
DIAL: Distributed Elephant Flow Counting on SDN
Zheng Peng, Hao Li and Chengchen Hu

Department of Computer Science and Technology
Xi’an Jiaotong University

Email: pengzheng@stu.xjtu.edu.cn, {hao.li, chengchenhu}@xjtu.edu.cn

Abstract—In network measurement, many statistics counters
need maintaining on the switch and thus consuming a lot of
very precious on-chip memory. In fact, most network flows
in the Internet are small flows that don’t need large-width
counters. In this paper, we present DIAL, a distributed counting
approach, which duplicates the counting rules to leverage global
memory resources, maximizing the counting efficiency, which
is complementary to existing counter solutions. We pose and
formulate the problem of finding the optimal placement for
duplicated counting rules. After proving its NP hardness, we give
some heuristics to fast generate a near-optimal placement. After
describing the feasibility of implementation, we carry out some
evaluation for DIAL. Our simulated results with Internet traffic
and topologies show that DIAL can significantly decrease the
memory cost and increase the memory efficiency for both fixed-
width and variable-width counter architecture, with acceptable
extra overheads, which is a great save of the precious high-speed
memory in the switch.

I. INTRODUCTION

Per-flow counting is very essential to support various mea-
surement scenarios [1]. Specifically, a per-flow measurement
task associates each flow with a corresponding counter in the
switch to record and update the expected statistics (e.g., packet
counts and byte counts) of the flow. The high-level applications
periodically query the counters to collect the statistics. To real-
ize the wire-speed counting and respond to frequent querying,
the counters are kept in the high-speed memory in the switch,
e.g., on-chip registers or SRAM [2], which is very expensive
though [3]. In addition, as the Software-Defined Networking
(SDN) emerges, the operators tend to measure the fine-grained
flows instead of the traditional 5-tuple ones, which requires
many more individual counters [4].

Nevertheless, existing counting approaches waste the major-
ity of even this limited memory, making it more insufficient.
To be specific, they allocate N -bit memory for each counter to
count 2N packets/bytes, where N is a fixed number. As a re-
sult, N should be large enough to measure the “elephant flows”
with many packets/bytes. However, since the majority of flows
in the traffic are “mice flows” with a few packets/bytes [5], [6],
many bits of memory are wasted in most counters. In other
words, many fewer flows can be measured in a single switch.

To efficiently count the elephant flows, many attempts have
been made [2], [7]–[13]. These approaches embed more infor-
mation into the counters, so that N -bit memory can measure
more than 2N packets/bytes. That is, the switch can allocate
a smaller counter for each flow, so as to measure more flows.
However, they still assume fixed-width counters, leaving many
bits unused for mice flow counters. Recently, a variable-width

architecture, i.e., BRICK, has been proposed [3]. BRICK splits
the whole memory into small-sized buckets, and bundles each
counter into one bucket initially. If the number of packets/bytes
exceeds the counter’s capacity, BRICK will allocate an extra
bucket for this counter as higher-order bits. In sum, each
counter is expected to consume “just enough” memory for
the measurement. Although BRICK has efficiently utilized all
memory in a single switch, the counting on elephant flows may
still fail when the switch runs out of the buckets. This is quite
possible, because the high-level measurement applications
could count the flows anywhere along the routing path, and
such randomness may aggregate the tasks of counting elephant
flows into a few switches, resulting in memory exceeding.

Some other works propose the adaptive counting approach-
es based on SDN architecture [14]–[18]. Besides reactively
responding to the queries from the applications, SDN switches
can proactively report the statistics to the controller, so as to
multiplex the switch counters before exceeding. However, the
report messages would incur a heavy load on the south-bound
interface of SDN controller, since the counters may exceed
very frequently as we discussed above.

We observe that when a few switches are heavy-loaded
for elephant flows, lots of memory in other switches remains
unused. As a result, our basic idea is to maximumly utilize
the memory along the routing path for a specific flow as the
supplement to the memory in the local switch. To be specific,
all the packets entering the network are tagged as “uncounted”.
Each switch that has idle memory will count the incoming
uncounted packet in the local memory, tag it as “counted”, and
forward it to the next hop. Otherwise, the switch will leave the
packet as uncounted, and directly forward it to the next hop,
where more memory can be expected for counting. In this way,
the elephant flows will be measured jointly by all the switches
along the path, while the mice flows are still maintained by
small counters in the single switch. We note that, however,
this method duplicates many more counting rules along the
routing path, which in contrast burdens the flow table.

Based on the above insights, we propose DIstributed ele-
phAnt fLow counting (DIAL), an enhanced SDN-based count-
ing scheme, to address the inefficient counting problem for
elephant flows. DIAL adaptively adds supplementary mea-
surement rules to exploit the idle memory, while minimizing
the impact on the flow tables. Note that DIAL focuses on
scheduling the global memory resources, and as a result, it is
complementary to all existing single switch optimization.

In sum, we make the following contributions in this paper.

978-1-5386-4727-1/18/$31.00 ©2018 IEEE
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on March 22,2021 at 05:30:11 UTC from IEEE Xplore. Restrictions apply.

S
1

S
2

S
3

S
4

S
5

Fig. 1. Example topology.

S
1

S
2

S
3

S
4

100 001 001 001

001

001

100

001

001

100

001

001

100

100

100

100

S
5

001

001

001

100

{3 bits

Fig. 2. Example of the counter arrays for the traditional large fixed-width
counter solution.

• We present DIAL, a distributed counting approach, which
duplicates the counting rules to leverage the global mem-
ory resources, maximizing the counting efficiency.

• We pose and formulate the problem of finding the optimal
placement for duplicated counting rules. After proving its
NP hardness, we give some heuristics to fast generate a
near-optimal placement.

• We describe the feasibility of implementation, and carry
out some evaluation on DIAL. The results demonstrate
that DIAL can significantly decrease the memory cost (up
to 93% and 78%) for both fixed-width and variable-width
counter architecture, with acceptable extra overheads.

II. DISTRIBUTED COUNTING FOR ELEPHANT FLOW

A. Elephant Flow Counting Problem

We use a simple example to explain why counting elephant
flows could be a problem. Considering a simple network
shown in Fig. 1, where 5 switches S1–S5 are linearly con-
nected. We assume there are 20 flows in this network, 4 of
which are the elephant flows with 4 bytes at most, and the rest
are the mice flows with only 1 byte, following the 80/20 rule.
We also assume a simple placement of the counting tasks:
each switch counts 4 flows. Next, we specifically consider the
following two distributions of the elephant flows. The first
distribution evenly places the elephant flows, e.g., 4 of the 5
switches count 1 elephant flow respectively, namely “average
case”, while the second distribution assumes the 4 elephant
flows are gathered in a single switch, namely “dominant case”.
Based on the above typical cases, we analyze the memory
usage of different counting approaches.

The fixed-width approach always assumes the worst case,
i.e., each switch will allocate 4 counters for elephant flows, no
matter in average or dominant case. As a result, it takes 60 bits
in total, since a 4-byte elephant flow takes 3 bits for counting,
as shown in Fig. 2. BRICK can largely save the memory in the
average case, because it can flexibly extend the 1-bit bucket.
As shown in Fig. 3, it consumes 30 bits in total to handle all
possible average cases. However, in dominant cases, BRICK
also has to allocate 12 bits for each switch, since it cannot
predict which switch will be the hot spot, as shown in Fig. 4.
In other words, in this simple example, BRICK will consume

 1 1 1

 1

 1

100

 1

 1

100

 1

 1

100

 1

 1

 1

100

 1

 1

 1

 1

spare bits

S
1

S
2

S
3

S
4

S
5

Fig. 3. Example of the average case of the counters for BRICK.

100

100

100

100 1

1

1

1

spare bits

1

1

1

1

1

1

1

1

1

1

1

1

S
1

S
2

S
3

S
4

S
5

Fig. 4. Example of the dominant case for BRICK.

the same memory with the fixed-width approach, if it wants
to avoid exceeding the switch memory in any possible case.

We note that in practice, we have bare knowledge of the
flow numbers and sizes. This fact will benefit the actual
performance of BRICK, since it can adaptively extend the
counter. However, the above analysis also shows that BRICK
may still fail the counting if too many elephant flows are
counted in a single switch.

B. Basic Idea of DIAL

We propose DIAL based on a simple observation: recall
the worst case of BRICK shown in Fig. 4, when the gathered
elephant flows impact the memory in a single switch, much
memory remains unused in others. Therefore, our basic idea is
to exploit the spared memory in other switches as a supplement
to the local memory, so that the elephant flows can be jointly
counted by multiple switches instead of a single one. Still
considering the aforementioned example, we use f1–f20 to
denote the 20 flows in the network, where f1–f4 are the 4-byte
elephant flows. DIAL allocates a set of 1-bit counters for each
switch, and when a specific counter is exceeded, DIAL will
use a spared counter in other switches to continue counting
the flow. Fig. 5 depicts one of the dominant cases, where all
elephant flows are originally counted in the first switch. It can
be seen that 8 bits for each switch are sufficient. For this worst
case, the total memory cost is 40 bits, which is lower than that
of the fixed-width approach and BRICK. Plus, DIAL in the
average case has a similar cost.

Though the above analysis shows the potential benefit of
DIAL, we note that DIAL could bring much overhead if
being simply applied. The reason is that to implement the
supplementary counters along a routing path, the original
counting rule must be duplicated. To be specific, DIAL has
to duplicate all the counting rules to all the switches, in
case any of them becomes an elephant flow. This duplication
makes DIAL impracticable for two reasons. First, the number

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on March 22,2021 at 05:30:11 UTC from IEEE Xplore. Restrictions apply.

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1

1

1

1 1 1

1

1

1

1

1

1

f
1

f
1

f
1

f
1

f
9

f
3

f
4

f
2

f
2

f
2

f
2

f
4

f
3

f
3

f
11

f
15

f
5

f
6

f
10

f
14

f
13

f
7

f
8

f
4

f
12

f
16

1

1

1

1

f
4

f
3

f
19

f
18

f
17

f
20

S
1

S
2

S
3

S
4

S
5

Fig. 5. Example of the dominant case for DIAL.

of counting rules increases with the number of switches,
which largely consumes the flow entries in the flow table.
For example in Fig. 5, the 20 flows will consume 100 flow
entries. Second, the counter memory is occupied right after the
counting rules are installed. That is, the counting memory cost
will also increase with the number of switches. For example
in Fig. 5, even assuming we have the pre-knowledge that there
are only 4 elephant flows and that 8 bits for each switch are
sufficient, DIAL still has to allocate 100 bits, since we don’t
know which four could grow to be elephant.

III. ADAPTIVE COUNTING RULE DUPLICATION

A. Counting Rule Duplication Problem

Recall the 80/20 rule indicating only a small portion of
flows are elephant flows, duplicating all the counting rules
will waste lots of flow entries. A straightforward method is
to adaptively duplicate the counting rules for those flows
that cannot be counted in their original switches. However,
considering there could be multiple flows requiring extra
counting rules simultaneously, the arbitrary duplication may
produce the hot spot where the switch runs out of its flow table
entries and/or counting memory. That is, we must carefully
decide where to duplicate the rule for each flow, namely
counting rule duplication problem (CRDP).

We formalize CRDP as follows. Assume there are N
switches in total, and M flows requiring extra counting rules.
If we duplicate a counting rule for flow Mi to switch Nj , it
will consume aij counting memory along with bij flow table
entries. If Mi cannot be assigned to Nj , i.e., Nj is not in the
routing path of Mi, aij and bij will be infinite. Note that bij
does not always equal to 1, because the counting rule may
have to be further divided to fit into the original flow table. In
sum, CRDP can be formalized by the following model:

minimize
M∑
i=1

aijxij

M∑
i=1

bijxij j = 1, ..., N (1)

subject to
M∑
i=1

aijxij ≤ Aj , j = 1, ..., N (2)

M∑
i=1

bijxij ≤ Bj , j = 1, ..., N (3)

N∑
j=1

xij = 1, i = 1, ...,M (4)

Eq. (1) is to minimize the cost of counting memory and flow
entries.1 Eq. (2) and Eq. (3) constrain the counting memory
and number of flow entries. Eq. (4) defines a 0-1 variable to
represent that each rule can only be duplicated to one switch.
Actually, aij is a constant value for all assignment (Mi to
Nj), since DIAL allocates same-size counters for each flow.
As a result, we could rewrite the objective to minimize the
second factor, i.e., the number of flow entries. In this way,
CRDP captures the well-known Multi-Resource Generalized
Assignment Problem (MRGAP), which has been proved to be
NP-hard [19].

We note that M could be relatively small in practice due
to the limited number of elephant flows. However, the first-
time “duplication”, i.e., the initial counting rule placement,
involves all flows in the network, incurring a large overhead
of computing optimal solution. As a result, we still need to
seek near-optimal solution for CRDP.

B. Heuristics of Near-Optimal Duplication

Due to the NP-hardness of CRDP, we propose some simple
heuristics to approximately approach the optimal duplication
solution under the acceptable time consumption. Specifically,
we consider the following requirements of duplication place-
ment: (1) the consumption of the two resources (counting
memory and #flow entries) should not go beyond their ca-
pacities, and (2) the consumption of the two resources should
be balanced for all switches.

The heuristics is to greedily find the lightest-loaded switch
to duplicate the counting rule for each flow that exceeds
its original counter, namely Lightest-Loaded-First duplication
(LLF). We note that, for a certain flow, the number of
candidate switches for duplication is actually the number of
hops of this flow. That is, flows with longer path have more
options to place the duplicated rules. As a result, for a bunch
of flows to be duplicated, LLF will first decide the duplication
place for the flows with shorter path.

Algorithm 1 depicts the whole process of finding a near-
optimal duplication solution. To be specific, multi_place
works out the priority of all the duplicating flows by their rout-
ing paths’ length, and place finds the lightest-loaded switch
from the candidates for each duplicating flows sequentially.

For example in Fig. 6, each switch counts four flows in the
beginning. Suppose that the routing paths of f1 and f2 are
S1 → S2 and S1 → S2 → S3, respectively. If afterwards
both f1 and f2 in S1 need to duplicate their counting rules,
multi_place will first arrange to place(f1) that has
a shorter routing path. For f1, only S2 is available, so it
duplicates the rule to and creates a 1-bit counter in S2. Next,
place(f2) is called, and here S3 is lighter loaded than S2,
so the duplicated rule will be placed in S3.

Pre-duplication. Ideally, the duplication happens only when
the original counter exceeds. However, this process has to
wait for the controller to issue the new counting rule, which
will incur large latency through each duplication. We employ

1The weights of the two parts are unknown, so we multiply (not add) them.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on March 22,2021 at 05:30:11 UTC from IEEE Xplore. Restrictions apply.

0

0

0

0

0

0

0

0

0

0

01

0

0

01

0 0

f
1

f
1

f
9

f
2

f
2

f
3

f
11

f
15

f
5

f
6

f
10

f
14

f
13

f
7

f
8

f
4

f
12

f
16

0

0

0

0

f
19

f
18

f
17

f
20

S
1

S
2

S
3

S
4

S
5

Fig. 6. Example of the duplication for DIAL.

Algorithm 1: Lightest-loaded-first duplication
Input: Output: the set of flows to be duplicated: fs

1 multi_place(fs) begin
2 sort fs in ascending order of the number of available

switches along the routing path of each flow;
3 foreach f ∈ fs do
4 place(f);

5 place(f) begin
6 ss← {s | s is along the routing path of f and there is no

rule of counting f in s};
7 sort ss in ascending order of the load of each switch;
8 lis← the lightest-loaded switch of ss;
9 install the rule of counting f in lis;

10 create the counter of f in lis;

a pre-duplication process into DIAL to mitigate the latency
problem. Specifically, after initially placing the counting rules,
we directly duplicate them by re-running multi_place of
LLF in Algorithm 1. That is, all the counting rules are at least
duplicated once. When a flow exceeds its first counter, a third
one will be allocated immediately. As a result, the controller
has plenty of time to issue the new counting rule, as long as
the second counter is not full. In this way, elephant flows are
properly counted without employing extra latency.

Fig. 7 depicts a possible result after the pre-duplication,
in which the assumptions are the same as those in Fig. 5.
After duplicating all the counting rules once, each switch
counts eight flows now. It can be seen that f1 has two
counters in S1 and S2 at the start, and the one in S1 is
counting the first byte of f1. When f1 exceeds its counter
in S1, overflow_report in Algorithm 2 will place(f1)
in another switch, S3. Meanwhile, the elephant flow f1 can
be properly and continuously counted in S2.

IV. ENFORCE DIAL INTO SDN

In this section, we highlight some key designs of enforcing
DIAL into real SDN environment.

Tag packets. To avoid redundant counting in the switches
along the routing path of a specific flow, the first switch
that counts the flow should tag the packet as “counted”. In
OpenFlow, we can tag packets using an unused field of packet,
e.g., VXLAN. Such field will be initialized with 0, denoting
“uncounted”. All the counting rules should only match the
uncounted packets. In real time matching, if a packet is

0

0

0

0

0

0

0

0

0

0

00

0

0

01f
1

f
9

f
2

f
3

f
11

f
15

f
5

f
6

f
10

f
14

f
13

f
7

f
8

f
4

f
12

f
16

0

0

0

0

f
19

f
18

f
17

f
20

0

0

0

0

0

0

0

0

0

0

00

0

0

01f
1

0f
1

f
9

f
2

f
3

f
11

f
15

f
5

f
6

f
10

f
14

f
13

f
7

f
8

f
4

f
12

f
16

0

0

0

0

f
19

f
18

f
17

f
20

S
1

S
2

S
3

S
4

S
5

Fig. 7. Example of the pre-duplication for DIAL.

matched with a counting rule, the rule should modify the field
to be 1, i.e., the packet has been counted.

Update results. In the measurement system, the controller
will collect the counters of all switches periodically. To be
specific, at the end of each measurement period, switches will
report their counter values to the controller by calling upload
in Algorithm 2. This can be implemented by Statistics mes-
sages in OpenFlow for querying the counters.

Handle exceptions. In real-time counting, if a counter ex-
ceeds, overflow_report in Algorithm 2 will be triggered
to set the switch to be “FULL”. If it doesn’t exceed, this packet
of the flow will remain “uncounted” and pass the switches
which contain no rule or have been “FULL” for the flow. If
all switches of a flow are full or have installed the counting
rule, then upload will be triggered to upload the statistics
of the flow in all switches to the controller counters and then
clear the counter values in the switches to continue counting.
During the counting process of DIAL, when a counter exceeds,
the duplication happens as overflow_report is triggered.
In this procedure, an integer is used to help index the switch
which incurs the overflowing. Then the flow will set the switch
“FULL” and call place to find another switch to count it on.

In OpenFlow, overflow_report and upload launched
by switch-end can be implemented with Flow-monitor, Exper-
imenter, and Packet in messages in special cases.

V. EVALUATION

A. Settings

In this section, we evaluate the performance of DIAL. Since
DIAL is complementary to the optimization in a single switch,
we involve the fixed-width and variable-width approaches in
our evaluation. The placement of the counting rules is critical
for the above two approaches. We specifically simulate three
cases: (1) randomly select the original counting switch for
each flow, (2) choose the most empty switch to count the flow
(i.e., LLF), and (3) apply DIAL with adaptive rule duplication.

We use three public real-world Internet traffic traces collect-
ed in 2016 from CAIDA [20] in our evaluation. Each trace has
about 1M flows and the largest flow needs a 28/29-bit width
counter. As shown in Table I, each trace has a theoretical
optimum (T. O.) memory cost which is calculated by the sum
of every theoretical minimal counter width of each flow.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on March 22,2021 at 05:30:11 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Exception handling
Input: Output: the flow to be handled: f

1 upload(f) begin
2 foreach s along the routing path of f do
3 if the rule of counting f has been installed in s then
4 upload the counter value of f in s to the controller

and update the corresponding controller counter;
5 reset the counter value of f in s to zero;
6 set the state of s along the routing path of f to

“COUNTING”;

7 overflow_report(f , i) begin
8 if a packet leads to an overflow then
9 set the state of the i-th switch along the routing path of

f to “FULL”;
10 place(f);

We employ two real-world network topologies from the
Internet Topology Zoo [21], i.e., CERNET (36 switches)
and ChinaNet (38 switches). We further involve a simulated
topology based on fat-tree (k = 4). Given the topologies, we
simulate the hosts by evenly partitioning all IPv4 addresses2

and distributing them to the edge switches. The routing path
for each packet class (source and destination IP pair) from the
traces is then generated by the shortest-path algorithm.

We consider the following two metrics: (1) the total memory
cost, and (2) the memory efficiency. Here the memory effi-
ciency is defined as the ratio of the theoretical optimum to the
actual memory cost in total, since all the involved approaches
are inevitable to waste some of the memory. We assume the
ideal cases for fixed- and variable-width approaches when
calculating the total memory cost: for fixed-width approach,
we do not set the counter width beforehand, but use the
actual consumed memory to calculate the total cost, which
avoids the memory exceeding or unnecessary memory waste;
for variable-width approach, we assume it has a set of 1-bit
buckets without extra overhead (e.g., pointer to link multiple
buckets), which could maximize the memory efficiency in a
single switch. For DIAL, we assume a threshold of 13-bit
width, which means the global counting mechanism will be
triggered if the local counter exceeds 13-bit memory. This
threshold can be adaptively adjusted for different situations.

B. Results

Fig. 8 depicts the total memory cost of all six approaches. It
can be seen that DIAL can largely decrease the memory cost,
no matter combined with fixed- or variable-width approach.
Specifically, if we apply DIAL to the fixed-width approach,
the memory cost will be reduced by 82%–93% and 57%–88%,
compared to random and LLF placement, respectively. The
variable-width approach has drawn a similar trend by applying
DIAL: the memory cost will be reduced by 58%–78% and
7%–54%, respectively.

2class A, B and C are included but class D and E are excluded [22]

Trace1 Trace2 Trace3 Trace1 Trace2 Trace3 Trace1 Trace2 Trace3
0

50

100

150

200

250

300

M
e
m

o
ry

 C
o
s
t
(M

b
)

 Fixed + Random Variable + Random

 Fixed + LLF Variable + LLF

 Fixed + DIAL Variable + DIAL

ChinaNetCERNETFat-Tree

Fig. 8. Memory cost

Trace1 Trace2 Trace3 Trace1 Trace2 Trace3 Trace1 Trace2 Trace3
0.0

0.2

0.4

0.6

0.8

1.0

 Fixed + Random Variable + Random

 Fixed + LLF Variable + LLF

 Fixed + DIAL Variable + DIAL

M

e
m

o
ry

 E
ff
ic

ie
n
c
y

ChinaNetCERNETFat-Tree

Fig. 9. Memory efficiency

Additionally, the memory efficiency of these six approaches
is shown in Fig. 9. It can be observed that DIAL can
significantly increase the memory efficiency for both fixed-
and variable-width counter approaches. To be specific, when
DIAL is applied to the fixed-width approach, the results of
memory efficiency reveal that it will bring about 459%–1320%
increases if compared to random placement, and 133%–688%
rises if compared to LLF placement. The effect of using DIAL
is also satisfying with the variable-width counter approach: the
memory efficiency will be raised by 139%–338% and 55%–
207%, compared to the two placements respectively.

We further measure the overhead of extra Packet in mes-
sages when handling exceeding exceptions, as is denoted in
the “Costs” field in Table I. We find that the “Costs” count is
at the same order of magnitude with the flow count. We know
that in periodic network measurement in SDN, one flow has
to lead the switch to communicate with the controller at least
once when submitting the result at the end of the measurement
period. In DIAL, the extra message cost is introduced, which
leads to an increase in the number of the same messages e.g.,
Packet in costs in OpenFlow, but that is still at the same order
of magnitude, so we consider that it is endurable with high
bandwidth SDN link. For example, the system in [23] has the
1Gbps SDN link.

VI. RELATED WORK

Fixed-width counter. In flow statistics field, many ap-
proaches have been proposed to save the on-chip memory.
DISCO [12] elaborately designs the counter update rule so
that the increment of the updated counter is less than the actual
packet length. ANLS [13] uses a sampling technique and dy-
namically sets a smaller sampling rate when the counter value

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on March 22,2021 at 05:30:11 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SOME RESULTS OF DIAL

Topology Trace #Flow T. O. Costs

Fat-Tree Trace1 0.9M 8.08Mb 2.0M
Fat-Tree Trace2 1.5M 12.0Mb 3.5M
Fat-Tree Trace3 1.0M 9.61Mb 2.7M
CERNET Trace1 0.9M 8.08Mb 1.9M
CERNET Trace2 1.5M 12.0Mb 3.4M
CERNET Trace3 1.0M 9.61Mb 2.2M
ChinaNet Trace1 0.9M 8.08Mb 1.9M
ChinaNet Trace2 1.5M 12.0Mb 3.2M
ChinaNet Trace3 1.0M 9.61Mb 2.3M

is large, to reduce the memory usage. These approaches can
save memory cost, but they still apply fixed-width counters,
leading to low memory efficiency.

Variable-width counter. To save the memory wasted by
fixed counter width, variable-width counter architecture has
been proposed. BRICK [3] is the state-of-the-art variable-
width counter approach. BRICK splits a counter into several
sub-counters, and will allocate an extra sub-counter to a flow
only when it exceeds the original memory size. However, in
the cases of multiple per-flow tasks, BRICK may fail when
handling the hot spots of elephant flows.

DIAL is complementary to these approaches. As a result,
a smaller counter/bucket can be set with much lower risk of
memory exceeding, so as to further reduce the overall cost.
For example, OpenCounter [24] counts unknown flows in
SDN, maintaining a counter named LLCRS in the controller
for each switch, and aggregates them when queried. The
design philosophy of OpenCounter is similar to DIAL. Both
of them are distributed counting architecture based on SDN.
However, OpenCounter focus on unknown flow counting in
controller, with specific data structure LLCRS, whereas DIAL
can count any flows in switch, with diverse data structure
options, depending on the specific usage, which is a more
general counting architecture framework.

VII. CONCLUSION

In this paper, we explored the memory waste problem
of per-flow counting. Specifically, we propose a distributed
counting approach on SDN, i.e., DIAL. In contrast to only
focusing on reducing the local switch memory, DIAL lever-
ages the spared memory along the routing path to make a
global optimization. In this work, we formulate the problem
of finding the optimal placement for the extra counting rules,
and propose simple heuristics to fast generate a near-optimal
solution. The evaluation based on real and synthetic traces and
topologies has demonstrated that DIAL is effective, efficient
and scalable with various local optimization approaches.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program of China (2017YFB0801703), NSFC
(61702407, 61672425), and Fundamental Research Funds for
the Central Universities.

REFERENCES

[1] B. B. Ran, G. Einziger, R. Friedman, Y. Kassner, B. B. Ran, G. Einziger,
R. Friedman, Y. Kassner, B. B. Ran, and G. Einziger, “Randomized
admission policy for efficient top-k and frequency estimation,” in IEEE
INFOCOM 2017 - IEEE Conference on Computer Communications,
2017, pp. 1–9.

[2] D. Shah, S. Iyer, B. Prabhakar, and N. Mckeown, “Maintaining statistics
counters in router line cards,” IEEE Micro, vol. 22, no. 1, pp. 76–81,
2002.

[3] N. Hua, B. Lin, J. Xu, and H. Zhao, “Brick:a novel exact active
statistics counter architecture,” in ACM/IEEE Symposium on Architecture
for Networking and Communications Systems, ANCS 2008, San Jose,
California, Usa, November, 2008, pp. 89–98.

[4] T. P. Xuan and F. Kensuke, “Sdn-mon: Fine-grained traffic monitoring
framework in software-defined networks,” Journal of Information Pro-
cessing, vol. 58, pp. 182–190, 2017.

[5] Pareto principle. [Online]. Available: https://en.wikipedia.org/wiki/
Pareto principle

[6] L. Guo and I. Matta, “The war between mice and elephants,” in
International Conference on Network Protocols, 2001, pp. 180–188.

[7] S. Ramabhadran and G. Varghese, “Efficient implementation of a statis-
tics counter architecture,” in Acm Sigmetrics International Conference
on Measurement & Modeling of Computer Systems, 2003, pp. 261–271.

[8] M. Roeder and B. Lin, “Maintaining exact statistics counters with a
multi-level counter memory,” in Global Telecommunications Conference,
2004. GLOBECOM ’04. IEEE, 2004, pp. 576–581 Vol.2.

[9] Q. Zhao, J. Xu, and Z. Liu, “Design of a novel statistics counter
architecture with optimal space and time efficiency.” Acm Sigmetrics
Performance Evaluation Review, vol. 34, no. 1, pp. 323–334, 2006.

[10] A. Cvetkovski, “An algorithm for approximate counting using limited
memory resources,” Acm Sigmetrics Performance Evaluation Review,
vol. 35, no. 1, pp. 181–190, 2007.

[11] R. Stanojevic, “Small active counters,” Proceedings - IEEE INFOCOM,
pp. 2153–2161, 2007.

[12] C. Hu, B. Liu, H. Zhao, and K. Chen, “Disco: Memory efficient and
accurate flow statistics for network measurement,” in IEEE International
Conference on Distributed Computing Systems, 2010, pp. 665–674.

[13] C. Hu, B. Liu, S. Wang, J. Tian, Y. Cheng, and Y. Chen, “Anls: Adaptive
non-linear sampling method for accurate flow size measurement,” IEEE
Transactions on Communications, vol. 60, no. 3, pp. 789–798, 2012.

[14] Y. Zhang, “An adaptive flow counting method for anomaly detection
in sdn,” in ACM Conference on Emerging NETWORKING Experiments
and Technologies, 2013, pp. 25–30.

[15] Z. Hu and J. Luo, “Cracking network monitoring in dcns with sdn,” in
Computer Communications, 2015, pp. 199–207.

[16] M. Jarschel, T. Zinner, T. Hohn, and P. Tran-Gia, “On the accuracy of
leveraging sdn for passive network measurements,” in Telecommunica-
tion Networks and Applications Conference, 2013, pp. 41–46.

[17] N. L. M. V. Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in Network
Operations and Management Symposium, 2014, pp. 1–8.

[18] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “Opensample: A
low-latency, sampling-based measurement platform for commodity sdn,”
in IEEE International Conference on Distributed Computing Systems,
2014, pp. 228–237.

[19] B. Gavish and H. Pirkul, “Algorithms for the multi-resource generalized
assignment problem,” Management Science, vol. 37, no. 6, pp. 695–713,
1991. [Online]. Available: https://doi.org/10.1287/mnsc.37.6.695

[20] (2016) Caida anonymized internet traces 2016. [Online]. Available:
http://www.caida.org/data/passive/passive 2016 dataset.xml

[21] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” Selected Areas in Communications, IEEE
Journal on, vol. 29, no. 9, pp. 1765 –1775, october 2011. [Online].
Available: http://www.topology-zoo.org/

[22] Classful network. [Online]. Available: https://en.wikipedia.org/wiki/
Classful network

[23] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“Incbricks: Toward in-network computation with an in-network cache,”
in International Conference, 2017, pp. 795–809.

[24] C. Callegari, S. Giordano, M. Pagano, and G. Procissi, “Opencounter:
Counting unknown flows in software defined networks,” in International
Symposium on PERFORMANCE Evaluation of Computer and Telecom-
munication Systems, 2015, pp. 1–7.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on March 22,2021 at 05:30:11 UTC from IEEE Xplore. Restrictions apply.

