CDWRR. The simulations
are conducted on two networks (i.e., Europe and Asia Sprint
Networks) with different geographic coverage. In particular,
the largest one-way propagation latency in Europe is 59 ms
while it is 202 ms in Asia. Thus, the advantage of using GD
is expected to be more significant in Asia. For both networks,
3 controllers with capacities 60 k, 90 k, and 120 k pkt/s
respectively are deployed using K-center.

1) Overall Network Performance: From Fig. 3 and Table I,
we can clearly notice that GD achieved the lowest response
time and highest throughput on both topologies.

Specifically, Table I shows that in Europe network, the
response time of both GD and CDWRR slightly increases
from 25 ms to 26 ms in accordance with increasing incom-
ing traffic when the request arrival rate is less than 190 k
pkt/s due to low controller utilization. We also notice that
the response time of both GD and CDWRR is 26% lower
than CWRR, which agrees well with our expectation that dis-
tributing requests solely relying on the controller capacities is
inappropriate.

Meanwhile, the response time of CDWRR soars up as the
request arrival rate reaches 230 k pkt/s. In comparison, the
sharp increase in the response time of both GD and CWRR
does not occur until the arrival rate exceeds 270 k pkt/s.
Obviously, the sudden growth in response time is due to the
heavily loaded controllers. Note that the amount of requests
sent to a controller in CWRR is only proportional to its capac-
ity, which effectively prevents overloading any controller at an
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Fig. 3. Performance comparison of different scheduling algorithms for solving the controller scheduling problem in two different networks. (a) and (c) show
the overall network performance in Europe and Asia Sprint Network respectively. (b) and (d) are the network performance of one controller in Europe and
Asia Sprint Network respectively.

early stage. GD guarantees that all controllers are not over-
loaded by fulfilling the constraint in (7) when solving the
optimization problem. Thus, the response time of both GD and
CWRR remains low until the arrival rate increases to 270 k
pkt/s. On the other hand, when CDWRR is used, more requests
will be sent to nearby controllers, quickly overloading them.

2) Individual Controller Performance: To verify whether
the sharp increase in the response time of CDWRR comes
from overloading a controller, we measure the average
response time and throughput of the controller with low capac-
ity of 60 k pkt/s. It can be seen from Fig. 3(b) that at
the arrival rate of 230 k pkt/s, the throughput of CDWRR
almost reaches 60 k pkt/s, implying that the controller is fully-
loaded. Simultaneously, a dramatical growth in response time
of CDWRR can also be noticed from Table I. Comparatively,
only moderate increase in response time has been witnessed
for both GD and CWRR in Table I. Similar results have
also been obtained in the Asia Sprint Network as depicted
in Fig. 3(c) and 3(d).

3) Asia vs. Europe Sprint Network: It is important to note
that the gap in response time between GD and CWRR in
Asia (30 ms in Table I) is significantly larger than the gap
in Europe (9 ms) as we expected. Particularly, with the help
of GD, the response time in Asia is successfully reduced
from 87 ms to less than 60 ms (37.5% lower). In compari-
son, only 26% reduction in response time is achieved by GD
in Europe. This is because the weights (11) used in CWRR
only consider the controller capacity. Thus, CWRR is more
suitable in a network with similar or negligible propagation
latency. However, in a large-scale network (e.g., Asia), the
disadvantage of only considering controller capacity becomes
significant. Alternatively, GD can jointly and systematically
consider multiple factors including response time, propaga-
tion latency, and controller capacity. This explains why GD
can solve CSP with the highest effectiveness. Due to GD’s
clear performance advantage over other scheduling methods,
for the remaining simulation studies, we will consistently use
GD to schedule request processing in the control plane.

C. Effectiveness of GA for CPP

To demonstrate the effectiveness of GA, we conduct a set of
simulations on Asia Sprint Network using 4 different controller
settings as shown in Table II. The controller capacities are set
to either 60 k or 90 k pkt/s in each setting. To ease the discus-
sion, we start with all controllers with the same capacities of

TABLE II
CONTROLLER SETTINGS IN ASIA AND GLOBAL NETWORKS

TABLE III
CONTROL PLANE AVERAGE RESPONSE TIME (MS) WITH DIFFERENT

CONTROLLER SETTINGS AND REQUEST ARRIVAL

RATES IN ASIA SPRINT NETWORK

60 k pkt/s as shown in setting 1 in Table II. Then we gradually
upgrade some controllers to larger capacities (90 k pkt/s). In
order to evenly allocate controllers with different capacities,
the network is divided into 4 regions enclosed in every red
circle drawn in Fig. 5. One controller within each region has
the upgraded capacity of 90 k pkt/s in setting 2. Sequentially,
two controllers within each region are chosen and upgraded
in setting 3. Finally all controllers are upgraded in setting 4.

We compare the throughput achieved by K-center and GA
and the results show no significant difference regardless of
the controller settings and arrival rates. For the remaining
simulation studies, if the throughputs achieved by different
placement algorithms are identical, the corresponding results
will be omitted.

1) GA on Settings With Identical Controllers: We measure
the control plane utilization and response time in network set-
tings where all controllers have identical capacities (setting 1
and setting 4 in Table II). In Fig. 4(a) and Fig. 4(d), both
GA and K-center achieve the same control plane utilization.
Nevertheless, GA outperforms K-center in terms of response
time as shown in Table III.

In general, given the same traffic demand (i.e., request
arrival rate), the minimal required control plane capacities will
be the same. Since all controllers have identical capacities in
setting 1 and setting 4, given the same traffic demand, it agrees
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Fig. 4. Performance comparison between K-center and GA for solving the CPP using different controller settings in Asia Sprint Network. (a)-(d) are the
network performance with controller setting 1 to 4 in Table II respectively.

Fig. 5. Controller placement in Asia Sprint Network with controller setting
4 in Table II at the arrival rate of 420 k pkt/s.

with our expectation that both GA and K-center decided to
deploy the same number of controllers. In other words, their
control plane utilization will be identical.

Although the utilization is indistinguishable, GA outper-
forms K-center in response time. To investigate the cause, we
visualize the placement results of both GA and K-center in
setting 4 at the arrival rate of 420 k pkt/s, which is shown
in Fig. 5. We find that K-center tends to select controllers
scattered on the periphery of the network while GA prefers
controllers located in the centers with multiple links connected
to other nodes. This is mainly because K-center allocates con-
trollers to minimize the worst case propagation latency and
controllers at the network boundary are likely to have longer
propagation latency. However, due to their remote locations,
requests sent to these controllers have to travel a long dis-
tance, which inevitably increases the response time. On the
other hand, GA strategically deploys controllers to intersection
locations where multiple links join together in the network. As
a result, most of the requests can be sent directly to the con-
trollers without traveling through other network nodes. Thus,
even though the same number of controllers is deployed by
GA and K-center, GA can effectively lower the response time
by up to 25%.

2) GA on Settings With Different Controllers: As shown in
Fig. 4(b), Fig. 4(c) and Table III, when controllers have varied
capacities (i.e., setting 2 and setting 3 in Table II), GA can
handle CPP more effectively than K-center in terms of either
utilization or response time as we expected.

D. Effectiveness of CGA for CPP

To further increase the difficulty of CPP, a larger network
(i.e., the global Sprint Network [17]) is adopted. Similar to

TABLE IV
CONTROL PLANE AVERAGE RESPONSE TIME (MS) WITH DIFFERENT

CONTROLLER SETTINGS AND REQUEST ARRIVAL RATES

IN GLOBAL SPRINT NETWORK

Section VI-C, two optional controller capacities (60 k and 90 k
pkt/s) are adopted during the simulation. The network will be
first divided into 2 sub-networks when the arrival rate remains
below 2000 k pkt/s. With further increase in arrival rate, the
number of sub-networks will be doubled to 4.

Fig. 6 and Table IV show the results of all competing
placement algorithms with three different controller settings
summarized in Table II. From Fig. 6 and Table IV, we can
see that CGA can achieve much lower response time than GA
and K-center without substantially lowering the control plane
utilization. In the rest of this subsection, we will examine the
performance with respect to every network setting in detail.

1) CGA on Settings With Identical Controllers: Similar to
Fig. 4(a) and Fig. 4(d), we notice that in Fig. 6(a), both
K-center and GA achieved the same utilization due to iden-
tical controller capacities. Apart from that, GA can reduce
the response time by up to 30% compared with K-center.
Meanwhile, the utilization of CGA is slightly lower than GA
when the request arrival rate is at 250 k pkt/s. This is because
the whole network is now divided into 4 rather than 2 sub-
networks. Apparently, more sub-networks demand for more
controllers. Nevertheless, CGA managed to drastically reduce
the response time by 50% (from 80 ms to 40 ms).

2) CGA on Settings With Different Controllers: When con-
trollers have different capacities (i.e., setting 2 and 3 in
Table II), CGA becomes more competitive in terms of both
utilization and response time. For example, compared to GA,
the response time of CGA is significantly reduced by up to
66%. Meanwhile, the gap in utilization between GA and CGA
is narrowed down to 1% in Fig. 6(b). Another interesting phe-
nomenon is that in Fig. 6(c), the utilization of CGA keeps
increasing and even outperforms GA at the request arrival rate
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Fig. 6. Performance comparison between K-center, GA, and Clustering-based GA for solving CPP using different controller settings in Global Sprint Network.
(a)-(c) are the network performance with controller setting 1 to 3 in Table II respectively.

Fig. 7. Performance comparison with burst traffic.

of 3,500 k pkt/s. Our results show that CGA enjoys higher
chance of identifying better solutions in large search spaces.

E. Effectiveness of CGA-CC for CPP

In the simulations discussed previously, we focus mainly
on CGA because no bursting requests occur in the simulated
networks. In this situation, workload sharing across different
sub-networks does not help. In this Subsection, however, we
want to evaluate the usefulness of supporting collaborative
sub-networks through CGA-CC.

To demonstrate the effectiveness of CGA-CC on coping
with unexpected traffic burst, we deploy a fixed collection of
controllers in the Europe network with setting 3 in Table II
and constantly increase the request arrival rate. When the
arrival rate reaches the control plane capacity, we expect that
some requests will be forwarded to controllers in neighboring
sub-networks to avoid overloading the control plane.

As depicted in Fig. 7, the response time of CGA stays below
32 ms and its throughput shows a steady growth before the
arrival rate reaches 680 k pkt/s. After that, a notable jump can
be observed in CGA response time.

On the contrary, the response time of CGA-CC is consistent
with CGA when the arrival rate is less than 680 k pkt/s since
the workload is still below the control plane capacity. After
that, the gap in both response time and throughput between
CGA and CGA-CC widens in accordance with the increas-
ing arrival rate. It is mainly because CGA-CC strategically
offloads the requests to nearby controllers to avoid overload-
ing the control plane. Although CGA-CC selects controllers
with the lowest propagation latency, the controllers are still
located outside the sub-network, which introduces a consid-
erable propagation latency in response time. Thus, an upward
trend (but substantially less severe than in CGA) in CGA-CC
response time can be spotted from Fig. 7(a).

Fig. 8. Performance comparison without burst traffic using Setting 3 in
Table II with different request arrival rates.

F. Comparison With MSPA

To further demonstrate the effectiveness of CGA-CC, we
compare it with a recently proposed realistic and robust
algorithm called Multi-controller Selection and Placement
Algorithm (MSPA) [8].

For a fair comparison, we adopt the same number of
sub-networks in the network partitioning step. Given the par-
titioning result, MSPA calculates the number of controllers
needed in each sub-network based on a given threshold t̂th on
controller processing time and deploys the controllers using
CNPA. We evaluated a range of t̂th from 0.01 ms to 5 ms and
the results reported in this section are based on the t̂th value
with the best performance (0.5 ms).

Apart from this, MSPA requires to establish a central sched-
uler in each sub-network, as we explained in Section II.
However, the authors in MSPA did not explain their method
of selecting the location for the scheduler. To find the “best”
scheduler location, we tried all possible locations within each
sub-network and reported the best performance.

1) CGA-CC vs. MSPA Without Burst Traffic: Fig. 8 demon-
strates the performance comparison between CGA-CC and
MSPA. Specifically, in comparison to MSPA, CGA-CC can
significantly reduce the average request response time. For
example, when the request arrival rate is 1000 k pkt/s, the
response time of MSPA is 182.78 ± 0.06 ms while CGA-CC
is significantly smaller than 100 ms. This is mainly for two rea-
sons. First, within each sub-network, MSPA sends all requests
generated from the switches to a single scheduler first instead
of controllers directly, which inevitably increases the propa-
gation latency. Second, the M/M/c queuing model adopted in
MSPA considers neither the capacity differences between con-
trollers nor the distance between the scheduler and controllers.
Thus, requests can be sent to controllers with low capacity and
long propagation latency. This can be verified in Figure 9.
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Fig. 9. Controller utilization among all selected controllers in Europe network
and their normalized propagation latency with the scheduler in MSPA.

Fig. 10. Performance comparison with burst traffic using the fixed controller
placement from Europe network.

Although CGA-CC outperforms MSPA in terms of aver-
age response time, we can see that MSPA achieves higher
control plane utilization when the arrival rate is higher than
1500 k pkt/s. In comparison, CGA-CC maintains a stable con-
trol plane utilization at around 84%. This is mainly because
of the controller capacity constraint in our problem formula-
tion (7) which ensures that a proportion of capacity must be
reserved for the control plane to withstand unexpected traffic
bursts.

2) CGA-CC vs. MSPA With Burst Traffic: We also eval-
uate the performance of MSPA with burst traffic. As shown
in Fig. 10, the performance of MSPA follows a similar trend
as CGA in Fig. 7 which is easily understandable since both
MSPA and CGA do not share workload across sub-networks.

VII. CONCLUSION

In this paper, we introduce a new controller placement
and scheduling problem (CPSP) that explicitly strengthens the
importance of solving both the controller placement problem
(CPP) and the controller scheduling problem (CSP) coherently
within the same framework. CPSP is mathematically described
as a constrained optimization problem aiming to optimize con-
trol plane utilization while simultaneously guaranteeing low
network response time. Therefore, to tackle CPSP, we must
seek a combination of solutions to both CPP and CSP.

To address CSP scalably and effectively, we focus on
optimizing the probabilities for request distribution over all
controllers. A gradient-descent-based (GD) scheduling algo-
rithm was subsequently developed to balance the trade-off
between scheduling performance and problem scalability.

In line with the solution of CSP, a Clustering-based Genetic
Algorithm with Cooperative Clusters (CGA-CC) was proposed
to address CPP. In particular, to reduce the search space of GA,
CGA-CC split the network into non-overlapping sub-networks
so that GA can effectively deploy controllers within each
sub-network. Moreover, to alleviate the impact of unexpected

bursting requests in any sub-network, a greedy algorithm
was developed to strategically offload indigestible requests to
adjacent sub-networks.

Extensive simulations have been conducted based on real-
world topologies and traffic. The results showed that our
algorithms can significantly outperform several existing algo-
rithms, including a recently proposed approach called Multi-
controller Selection and Placement Algorithm (MSPA). Note
that it is interesting to further evaluate the performance of
our algorithms on a real-world testbed. This is an important
direction for our future research.
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