Differential Network Analysis

Peng Zhang*, Aaron Gember-Jacobson?, Yueshang Zuo*, Yuhao Huang*, Xu Liu*, and Hao Li*
*Xi’an Jiaotong University, ' Colgate University

Abstract

Networks are constantly changing. To avoid outages, opera-
tors need to know whether prospective changes in a network’s
control plane will cause undesired changes in end-to-end for-
warding behavior. For example, which pairs of end hosts are
reachable before a configuration change but unreachable after
the change? Control plane verifiers are ill-suited for answering
such questions because they operate on a single snapshot to
check its “compliance” with “explicitly specified” properties,
instead of quantifying the “differences” in “affected” end-to-
end forwarding behaviors. We argue for a new control plane
analysis paradigm that makes differences first class citizens.
Differential Network Analysis (DNA) takes control plane
changes, incrementally computes control and data plane state,
and outputs consequent differences in end-to-end behavior.
We break the computation into three stages—control plane
simulation, data plane modeling, and property checking—and
leverage differential dataflow programming frameworks, in-
cremental data plane verification, and customized graph al-
gorithms, respectively, to make each stage incremental. Eval-
uations using both real and synthetic control plane changes
demonstrate that DNA can compute the resulting differences
in reachability in a few seconds—up to 3 orders of magnitude
faster than state-of-the-art control plane verifiers.

1 Introduction

Networks are frequently in flux. Configurations are modified
monthly, or even weekly: e.g., two large universities change
up to 55 stanzas per router per month [27], and Facebook
conducts an average of 12.5 changes per device per week in
their backbone [41]. External peers update routes daily: e.g.,
four tier-1 ISPs each experience a median of ~100K route
updates per day [12]. Links and routers fail intermittently: e.g.,
a large online service provider’s data centers have a median
of 18.5 link outages per day [17], and the CENIC research
network has a median of 38.5 outages per link per year [42].

Each change poses a risk of introducing catastrophic net-
work outages [28,31,46]. To avoid outages, operators need

to know whether prospective changes in the control plane
(i.e., changes in configurations, external routes, or available
links/routers) will cause (un)desired changes in end-to-end
forwarding behavior. For example, would a link failure break
isolation? Would a configuration change reduce reachability?
Would an external route withdrawal degrade load balancing?

At first glance, existing verifiers [1,4,6,7,13-15,18,22-24,
26,33,37,40,43,45,48] seem to address this need. However,
data plane verifiers [18,19,23,24,26,33,44,48] cannot directly
answer these questions, because they operate on changes in
the control plane’s output, rather than the control plane itself.
Existing control plane verifiers [1,4,6,7,13-15,22,37,40,43,
45] are also ill-suited for this task, because of the following
limitations: (1) they focus on checking a single control plane
snapshot instead of differences between snapshots and (2)
they require a list of properties to check, but it is difficult for
operators to determine which properties may be affected by a
change and hence need to be checked.

For the first limitation, a possible workaround is to apply
a control plane verifier to both the old and new snapshots
and compare the verifier’s output. But analyzing both snap-
shots from scratch is wasteful, because many control plane
changes have a limited impact on the data plane. For example,
fewer than 100 forwarding (ACL) rules are changed for >80%
(>90%) of configuration changes in the backbone network at
a large university (Figure 1), and Steffen et al.’s experiments
with 90 ISP topologies show that only one-third of link fail-
ures impact the forwarding path between a randomly chosen
ingress node and destination prefix [40].

For the second limitation, a possible workaround is to check
reachability (or other properties) for all pairs of end hosts. But
checking all possible properties is wasteful, because the space
of all properties is large [9] and the set of properties affected
by a change is often small. Policy-mining tools [8,9,25] can
help narrow the space of properties, but the set of inferred
properties may still be large—e.g., Config2Spec returns over
3K properties for a national research and education (R&E)
network with only 10 routers [9].

Since control plane verifiers can be quite inefficient for

assessing whether control plane changes cause changes in
end-to-end behavior, we argue for a new control plane analy-
sis paradigm which makes differences first class citizens. Dif-
ferential Network Analysis (DNA) takes as input differences
in configurations, external routes, and available links/routers,
incrementally computes control and data plane state, and out-
puts the consequent differences in end-to-end behavior (e.g.,
reachability, waypointing, load balancing, etc.). This aligns
with the small size/impact of many control plane changes and
avoids duplicate and unnecessary computations.

To incrementally compute differences in forwarding behav-
ior based on differences in the control plane, DNA breaks the
computation into three modular stages—control plane simula-
tion, data plane modeling, and property checking—and makes
each stage “differential”. In other words, each stage consumes
differences (control plane changes, data plane changes, and
forwarding graph changes, respectively), incrementally up-
dates its network model, and produces differences (data plane
changes, forwarding graph changes, and property changes,
respectively). To achieve incremental computation for each
of these stage, DNA leverages differential dataflow program-
ming frameworks [2, 35], incremental data plane verifica-
tion [48], and customized graph algorithms, respectively.

We implement a version of DNA that supports differen-
tial analysis of two widely-used routing protocols (BGP and
OSPF) and widely important properties (reachability, way-
pointing, and load balancing). Our implementation of DNA is
publicly released under an open source license. We evaluate
DNA using both synthetic and real control plane changes, and
demonstrate that DNA can compute differences in reachabil-
ity induced by control plane changes in a few second—up to 3
orders of magnitude faster than state-of-the-art control plane
verifiers [1,4,6]. Second-level verification time can enable on-
the-fly checking of operator-proposed configuration changes,
similar to syntax checkers integrated into most programming
IDEs, as well as quickly validating automatically-generated
changes due to dynamic control [30].

In summary, we make the following three contributions:

* We propose differential network analysis (DNA), a new
paradigm that helps operators better understand the im-
pact of changes in the control plane.

* We design and implement DNA based on recent ad-
vances in differential dataflow programming and incre-
mental data plane verification, and apply optimizations
to overcome their inefficiencies.

* We use both synthetic and real control plane changes
to show DNA computes consequent differences in end-
to-end behavior up to 3 orders of magnitude faster than
state-of-the-art control plane verifiers [1,4, 6].

2 Motivation

In this section, we discuss in detail why invoking a control
plane verifier before and after a change, and for all inferred

" ® Forwarding Rules 4 ACL Rules
% 3000 o o
g 1000 - . .‘. L)
3 100 | ‘ cast a0’ o °
(] Oy A
= e o PV’ ® %
© 10 A 1] A A
< o Y o oA
(@] A [] A A A A A
1
10 100 1000

#Changed Configuration Lines

Figure 1: The number of changed (forwarding and ACL)
rules, and the number of changed configuration lines for the
backbone network at a large university.

properties, is an inefficient way to assess whether changes in
the control plane cause changes in end-to-end behavior. In
particular, we highlight: (1) the prevalence of small control
plane changes, and (2) the difficulty of identifying which
properties may be impacted by a change.

2.1 Control plane changes are often small

Control plane verifiers operate on full snapshots of the control
plane, but the delta between snapshots is often small, which
leads to significant amounts of unnecessary re-computation.

Configuration changes. Several prior studies have examined
router configurations across various organizations/networks
and found that changes are often small: e.g., two large uni-
versities each change (on average) <20 lines of configuration
at the same time [36]; changes in Facebook’s backbone and
data center networks impact an average of 157 and 738 lines
of configuration, respectively, which is relatively small com-
pared to the scale of these networks [41]; and in 75% of the
networks operated by a large online service provider, the me-
dian change includes only three devices [16]. Consequently,
we expect control plane verifiers’ inputs and outputs to be
similar before and after such changes.

To validate this hypothesis, we analyze 3 months of con-
figuration changes from the backbone network at a large uni-
versity [36]. The network has 28 routers and 50 links and
runs OSPF. On average, the network has ~75K total lines of
configuration, which generate ~25K total forwarding rules.
The configuration changes include adding/removing subnets,
access control lists (ACLs), OSPF routes, etc. Figure | depicts
the size of each configuration change and the corresponding
number of changes in forwarding rules and ACL rules. On
average, 228 lines of configuration (~0.3%) are changed,
causing 146 forwarding rules (~0.6%) and 34 ACL rules
(~0.9%) to change. Except for two updates, all configuration
changes result in <600 changes in forwarding rules.

External route changes. Prior studies have shown that au-
tonomous systems (ASes) may experience a high rate of BGP
updates—e.g., four tier-1 ISPs each experience a median of
~100K route updates per day [12]—yet only 1% (10%) of
next-hops in the Internet change each day (month) [10]. Con-

sequently, we expect external route changes to have a small
impact on a network’s control and data planes.

To validate this hypothesis, we analyze 1 year of hourly
RIB snapshots from a national R&E network [3]. We exclude
hours in which a configuration change was made to ensure we
only capture RIB changes caused by external route changes.
We find <15% of hours have at least one RIB entry change,
and <4% of hours have more than 10 RIB entries change.

Link/router availability changes. Link/router failures—
caused by software upgrades, hardware faults, etc.—are com-
mon: e.g., the CENIC Digital California and High Perfor-
mance Research networks experience a median of 5.1 and
38.5 failures per link per year, respectively [42], and tens of
geographically distributed data centers operated by a large on-
line service provider experience a median of 18.5 link failures
and 3 device failures per day [17]. However, Steffen et al.’s
experiments with 90 ISP topologies showed that for a ran-
domly chosen ingress node and destination prefix, two-thirds
of link failures do not impact the forwarding path from the
ingress to the destination [40]. In other words, we expect only
a fraction of FIB entries to change when links/routers fail.

2.2 Identifying behaviors to (re-)verify is hard

Identifying how changes in the control plane impact end-to-
end forwarding behavior is important for assessing whether
the changes: (1) have the intended effect, and (2) have any
undesirable side-effects.

For the former, it is easy to identify which behaviors to
examine, because these behaviors are effectively the “design
requirements” for the change. For example, operators may
propose a change in filters to restrict access to a new subnet;
the effectiveness of the change can be assessed by examining
reachability between the restricted and new subnet(s).

In contrast, it is difficult to identify which behaviors should
be examined to determine whether a change is “safe.” Some
behaviors may be obvious, because they relate directly to the
change: e.g., to assess the safety of the proposed change in
route filters, operators should examine reachability from non-
restricted subnets to the new subnet. However, a change can
also impact seemingly unrelated behaviors—e.g., reachability
from non-restricted subnets to existing subnets—or behaviors
outside of an operator’s purview—e.g., changes in a single
data center may affect how a WAN load balances traffic across
multiple data centers. The latter can arise especially when dif-
ferent teams manage different aspects of a network, networks
are merged (e.g., due to an acquisition), or operators with
historical knowledge of the network leave an organization.

A simple way to ensure a change does not negatively impact
seemingly unrelated behaviors is to examine all categories
of end-to-end behaviors for all (pairs of) prefixes. However,
this is prohibitively expensive [9], and likely results in lots
of unnecessary computation—e.g., if access from a subnet
was already restricted, then further restrictions in access are

unlikely to impact reachability. Ideally, only behaviors that
could potentially be impacted should be examined.

In summary, repeatedly analyzing full snapshots of the
control plane is wasteful, and determining which end-to-end
behaviors to analyze is hard.

3 Overview

This section overviews DNA, a modular network analysis
framework which can incrementally compute the “differences”
in forwarding behavior that arise from “differences” in the
control plane. We will first present the framework of DNA,
and use an example to show its workflow. After that, we
discuss three challenges when realizing DNA.

3.1 The DNA workflow

DNA is a modular framework with three stages, where each
stage consumes and produces some forms of differences.

* The first stage consumes control plane changes and sim-
ulates the control plane to generate differences in data
plane state (i.e., insertions/deletions of forwarding rules).

* The second stage updates a data plane model to generate
differences in forwarding graphs (i.e., insertions/dele-
tions of packet equivalence classes on edges).

* The third stage identifies and checks relevant end-to-end
forwarding behaviors to generate differences in end-to-
end properties (e.g., changes in reachability).

We use an example to show how these three stages work.

An example network. Figure 2(a) shows an example network
which is used throughout the paper. The network has five
routers running BGP. Router E announces two /24 prefixes
and one /16 prefix. There is an outbound route filter at port
2 of router E, which filters routes for the /16 prefix, and an
inbound ACL at port 2 of router D, which drops all traffic to
the two /24 prefixes. The green and yellow arrows represent
the best routes selected at each router.

To simulate a change, we consider a single link failure, i.e.,
the link between router C and E fails. As a result, router A can
no longer reach the two /24 networks. We show how DNA
can uncover this change in reachability.

Stage 1. Differential control plane simulation (§4). This
stage takes as input differences in control plane state, incre-
mentally simulates the control plane, and outputs differences
in data plane state. Differences in control plane state are in-
sertions/deletions of configuration lines, external routes, or
links/routers, and differences in data plane state are insertion-
s/deletions of forwarding/ACL rules. Generally, simulating a
control plane entails modeling the route propagation, filtering,
and selection behaviors within and across distributed routing
protocols to compute the converged control plane state and
produce a concrete data plane [1,7, 14,34,37,38]. To be in-
cremental, we must transition from one converged state to

outbound route-map /24
filter 1.2.0.0/16 ™. /16 Networks
3 = 1 1.1.1.0/24

The DNA System

112.0/24) Differential
1.2.0.0/16 - Link(C, 1, E, 2) Control Plane
... inboundACL Control Plane Simulation
deny 1.1.1.0/24 Changes (54)

deny 1.1.2.0/24
(a) A walkthrough example for DNA

- FIB(C, 1.1.1.0/24,1)
+FIB(C, 1.1.1.0/24, 2)
- FIB(C, 1.1.2.0/24,1)

Differential Differential
+FIB(C, 1.1.2.0/24, 2) Data Plane Property - Reach(A,, £, a)
Data Plane Modeling Data Plane Model Checking Property Changes
Changes (85) Changes (86)

(b) The workflow of DNA

Figure 2: An example demonstrating the workflow of DNA.

another, accounting for the impact of control plane changes
on route propagation, filtering, and/or selection across routers.

In our example, the link failure between port 1 of C
and port 2 of E will be encoded as a deletion of a record
Link(C,1,E,2), which is the input the Stage 1. Given this
input, DNA simulates the control plane and generates FIB
differences: e.g., at router C, the two /24 routes whose output
portis 1 (2) are deleted (inserted), as shown Figure 2.

Stage 2. Differential data plane modeling (§5). This stage
takes as input differences in data plane state, incrementally
constructs a data plane model, and outputs differences in the
data plane model. Generally, a data plane model partitions
the packet space into Equivalence Classes (ECs), each of
which represents a set of packets with the same forwarding
behavior through the network [26]. Then, the model concisely
encodes the forwarding behavior of packets with a forwarding
graph, where each edge is labelled with ECs that can traverse
it [18,48], as shown in Figure 2. When rules are inserted or
deleted, ECs are split, merged, and transferred among edges,
to reflect the forwarding behavior change.

In our example, there are three ECs in total, where a repre-
sents [1.1.1.0,1.1.2.255], b represents [1.2.0.0,1.2.255.255],
and c represents all other IP addresses (which are not shown
here). Since forwarding rules for the two /24 prefixes which
output to port 1 are deleted, and those which output to port
2 are inserted, EC a “transfers” from edge (C,E) to edge
(C,D) and from edge (B, C) to edge (B, D), as shown in Fig-
ure 2. Thus, the differences of data plane model consist of
two insertions and two deletions for EC a on these four edges.

Stage 3. Differential property checking (§6). This stage
takes as input differences in the data plane model (i.e., inser-
tions and deletions of ECs on the forwarding graph), incre-
mentally computes relevant forwarding behaviors, and outputs
the differences in properties. Here, the differences in proper-
ties, which we term as differential properties, are defined as
insertions and deletions of forwarding properties, including
reachability, waypointing, load balancing, etc. DNA computes
differential properties by traversing the forwarding graphs
from edge ports, which are ports that connected to the hosts,
servers, or other networks. The traversal starts with a set of
all affected ECs, which are updated by intersecting with those
ECs labelled on the edge. The traversal ends when the set of
ECs becomes empty or another edge port is reached.

In our example, we have three edge ports, i.e., port 1 of
A, B, and E. By traversing from these edge ports, we get the

differential reachability as —Reach(A,E|,a), meaning that
packets belonging to EC a can no longer reach port 1 of E
from port 1 of A. As will be shown in §6.2, DNA optimizes
the above computation by traversing directly from the change
points, where network forwarding behaviors change (B and
C in this example). Note that network invariants like loop-
freedom and blackhole-freedom are covered by differential
reachability, since loops or blackholes will result in some
pairs of end points becoming unreachable.

3.2 Challenges in realizing DNA

Realizing each of the three stages of DNA requires addressing
the following three challenges, respectively.

(1) How to achieve control plane simulation in a way that
is easy to extend? Network control plane has complex seman-
tics, and simulating a control plane to cover all relevant feature
often lead to complex code base. Generally, an incremental al-
gorithm can be much more complex than its non-incremental
counterpart [39]. Thus, incremental control plane simulation
can be difficult to build. In addition, this is not a once-for-all
task, considering the semantics of the control plane are still
evolving, and new vendor-specific features emerge. Therefore,
DNA needs to realize incremental control plane simulation in
an easy-to-extend way.

(2) How to efficiently update data plane model for
batched rule updates? Existing data plane verifiers are de-
signed to consume single-rule updates—i.e., for each rule
insertion or deletion, they individually update the model. For
DNA, however, the differences in data plane state consist of
a batch of rule updates. As an example, a link failure causes
deletions of rules for multiple prefixes which are previously
forwarded through the failed link. In such a setting, consum-
ing single-rule updates can result in redundant computation,
since these rule updates are often correlated. Therefore, DNA
needs to optimize the data plane model update algorithm for
batched rule updates.

(3) How to determine and only re-check affected proper-
ties? Existing data plane verifiers can incrementally check
invariants like blackhole-freedom and loop-freedom by only
re-verifying the ECs affected by a FIB update. DNA, how-
ever, needs to check all properties of some type (e.g., all-pairs
reachability), and re-checking all these properties is wasteful
since often only a small portion of the properties are affected.
Therefore, DNA needs a way to determine which properties

are affected, which is not easy: e.g., it is unclear which reach-
ability properties may be affected by a change in OSPF cost.
We describe how we address these challenges in §4—§6.

4 Differential Control Plane Simulation

As the first stage, DNA maps differences in configurations,
external routes, and available links/routers to differences in
FIBs. In the following, we show how DNA achieves this
mapping in an incremental and easy-to-extend manner.

4.1 Modeling the control plane

A network control plane computes routes in a recursive way:
each router receives routes from neighboring routers, filters
and/or modifies the routes, locally ranks the routes to select
the best routes, and advertises the best routes (which may
be filtered/modified) to neighboring routers. The steps are
repeated until routing converges—i.e., no more changes are
made to any routing information bases (RIBs).

Leveraging differential dataflow for automatic differen-
tial computation. The aforementioned process fits well into
the dataflow programming model. A dataflow program corre-
sponds to a directed graph where vertices represent operators
(i.e., functions that transform data), and edges represent the
flow of data between operators [20]. For control planes, fil-
tering, modifying, and selecting routes can be modeled with
operators, and the propagation of routes between RIBs corre-
sponds to the flow of data.

Differential Dataflow (DD) [35] is one dataflow program-
ming framework which supports general incremental compu-
tation for recursive dataflows. This is achieved with a set of
differential operators like join, count, etc. which efficiently
produce differences in outputs from differences in inputs.

The left of Figure 3 shows a part of the dataflow program
for OSPF route propagation using operators offered by DD. It
joins the routes stored in a collection BestOSPFRoute with
another collection 0SPFNeighbor to model the propagation
of routes from one router to another router; filters the
routes where the origin of the route is the router itself (in order
to prevent loops); joins with the collection OSPFCost to get
the OSPF cost configured on the interface where the route is
received; maps the routes to new routes with the OSPF cost
updated by adding the interface’s cost; and finally joins with
InterfaceIP to get the IP of the interface to produce routes
OSPFRoute, which will be further be processed to produce
the BestOSPFRoute (omitted here).

Leveraging differential Datalog for better extensibility.
As can be seen in the above example, modeling route com-
putation directly using low-level operators offered by DD is
less intuitive and can take a lot of effort, making the model
hard to extend to new (vendor-specific) protocols or features.
Therefore, we leverage Differential Datalog (DDlog) [2], a

Datalog programming language built on top of DD. In the fol-
lowing, we give some preliminary to Datalog, and introduce
our DDlog-based control plane model.

A Datalog program consists of a set of facts and rules.
A fact is a statement like “interface intf of router X
has OSPF cost cost”. This fact can be represented with
0SPFCost(X,intf,cost), where OSPFCost is termed a rela-
tion. A rule takes the form of Ry (u;) : —R2(u2),...,Ry(un),
where each R; is a relation, meaning R;(u;) holds if
Ry(u2),...,Ry(uy) hold. Given some base facts, one can de-
rive new facts by firing the Datalog rules.

DDlog-based control plane model. The right of Figure 3
shows the corresponding DDlog rule for the corresponding
dataflow model on the left. As we can see, DDlog allows us
to only focus on how routes (i.e., facts) are derived, without
caring about the sequence to join, map, or filter routes. Addi-
tionally, unlike other Datalog languages [5,21], DDlog offers
several useful data structures, such as vectors, which make
the modeling of route computation much easier.

Figure 4 shows the flow of data in our DDlog-based control
plane model. If relations A and B appear on the left and right
side of a rule, respectively, then there is an edge from B to A
in the graph. If multiple relations appear on the right side of a
rule to derive relation A, we merge their edges to A.

There are three types of relations: input relations, output re-
lations, and intermediate relations. The input relations contain
base facts including: (1) configurations for routing protocols,
e.g., BGPNet contains the subnets imported to BGP; (2) net-
work topology, e.g., Link contains L3 links; and (3) external
routes, e.g2., ExtRoute contains routes announced by ISPs
that are out of scope of our model. There is a single output
relation, i.e., FIB, and multiple intermediate relations, e.g.,
GlobalRIB which contain derived facts, e.g., routes.

The DDlog-based control plane model treats changes in
the control plane as insertions and deletions of facts in input
relations. For example, modifying the OSPF cost on inter-
face 3 of router D from 10 to 100, is treated as two changes
—0SPFCost(D,3,10) and +0SPFCost(D, 3, 100). The resul-
tant changes in data plane state are insertions and deletions
of facts in the output relation, i.e., FIB.

4.2 Executing the control plane model

The control plane model, which is a DDlog program, will
be compiled into a DD program for execution. When execut-
ing the DD program, changes are propagated in the dataflow
graph, and at each operator the changes in input will be
mapped to changes in output. Since the dataflow is recur-
sive, the propagation continues for multiple iterations, until
there are no more changes (fixed point is reached). The inser-
tions and deletions in the output relation FIB will be returned,
and will be fed to Stage 2 (§5).

Figure 5 shows the execution of the control plane model for
our example network. We have over-simplified the execution

IOSPFNeighbor| IOSPFCost| IInterfaceIP|

BestOSPFRoute @ @ @ @ @ OSPFRoute

OSPFRoute(node, prefix, next_hop, next_hop_ip, cost, type, origin) :-
BestOSPFRoute(next_hop, prefix, _, _, sub_cost, type, origin),
OSPFNeighbor(node, intf, next_hop, next_hop_intf),
node != origin,

OSPFCost(node, intf, node_int_cost),
cost = sub_cost + node_int_cost,
InterfacelP(next_hop, next_hop_intf, next_hop_ip).

(a) The dataflow graph

(b) The Datalog program

Figure 3: Part of dataflow graph with the corresponding Datalog program snippet for OSPF route propagation.

B [Input Relation
l:l Output Relation

A
[] Intermediate Relation
e
| L

|
GlobalRIB [«——{ OSPFRIB [«———— BestOSPFRoute
|

| NeedMatchRIBOut [§ A & | BGPRIB |5
e

<

HT

| [tnk }—>{ospreighbor

|

|

|

|

|

2 MatchedRIBIn BGPBestRoute | |
|

|

I |
|

|

|

|

|

|

| RouteMapOut | | Link | [BGPNeigh| | BGPNet]

‘ StaticRoute ‘

The OSPF Loop
L

Figure 4: The flow of data in our control plane model. For simplicity, only the core relations are shown.

Link GlobalRIB
‘ (C, E, 1, connected) ‘
BGPRIB AdjRIBIn BGPRIB FIB
(E,1.1.1/24, 1) t4»-(C, 1.1.1/24, [EN -(C, 1.1.1/24, [E]) +»-(C, 1.1.1/24, 1)

-(C, 1.1.2/24, [E])oep -(C, 1.1.2/24, [E]) +p-(C, 1.1.2/24, 1)
(C,1.1.1/24, [DE]) |\}+(C, 1.1.1/24, [DE]) (C, 1/2
(C,1.1.2/24, [DE]) | ¥+(C,1.1.2/24, [DE]) (C,1.1.2/24,2

(E, 1.2/16, 1)

Figure 5: Control plane simulation for the example network.

by removing changes to a lot of intermediate relations and
only focusing on changes to Link, AdjRIBIn, BGPRIB, and
FIB. Here, the link failure —(C, E) is input to the DD compu-
tation engine. The deletion will be joined with existing facts
in BGPRIB to derive new facts. Since the change is a deletion
so the changes it derives are also deletions. After multiple in-
termediate steps, the change derives —(C, 1.1.1/24,[E]) and
—(C,1.1.2/24,]E]) in AdJRIBIn, meaning deletions of the
received routes for prefixes 1.1.1.0/24 and 1.1.2.0/24 with
AS path [E] at router C. These two deletions in AdjRIBIn
will trigger deletions of the old best routes and insertions of
the new best routes for router C in BGPRIB. The changes in
BGPRIB will then be joined with G1obalRIB to generate four
changes in the output relation FIB. For simplicity, only the
join of two deletions in BGPRIB and the corresponding fact in
GlobalRIB are shown in Figure 5.

4.3 Optimizations

Customizing functions for efficiency. As noted above, using
operators like join and map in DD can express simple opera-
tions like route propagation (routes are sent to neighboring
routers, costs are updated, etc.). However, directly modeling
more complex operations—e.g., BGP best route selection, ap-
plying route policies, etc.—using these DD operators requires
a lot of operators, making the evaluation less efficient.

For example, suppose we select best routes from received
routes R based on two conditions: local preference (LocPref)
and path length (PathLen). Using DD, we need to group routes
in R by prefix and use the aggregation function max to com-
pute the highest LocPref value for each prefix, and then join
the resultant collection R1 with R to obtain another collection
R2 which contains routes with the highest LocPref. Similarly,
we need to compute another two collections for PathLen. Cor-
respondingly, if we use DDlog, we need to declare two rules
and two relations for each condition. The original Datalog-
based version of Batfish [14] used the above approach to
realize BGP best route selection. Since there are many criteria
for BGP best route selection (Cisco uses 13 criteria), we need
a lot of DD operators, or correspondingly a lot of DDlog rules,
making the model inefficient to evaluate.

To make the model efficient to evaluate, we realize complex
operations (e.g., best route selection and route policies) with
customized functions, which can be wrapped inside a Reduce
operator offered by DD. Appendix C gives the code snippet
of the function for best routes selection. In our experiments,
by just customizing the process of best route selection, we
can achieve a ~40% speedup (§8.1).

Partitioning routes for parallel simulation. For the same
routing protocol, the propagation of different routes (prefixes)
are largely independent. In the absence of route aggregations,
two BGP routes 1.1.1.0/24 and 1.1.2.0/24 propagate inde-
pendently through the network. Therefore, we partition the
routes of the same routing protocol into groups, for parallel
evaluation, and merge their results to obtain the RIBs for this
protocol. In the following, we discuss why this works when
there are multiple protocols and route aggregations.

(1) Route Dependency. When there are multiple routing
protocols, routes may have dependencies. For example, BGP
routes may depend on the OSPF routes for the loopback inter-

- R1:1.1.1.0/24, portl
+R3:1.1.1.0/24, port2
- R2:1.1.2.0/24, portl
+R4:1.1.2.0/24, port2

(a) forwarding graph

(before update) (b) FIB changes @C

ic ci aia'ic

(e) ECs after +R3

ci a ic ciaia

(c) ECs before change (d) ECs after -R1

fc c! a ic

(g) ECs after +R4

(f) ECs after -R2

(h) forwarding graph
(after update @C)

Figure 6: Data plane model update for the example network.

faces of all iBGP peers in the same AS. We adopt a simple
approach where we group BGP routes and OSPF routes sepa-
rately, and schedule BGP groups only after all OSPF groups
are finished. More sophisticated scheduling [37] can be used
to handle more complex dependencies.

(2) Route Aggregation. Sometimes, different routes may be
correlated due to route aggregation. For example, a router
can aggregate routes for 1.1.1.0/24 and 1.1.2.0/24 into a single
route (1.1.0.0/16) when advertising to its neighbors. Although
it may seem this correlation prevents routes for 1.1.1.0/24 and
1.1.2.0/24 from being computed separately, our method is not
affected since each instance has all the rules and base facts
describing route aggregation. Thus, even if these two routes
are in different groups, both of them can be aggregated into
1.1.0.0/16. We can remove the duplicated routes of 1.1.0.0/16
when merging the routes of multiple instances.

5 Differential Data Plane Modeling

As the second stage, DNA maps differences in data plane
state to differences in the data plane model. We accomplish
this using APKeep [48], a state-of-the-art data plane model.
In the following, we first show that updating the model
by treating each data plane update separately can result in
redundant computation, and then show how DNA can leverage
correlation among rule updates to reduce such redundancy.

5.1 Single-rule model update

We return to the example network to show how APKeep up-
dates the data plane model. We only consider the rule updates
at Router C, as shown in Figure 6(b). The rule updates at
Router B are quite similar and thus not discussed here.

Step 1. Identifying forwarding behavior changes. For each
rule update, APKeep identifies the packets that change for-

warding behavior' by analyzing rule dependency. Returning
to the example, after removing R1, APKeep determines that
packets which previously match destination IP addresses in
1.1.1.0/24 will not match any lower-priority rule, and thus
will be dropped. Then, the forwarding behavior change will
be a 3-tuple (1.1.1.0/24, port1,drop) which specifies the af-
fected packets, old, and new output port, respectively.

Step 2. Updating the forwarding graph. For each change,
APKeep updates the ECs, and transfers the updated ECs on the
forwarding graph. Specifically, APKeep iterates over all ECs
assigned to the old port, and check whether each EC belongs
to or intersects with the affected packets. For the former, the
EC will be transferred directly; while for the latter, the EC
needs to be split before the transfer. In this example, the
affected packets 1.1.1.0/24 will split EC a into two ECs, @’
for 1.1.1.0/24, and " for 1.1.2.0/24, as shown in Figure 6(d).
Then, @’ will be transferred from port 1 to port drop (a default
port not shown here).

Figure 6(e) shows the insertion of R3, where step 1 iden-
tifies a behavior change (1.1.1.0/24,drop, port2), and step
2 transfers @' from port drop to port 2. Figure 6(f) shows
the deletion of R2, and Figure 6(g) shows the insertion of
R4, after which EC o' and EC «” have the same forward-
ing behavior and are merged into a single EC a. Figure 6(h)
shows the resulting differences of data plane model which are
insertions/deletions of EC a on two edges.

In large networks, a configuration change may produce
hundreds or thousands of rule updates, and performing the
above two steps for each of them is slow. For example, failing
a link in a fat tree with 180 routers results in over 3K rule
updates. Even though a single rule update takes only 1ms, it
still amounts to 3 seconds.

5.2 Batched model update

We observe that even when there are many rule updates, they
are highly correlated, such that we can batch them to reduce
redundant computation. In the following, we consider two
types of correlations.

Correlation among rule insertions and deletions. Rule
deletions are often accompanied by rule insertions for the
same IP prefix. Many configuration changes like changing a
BGP local preference or OSPF link cost will make the router
change the best routes for some destination prefixes. Each
change of best route would translate into a deletion of the old
rule and an insertion of a new rule.

Based on the above correlation, we can batch rule dele-
tions and insertions for step 1. Returning to our example,
deleting R1 and inserting R3 requires updating the data
plane model twice. However, by batching the deletion of
R1 and insertion of R3, we can directly identify the change

!n this section “forwarding behavior” refers to hop-by-hop forwarding,
not end-to-end forwarding.

as (1.1.1.0/24, port1, port2). Therefore, we only need to run
step 1 once. Moreover, step 1 will be more efficient since we
do not need to analyze rule dependency. Similarly, by batch-
ing the deletion of R2 and insertion of R4, we can use another
run of step 1 to identify a change (1.1.2.0/24, port1, port2).

Correlation among rule updates on the same device. Rule
updates on the same device are often quite similar, e.g., route
deletions/insertions have the same output port. Many configu-
ration changes like bringing down/up an interface will delete
routes that output to the interface, and add new routes that
output to other interfaces.

Based on the above correlation, we can batch forwarding
behavior changes on the same device for step 2. Returning
to the example, the two changes (1.1.1.0/24, port1, port2)
and (1.1.2.0/24, port1, port2) have the same old port and
the same new port. Instead of performing step 2 for each
of these two changes, we can batch them as a single one
(1.1.1.0/24 v 1.1.2.0/24, port 1, port2), and run step 2 only
once. Moreover, we can directly transfer EC a from port1
to port2, without splitting a, further reducing computation
overhead. Since step 2 needs to check all ECs of the old port,
each involving a BDD operation, it dominates the overall
running time of model update, and by batching changes for
step 2, we can significantly reduce the overall running time.

In sum, APKeep needs to run the above two steps for each
of the four rule updates, while after batching DNA only needs
to run step 1 twice (without analyzing rule dependency), and
step 2 once (without splitting and merging of ECs). As a
result, DNA can directly update the model as Figure 6(g),
avoiding intermediate steps shown in Figure 6(d)-(f).

Note that some of the batching methods can also be applied
to other data plane verifiers. For example, Delta-net [18] can
also be modified to leverage the first correlation. However, it
is not clear how Delta-net can leverage the second correlation.

6 Differential Property Checking

This stage tracks network properties and returns differences,
which we call differential properties. We focus on differential
reachability, differential waypointing, and differential load
balancing. In this section, we define these differential proper-
ties, and introduce an algorithm to efficiently compute them.

6.1 Defining differential properties

A network can be viewed as a big switch providing connec-
tivity among entities including hosts, servers, middleboxes,
external networks, etc. We term the ports at which these enti-
ties connect to the network as edge ports. We are interested
in analyzing forwarding properties between the edge ports.
A forwarding property is defined in terms of a pair of edge
ports (es, e4), an equivalence class (ec), and other property-
specific parameters. We focus on three types of properties:

{AL-Bi} {-Ay-Bi} {-Ay,-Bi} {A1}
b

*(ERE)
,b

{81} {81} {+B:}
(a) old forwarding graph

(b) new forwarding graph

Figure 7: Differential reachability computation for the exam-
ple network.

* Reach(e, ey, ec)—packets in ec can reach e, from e;.
» Waypoint (es,eq,ec,w)—packets in ec can reach ¢4 from
es, traversing waypoint w.
 LoadBalance(ey,eq,ec,n)—packets in ec can reach ey
from e, and are load balanced among n forwarding paths.
Other properties like isolation, bounded path length, etc. [4,
6], can be similarly defined. Properties. denotes the set of
properties control plane c satisfies.

Given two control planes c; and c», the differences in
properties are defined as AProperties., ., := Properties., —
Properties;,. AProperties., ¢, is a multiset, where each
item can have multiplicity +1 or —1. In the follow-
ing, we consider the change of configuration ¢; — ¢y,
and omit the subscripts. For example, AProperties =
{—Reach(A,E,1.2/16)}, then we know this prefix is previ-
ously reachable from A to E1, but becomes unreachable after
the change. This is perhaps what the operators desire if they
want to prevent A; from reaching the prefix at Ey, or it can be
a violation of operator intent if it is unexpected. As another
example, AProperties = {—Waypoint(A;,E1,1.2/16,C)}
means this prefix will no longer traverse the waypoint C,
which may violate security policies. Finally, AProperties =
{—LoadBalance(B,E,1.2/16,2),+LoadBalance(B),E|,
1.2/16,1)} means the number of (disjoint) paths between B
and E| decreases from 2 to 1, which may cause congestion.
By looking at differences in properties, instead of compliance
of (all or user-specified) properties, operators can better un-
derstand the impact of prospective changes to their networks.

6.2 Computing differential properties

In this section, we show how DNA incrementally computes
differential properties. We use differential reachability as an
example, and discuss how to extend to the other two properties.
The left of Figure 7 shows the forwarding graph of the running
example. There are three edge ports, and here we only show
the reachability from port 1 of A and B (denoted as A and
By), to port 1 of E (denoted as E1).

A straightforward way to compute differential reachabil-
ity is to compute the reachability for the old forwarding
graph (before change) and the new forwarding graph (after
change), and compute the difference. The reachability for
the old graph is computed as follows. First, we start from
each edge port with all ECs. Then, at each node, we com-

pute the conjunction of these ECs with the ECs marked
on the edges, and move to the next hop with the conjunc-
tion of ECs. The traversal stops until another edge port is
reached. For example, starting from A, ECs a and b can reach
E), therefore we have a reachability Reach(A,,E;,{a,b});
similarly, we also have Reach(By,E;,{a,b}). The reachabil-
ity for the new graph is computed in a similar way, result-
ing in Reach(A,E,{b}) and Reach(Bi,E,{a,b}). There-
fore AProperties, ., = {—Reach(A1,E,a)}. We name this
straightforward method as TraverseAll.

According to our experiment, the TraverseAll method can
take tens to thousands of seconds to compute the differen-
tial rechability. To reduce the running time, we apply the
following two optimizations.

(1) Only traversing with ECs whose forwarding behav-
iors are affected. In this example, we only need to start the
traversal with EC a, since EC b is not affected. This optimiza-
tion has been used by exiting realtime data plane verifiers,
which check loops or blackholes by only traversing with those
affected ECs. We name this method as TraverseAll-Inc. How-
ever, even there are only few ECs affected, TraverseAll-Inc
still needs to enumerate all the pairs of edge ports, which can
still take a long time if the network is large.

(2) Directly traversing from change points instead of from
all edge ports. Here change points refer to nodes whose
forwarding behaviors change (B and C in the example). Since
the traversals before the change points are not affected, it is
not necessary to start the traversal from each edge port, e.g., in
this example we can start the traversal from B and C with EC
a. To make this optimization work, we need to incrementally
maintain intermediate state recording the traversal before the
change points, that is, for each node, which edge ports can
reach this node. For example, on the old forwarding graph,
node C should know that EC a can reach C from A and By,
such that when the traversal from C reaches E|, we can know
the reachability from A| and B; to Ej.

DNA enables both these optimizations, where optimiza-
tion (2) is enabled as follows. For each node and ec, DNA
maintains a set EdgeSet(ec,node), which stores all edge ports
from which ec can reach node. In this example the content
of EdgeSet(a,node) is marked aside node on the forward-
ing graphs. When traversing, we need to update EdgeSet
according to the rule that if an n; € EdgeSet(ec,n,), and ec
can reach n3 from ny, then we have n; € EdgeSet(ec,n3). In
this example, when traversing from C to E on the old for-
warding graph, since A1, B; € EdgeSet(a,C), we can derive
Ay,B) € EdgeSet(a,E). Since we are traversing the old graph,
A1, B should be deleted from EdgeSet(a,E), as shown on
the right of Figure 7. On the contrary, when traversing the new
graph, the derived entries should be inserted into EdgeSet.
Interested reader can refer to Appendix A for the algorithm
to compute differential reachability.

Computing differential waypointing and load balancing.
Unlike reachability, computing differential waypointing and

load balancing requires tracking the forwarding paths be-
tween edge ports. Therefore, instead of maintaining the
edge ports from which ec can reach node, EdgeSet should
maintain the forwarding path taken by ec before reaching
node. When traversing, we need to update EdgeSet accord-
ing to the rule that if p; € EdgeSet(ec,ni), and ec can
reach n, from nj, then we have pi||n| € EdgeSet(ec,ny),
where p; is a forwarding path, and p;||n; appends n; to
p1. For the running example, (B;,B,C,E) will be deleted
from EdgeSet(a,E}), and (B1,B,D,E) will be inserted into
Edge(a,E)) after the change. Suppose C is a waypoint, then
the change in EdgeSet (a, E}) indicates that packets belonging
to EC a, sent from By will no longer traverse the waypoint C.

Computing properties under link failures. We can lever-
age differential property to compute properties under link
failures. For example, we can compute reachability properties
that hold when any single link can fail. First, we compute a
set R of all reachability properties when no links fail, Then,
we fail each link one by one, and after each failure we com-
pute differential reachability. For each deletion of reachability
property, we remove it from the set R. After failing each sin-
gle link, R contains all reachability properties that hold under
any single link failure.

7 Implementation

We implement DNA in Java. First, we use Batfish [1] to parse
the configuration files into vendor-neutral configuration ob-
jects, and write a parser to generate a set of insertions of base
facts for the DDlog program.

For stage 1, we model the control plane with 800 LOC
in DDlog. The model currently supports BGP, OSPF, static
routes, routing policies, redistribution, reflector, communities,
etc. The control plane model is compiled by the DDlog com-
piler into a DD program for execution. For stage 2, we extend
APKeep [48] to optimize the model update algorithm for
batched rule updates. For stage 3, we implement an algorithm
to compute differential reachability (Appendix A).

Additionally, we implement a scheduler in Python to par-
allelize the data plane generation. The scheduler uses the
DDlog’s CLI, and maintains multiple instances of the DDlog
program, each of which is responsible for a group of prefixes.

8 Experiments

We evaluate DNA with both real and synthetic updates. We
are interested in the following questions: (1) can DNA speed
up differential property checking (§8.1 and §8.2)? (2) is incre-
mentally simulating the control plane always better when the
changes are large, and can parallelization help DNA better
scale to large changes (§8.3)? (3) can DNA also speed up
property checking under link failures (§8.4)?

Table 1: Types of synthesized changes.

ID ‘ Update ‘ Explanation
1 InterfaceUp Bring up an interface
2 InterfaceDown | Shut down an interface
3 NetworkAdd Add a subnet to advertise to BGP
4 NetworkDel Delete a subnet to advertise to BGP
5 NeighborAdd | Add a BGP neighbor
6 NeighborDel Delete a BGP neighbor
7 LocalPref Change the local preference
8 MultiPath Allow to select up to k paths
9 Aggregation Add an aggregation rule
10 | StaticRoute Add a static route
105 Timeout :
4 ; Ed (#nodes=180, #links=864)
10° (#nodes=320, #links=2048)
= 10° (#nodes=500, #links=4000)
5 107 i
£ 10" B (Y
F 100 ; |!
o sl il
102 kY i . glg . .
B&tﬁﬁ;’{he 77ra,777/;lu 12 3 5 9

Figure 8: The time for DNA to compute differential reacha-
bility for synthetic changes on fat trees.

Setup. We run all the experiments on a server with two 12-
core Intel Xeon CPUs @ 2.3GHz and 256G memory. Unless
otherwise specified, a single core is used for these methods
(except Batfish which is multi-threaded).

8.1 Synthetic changes

First, we evaluate the running time of DNA with synthetic
changes. Specifically, we use different sizes of fat trees run-
ning BGP, where each node is assigned a distinct AS number
and peers with all its adjacent nodes. We synthesize 10 dif-
ferent types of change, as shown in Table 1. Updates (1) and
(2) can be used to simulate link failures and recovery, respec-
tively. Updates (3) and (4) can be used to simulate changes
in external routes. Update (7) adds a route map to change the
local preference for routes received at one interface from 100
to 150 (more preferred).

Figure 8 reports the running time for DNA to compute
differential reachability. For comparison, we also include
the results for computing all-pair reachability using Batfish,
Minesweeper, and Tiramisu. These tools can then compute
differences of the all-pair reachability afterwards (the time
to compute difference is not counted here). As we can see,
DNA achieves a second-level running time for each control
plane update, which is at least 3 orders of magnitude faster
than existing tools—Minesweeper’s [6] and Tiramisu’s [4]
main bottleneck is the number of links and end-host pairs,
respectively. Here, init corresponds to the time for DNA to ini-
tialize, i.e., taking the original configuration snapshot as input,

and running the three stages in the same way as processing a
configuration update.

Figure 9 shows a breakdown of running time for the three
stages, on fat tree (#node=500, #links=4000). As shown in
Figure 9(a), DNA’s control plane simulation takes less than 1
second for all updates except Update 8, while Batfish, which
is not incremental, always takes 24 seconds. We also compare
against a version of DNA without customized functions for
best route selection (§4) (DNA™), and observe the simulation
is ~40% faster with our customized functions. Although the
absolute savings for a large fat tree is only ~100ms, the differ-
ence is substantial when we consider link failures: e.g., control
plane simulations for all single link failures (not shown) take
~6 minutes longer with DNA™.

As shown in Figure 9(b), directly running APKeep can take
as long as 0.2 seconds, while DNA can achieve running time
mostly less than 0.01 seconds. In most types of changes, DNA
is 10x faster than directly running APKeep.

As shown in Figure 9(c), the TraverseAll method (travers-
ing from all edge ports with all ECs) can takes as long as
400 seconds to recompute the all reachability properties. For
TraverseAll-Inc (Traverse from all edge ports with only af-
fected ECs) method runs mostly around 1 seconds, but can
take more than 10 seconds for update 7 and 8. The reason is
that in these two updates, the affected ECs appear at all edge
ports, and TraverseAll-Inc still needs to traverse from all edge
ports. In contrast, DNA takes around 0.1 seconds, a speedup
of 1-2 orders of magnitude compared to TraverseAll-Inc. For
Updates 9 and 10, DNA and TraverseAll-Inc take roughly
the same small amount of time. The reason is that there are a
small number of affected ECs, but a large number of change
points. For example, adding a static route only affects ECs
overlapping with the route. However, since the route will be
advertised by BGP, the ECs will change forwarding behav-
ior at all nodes in the network. Therefore, both DNA and
TraverseAll-Inc need to traverse from all edge ports.

We also experiment on fat trees running OSPF, and the
trend is similar. The results can be found in Appendix §B.

8.2 Real changes

In addition to synthesized change, we also experiment with a
real trace of configuration changes collected from the back-
bone network of a university campus. In total, the network
consists of 28 routers and 50 physical links, running OSPF.
The trace consists of 67 configuration snapshots spanning over
three months. We compute the differences among consecutive
snapshots to create 66 updates, which are fed to DNA for
verification. The statistics on the network updates has already
been shown in Figure |

Figure 10 shows the running time for the three stages of
DNA. We compare the overall running time with Batfish,
since Minesweeper times out (>1h per update). Also, we
include the results for Baseline, which uses Batfish to generate

Batfish 22 DNA"

APKeep

(b) Stage 2. Data Plane Modeling

&3 TraverseAll
TraverseAll-Inc
K] K

DNA
102

- : v 10!
! 1 o 100
\E 4 £ 101
4 [
! 102
8 9 10

Type

(c) Stage 3. Property Checking

Figure 9: The breakdown of running time for synthetic changes on fat tree (#nodes=500, #links=4000).

102 ¢ 100
@ 10t w10t
o 100 © 102
£ € 3
i= 107" k = 10~
102 & 104
(a) Stage 1. Control Plane Simulation
1 .
- |~ Batfish
0.8 — Baseline
& 0.6 — DNA
O 04

0.2

01l 109 10! 102 103

Time (s)

Ul\—Batﬁsh
u‘—DNA
‘-QL Ub‘
(] 04‘
0.2
0 - L
1 0

Time (s)

1073

(a) Overall running time (b) Control Plane Simulation

CDF

0.2
0 A a2
10° 10% 103 102

© [— DNA © ['— TraverseAll-Inc
0.6 '-5 0.6 — DNA
0.4 O 04
0.2

0

103 102 10! 100 10! 102 101 10

Time (s) Time (s)

(c) Data Plane Modeling (d) Property Checking

Figure 10: The time to verify configuration changes of campus network.

the new data plane, APKeep to update the data plane model,
and Traverse-All to compute differential reachability. We
can see that DNA takes <1 second per update for 90% of
all updates, while Batfish takes >500 seconds per update.
Baseline is faster than Batfish by using realtime verifier (i.e.,
APKeep), but still takes tens of seconds per update on average.

Also note that for ~20% of updates, the running time of
DNA is less than 10ms. The reason is that for these updates,
some interfaces or ACL rules are added without taking effect,
and the output of the first stage is empty. The second and third
stage are not even invoked. However, it is hard and risky to
manually determine whether a change in configuration files
has effect on the network, and without DNA we still need to
check them using tools like Batfish or Minesweeper.

For control plane simulation, we compare the results of
DNA with those of Batfish. For more than 90% of changes,
the generation time is less than 0.12 seconds. While Batfish
takes more than 4 seconds for each single change. This shows
that incrementally generating data plane state is much faster
than from scratch in real networks. For model update, DNA
takes less than 1 second for 90% of changes, 10x faster than
APKeep. For reachability verification, DNA takes strictly less
than 0.1 second, while traversing from all edge points with
all or affected ECs can take several seconds.

Compared to the synthesized changes on fat trees, where
stage 1 dominates the overall running time, here stage 2 dom-
inates the overall running time. The reason is that the largest
fat tree (500 nodes, running BGP) has only SK ECs, while the
campus network has 45K ECs, due to the existence of ACLs.

8.3 Large changes and parallel simulation

In the previous two experiments, we mainly focus on small
configuration changes. However, a network can occasionally
experience large-scale changes [27], which may affect a large
number of devices. We simulate large changes by shutting
down a large number of interfaces in the campus network.

Figure 11 reports the time for DNA to incrementally simu-
late the control plane when failing a different number of links.
For comparison, we also include the results of Batfish. As
we can see, when failing a small number of links (say <10),
incrementally simulating the control plane is much faster;
while when the number increases to over 25 (single core), the
incremental simulation becomes even slower than generation
from scratch. This means that incremental simulation outper-
forms from-scratch simulation as long as the change sizes are
smaller than some threshold (in our case, 50%). While since
most of real changes are small (§2.1), incremental simulation
would mostly be a better choice.

We also note that parallelizing the control plane simula-
tion can increase such a threshold. Specifically, incremental
simulation with 24 cores has larger improvement for larger
changes. Even all links in the network were disconnected, the
incremental simulation time is still comparable with from-
scratch generation using Batfish.

We further study the effect of parallelizing control plane
simulation on different size fat trees. For both BGP and OSPF,
we randomly fail one node as well as all links connected to
this node. Figure 12 reports the control plane simulation time
for DNA with different number of cores. We can see the sim-
ulation speed increases with the number of cores. Due to the
overhead of parallel simulation, the speed-up is not significant
when the total time is already small (e.g., <1 second).

8.4 Enumerating link failures

One verification task is to check reachability under any single
link failure. Using Batfish we need to enumerate each link
failure and Minesweeper relies on SMT solvers to search for a
counterexample where a link failure breaks reachability. DNA
can leverage the similarity between the no link failure and
single link failure to enumerate all link failures efficiently.
In this experiment, we evaluate the time to check reacha-
bility policies with any single link failure, i.e., whether two

— Batfish - DNA-1 -e- DNA-24

1.5 BGP 25

e 1.2 20
= 1
T 4 2 0.9 15
E [
E, E 06 10
o3 5
Pt 0 T T O O O O A 0
0 5 10 15 20 25 30 35 40 45 50 1 2 4 812162024
#Link failure #Cores

—— (180, 864) — (320, 2048) -—= (500, 4000)

OSPF

0
1 2 4 812162024

=3 Batfish =3 Config2Spec B3 DNA
105 Minesweeper C3 Tiramisu
104
103
102
10!
10°
10!

Time (s)

8Gp Ospe 8Gp Ospe 8Gp Ospe 8Gp Ospe 8Gp Ospe
(20, 32) (80, 256) BICS

Columbus US Carrier

Figure 11: The running time Figure 12: The running time for control plane Figure 13: The total time for checking reachabil-
for control plane simulation simulation on fat trees, for one node failure ity under any single link failure. (n,n,) repre-

on the campus network. with multiple cores.

hosts or ports are always reachable if any link can fail. We
use two sizes of fat trees with 20 and 80 nodes, and three ISP
topologies from Config2Spec. For each topology, we fail a
link each time, and let DNA compute differential reachability.

For comparison, we run Batfish, Minesweeper, and
Tiramisu to check the reachability between each pair of hosts
on the same networks. We also include Config2Spec for
comparison, since it is shown to outperform both Batfish and
Minesweeper when checking all-pair reachability under link
failures. Since Config2Spec also checks other properties like
load balancing, we modify it to let it only compute all-pair
reachability for a fair comparison.

As shown in Figure 13, DNA is at least 10x faster than
Batfish and Minesweeper, 3x faster than Config2Spec, on
all topologies. DNA is also faster than Tiramisu by 10x on
the 80-node fat tree. The speedup of DNA on the three ISP
topologies is not as remarkable as on fat trees. The reason is
that the links on the ISP topologies are not as redundant as
on fat trees, and a single link failure has a larger impact on
reachability. The above results imply that by leveraging the
similarity among network snapshots with and without a failed
link, DNA can check reachability policies under any single
link failure faster than existing control plane verifiers.

9 Related Work

Control plane simulation/emulation. Control plane veri-
fiers have employed several approaches for simulating the
control plane including: a Datalog engine [14], an explicit
state model checker [37], a generalized variant of Dijkstra’s
algorithm [34], abstract interpretation [7], and custom simula-
tion engines [1,38,45]. However, all these approaches restart
the simulation from scratch when the control plane changes,
and do not reuse any of the state from prior simulations. The
preliminary version of this paper [47] introduces incremental
network configuration verification, but does not parallelize
incremental control plane simulation, and has limited support
for incremental data plane modeling and property checking.
Control plane emulators [32] can accommodate control plane
changes in an incremental manner, but they scale poorly due
to their use of actual routing protocol implementations.

Symbolic control plane verifiers. Symbolic control plane
verifiers characterize the space of data planes the control

sents fat tree with n; nodes and n, links.

plane may produce using graph algorithms [4, 15], SMT
constraints [6,43], or binary decision diagrams [13]. Even
though some incremental graph algorithms exist [29] and
SMT solvers offer some support for incremental solving [11],
these capabilities are not sufficient to accommodate arbitrary
control plane changes.

Data plane verifiers. Realtime data plane verifiers [18, 23,
26,44,48] can quickly analyze data plane changes (e.g., for-
warding rule insertions), but cannot directly analyze config-
uration changes. DNA uses a realtime data plane verifier,
APKeep [48], as one of its building blocks, and modifies AP-
Keep to batch data plane changes for efficient processing,
Other realtime data plane verifiers could also be modified to
batch data plane changes and be used in DNA. NoD [33]
uses Datalog, but NoD is not realtime.

Specification mining. Policy Units [8], Config2Spec [9], and
Anime [25] infer a network’s end-to-end behaviors from its
configurations. We could compute differences in end-to-end
behavior by applying such tools before and after a configu-
ration change. However, due to the prevalence of small con-
figuration changes (§2.1), such an approach unnecessarily
duplicates computation in the same manner as applying a
control plane verifier before and after changes (§1).

10 Conclusion

Differential Network Analysis (DNA) addresses a critical gap
in control plane analysis: efficiently and effectively identi-
fying differences in end-to-end forwarding behaviors aris-
ing from control plane changes. DNA uses a three-stage
process that leverages advances in differential dataflow pro-
gramming frameworks and data plane verifiers, along with
domain-specific optimizations. Our evaluations using real and
synthetic control plane changes show that DNA is able to
compute differences in reachability in a few seconds—up
to 3 orders of magnitude faster than state-of-the-art control
plane verifiers. Thus, DNA provides a promising approach
for operators to assess the impact of control plane changes.

Acknowledgements. We would like to thank the anonymous
NSDI reviewers and our shepherd Brighten Godfrey for their
valuable feedback. This work is partially supported by the Na-
tional Natural Science Foundation of China (No. 61772412)
and the National Science Foundation (No. 1763512).

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Batfish. https://github.com/batfish/batfish.

Differential Datalog (DDlog). https://github.com/
vmware/differential-datalog.

Internet2 - visible backbone.
internet2.edu/Internet2/.

A. Abhashkumar, A. Gember-Jacobson, and A. Akella.
Tiramisu: Fast and general network verification. In
USENIX NSDI, 2020.

M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld,
D. Olteanu, E. Pasalic, T. L. Veldhuizen, and G. Wash-
burn. Design and implementation of the LogicBlox
system. In ACM SIGMOD, 2015.

R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A
general approach to network configuration verification.
In ACM SIGCOMM, 2017.

R. Beckett, A. Gupta, R. Mahajan, and D. Walker.
Abstract interpretation of distributed network control
planes. In ACM POPL, 2020.

T. Benson, A. Akella, and D. A. Maltz. Mining policies
from enterprise network configuration. In ACM IMC,
2009.

R. Birkner, D. Drachsler-Cohen, L. Vanbever, and
M. Vechev. Config2Spec: Mining network specifica-
tions from network configurations. In USENIX NSDI,
2020.

G. Comarela, G. Giirsun, and M. Crovella. Studying
interdomain routing over long timescales. In ACM IMC,
2013.

L. De Moura and N. Bjgrner. Z3: An efficient SMT
solver. In International conference on Tools and Al-
gorithms for the Construction and Analysis of Systems,
2008.

A. Elmokashfi, A. Kvalbein, and C. Dovrolis. BGP
churn evolution: A perspective from the core.
IEEE/ACM Transactions on Networking, 20(2):571—
584, 2012.

S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Mill-
stein, V. Sekar, and G. Varghese. Efficient network reach-
ability analysis using a succinct control plane represen-
tation. In USENIX OSDI, 2016.

A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan,
R. Govindan, R. Mahajan, and T. Millstein. A general
approach to network configuration analysis. In USENIX
NSDI, 2015.

https://vn.net.

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

A. Gember-Jacobson, R. Viswanathan, A. Akella, and
R. Mahajan. Fast control plane analysis using an abstract
representation. In ACM SIGCOMM, 2016.

A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and
R. Mahajan. Management plane analytics. In ACM
IMC, 2015.

P. Gill, N. Jain, and N. Nagappan. Understanding net-
work failures in data centers: measurement, analysis,
and implications. In ACM SIGCOMM, 2011.

A. Horn, A. Kheradmand, and M. R. Prasad. Delta-net:
Real-time network verification using atoms. In USENIX
NSDI, 2017.

K. Jayaraman, N. Bjgrner, J. Padhye, A. Agrawal,
A. Bhargava, P. C. Bissonnette, S. Foster, A. Helwer,
M. Kasten, I. Lee, A. Namdhari, H. Niaz, A. Parkhi,
H. Pinnamraju, A. Power, N. M. Raje, and P. Sharma.
Validating datacenters at scale. In ACM SIGCOMM,
2019.

W. M. Johnston, J. P. Hanna, and R. J. Millar. Advances
in dataflow programming languages. ACM Computing
Surveys, 36(1):1-34, 2004.

H. Jordan, B. Scholz, and P. Suboti¢. Soufflé: On synthe-
sis of program analyzers. In International Conference
on Computer Aided Verification, 2016.

S. K. R. Kakarla, A. Tang, R. Beckett, K. Jayaraman,
T. D. Millstein, Y. Tamir, and G. Varghese. Finding net-
work misconfigurations by automatic template inference.
In USENIX NSDI, 2020.

P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKe-
own, and S. Whyte. Real time network policy checking
using header space analysis. In USENIX NSDI, 2013.

P. Kazemian, G. Varghese, and N. McKeown. Header
space analysis: Static checking for networks. In USENIX
NSDI, 2012.

A. Kheradmand. Automatic inference of high-level
network intents by mining forwarding patterns. In ACM
Symposium on SDN Research, 2020.

A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey. Ver-
iFlow: Verifying network-wide invariants in real time.
In USENIX NSDI, 2013.

H. Kim, T. Benson, A. Akella, and N. Feamster. The evo-
lution of network configuration: a tale of two campuses.
InACM IMC, 2011.

H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster,
and R. Clark. Kinetic: Verifiable dynamic network con-
trol. In USENIX NSDI, 2015.

https://github.com/batfish/batfish
https://github.com/vmware/differential-datalog
https://github.com/vmware/differential-datalog
https://vn.net.internet2.edu/Internet2/
https://vn.net.internet2.edu/Internet2/

[29] Y. Li,J. Jia, X. Hu, and J. Li. Real time control plane ver-
ification. In Proceedings of the ACM SIGCOMM 2019
Workshop on Networking and Programming Languages,
pages 2-2, 2019.

[30] B. Liu, A. Kheradmand, M. Caesar, and P. B. Godfrey.
Towards verified self-driving infrastructure. In ACM
HotNets, 2020.

[31] H. H. Liu, X. Wu, W. Zhou, W. Chen, T. Wang, H. Xu,
L. Zhou, Q. Ma, and M. Zhang. Automatic life cycle
management of network configurations. In SIGCOMM
Workshop on Self-Driving Networks, 2018.

[32] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada,
N. P. Lopes, A. Rybalchenko, G. Lu, and L. Yuan. Crys-
talnet: Faithfully emulating large production networks.
In ACM SOSP, 2017.

[33] N.P. Lopes, N. Bjgrner, P. Godefroid, K. Jayaraman, and
G. Varghese. Checking beliefs in dynamic networks. In
USENIX NSDI, 2015.

[34] N.P. Lopes and A. Rybalchenko. Fast BGP simulation
of large datacenters. In International Conference on Ver-
ification, Model Checking, and Abstract Interpretation,
2019.

[35] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.
Differential dataflow. In CIDR, 2013.

[36] D. Plonka and A. J. Tack. An analysis of network con-
figuration artifacts. In Proceedings of the 23rd Large
Installation System Administration Conference, 2009.

[37] S.Prabhu, K.-Y. Chou, A. Kheradmand, P. Godfrey, and
M. Caesar. Plankton: Scalable network configuration
verification through model checking. In USENIX NSDI,
2020.

[38] B. Quoitin and S. Uhlig. Modeling the routing of an au-
tonomous system with C-BGP. IEEE Network, 19(6):12—
19, 2005.

[39] L. Ryzhyk and M. Budiu. Differential Datalog. In
International Workshop on the Resurgence of Datalog
in Academia and Industry, 2019.

[40] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and
M. Vechev. Probabilistic verification of network config-
urations. In ACM SIGCOMM, 2020.

[41] Y. E. Sung, X. Tie, S. H. Y. Wong, and H. Zeng.
Robotron: Top-down network management at facebook
scale. In ACM SIGCOMM, 2016.

[42] D. Turner, K. Levchenko, A. C. Snoeren, and S. Sav-
age. California fault lines: understanding the causes and
impact of network failures. In ACM SIGCOMM, 2010.

[43] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishna-
murthy, and Z. Tatlock. Scalable verification of border
gateway protocol configurations with an SMT solver. In
ACM OOPSLA, 2016.

[44] H. Yang and S. S. Lam. Real-time verification of net-
work properties using atomic predicates. In IEEE ICNP,
2013.

[45] F. Ye,D. Yu, E. Zhai, H. H. Liu, B. Tian, Q. Ye, C. Wang,
X. Wu, T. Guo, C. Jin, et al. Accuracy, scalability, cov-
erage: A practical configuration verifier on a global wan.
In ACM SIGCOMM, 2020.

[46] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic test packet generation. In ACM CoNEXT,
2012.

[47] P. Zhang, Y. Huang, A. Gember-Jacobson, W. Shi,
X. Liu, H. Yang, and Z. Zuo. Incremental network con-
figuration verification. In ACM HotNets, 2020.

[48] P. Zhang, X. Liu, H. Yang, N. Kang, Z. Gu, and H. Li.
APKeep: Realtime verification for real networks. In
USENIX NSDI, 2020.

A An Algorithm for Computing Differential
Reachability

Algorithm | summarizes how DNA traverses the new forward-
ing graph while avoiding redundant traversal. The traversal
for the old forwarding graph is the same except Lines 6, 7,
and 10. For ease of notation, we represent each edge port
as a special node termed edge node. We traverse from each
change point loc with all the affected ECs pkts (Lines 2-3).
Suppose we are traversing from v to w, then we generate pkts’
by intersecting pkts with the ECs that can be forwarded to w
according to the data plane model (Line 15), and record this
information in R (Line 16). (loc,w, pkts) € R if pkts can reach
w from the change point loc. If w is another change point,
where the affected ECs are pkts”, the traversal continues to
w with pkts’\ pkts” (Line 17-18). In this sense, we delegate
the traversal of common ECs pkzs’ N pkts” to the traversal
starting from w, therefore avoiding the redundant traversal of
common ECs. If w is not a change point, the traversal contin-
ues to w with pkts’ (Line 19-20). The traversal ends when the
set of ECs becomes empty (Line 12-13).

After all traversals finish, the algorithm iterates over all
affected EC 9, and for each EC, extracts the forwarding paths
of & (Line 5). Then, for each link (loc,w) on the path, it
updates EdgeSet(d,w) according to topological order of w
(Line 6-7). If w is an edge node, it updates the reachability
matrix Reach (Line 8-10).

Algorithm 1: DiffReach(Graph, Changes)

Input: Graph: the forwarding graph; Changes: the set of
data plane model changes.
Output: Dif f: the differential reachability.
1 R+ {}
2 foreach (loc, pkts) € Changes do
3 L Traverse (loc,loc, pkts) ;

4 foreach & € U(locypkts)eChunges pkts do

5 Path(3) < {(loc,w)|(loc,w, pkts) € R, € pkts};

6 foreach (loc,w) € Path(d) do

7 EdgeSet(d,w) < EdgeSet(8,w) U EdgeSet(3,loc);
8 if w is an edge node then

9 L foreach e € EdgeSet(8,loc) do

10 L Dif f < Dif f U{+Reach(e,w,d)};

11 Function Traverse (loc,v, pkts) :
12 if pkts = 0 then

13 L return;

14 foreach (v,w) € Graph do

1s pkts' < pktsNEC(v,w);

16 R« RU{(loc,w, pkts')};

17 if (w, pkts”) € Changes then

18 L Traverse (loc,w, pkts'\ pkts");
19 else

20 L Traverse (loc,w, pkts');

Table 2: Types of synthesized changes (OSPF). The IDs con-
tinue after Table 1.

ID ‘ Update ‘ Explanation

11 InterfaceUp
12 | InterfaceDown
13 LinkCost

14 MultiPath

Bring up an interface
Shutdown an interface
Change the cost of one link
Allow to select up to k paths

&2 Batfish DNA £2 APKeep DNA B2 TraverseAll &= DNA
103 101 2z TraverseAll-Inc
= 102 ! = 100 10° ¢
@ U z 10 @ 102§ ,
@ 10 @ 10" o 101 L W
E E g 10 R W H §
F 10" F 10 F 100 = § B g
101 . ot s 103 K 4 101 i | i
11 12 13 14 11 12 13 14 1 2 13 14
Type Type Type

(a) Stage 1. Control (b) Stage 2. Data Plane (c) Stage 3. Property
Plane Simulation Modeling Checking

Figure 14: The breakdown of running time for synthetic
changes on fat tree (#nodes=500, #links=4000).

B Experiments for Fat Tree Running OSPF

Figure 14 shows the breakdown of running time for DNA, on
fat tree running OSPF. The updates are described in Table 2.

C Customized function for BGP best route se-
lection in DDlog-based model

The following shows the code snippet of the function for best
routes selection (simplified for ease of presentation).

BestRoute (route.node, route.dst, route.nexthop, ...) :-
MatchedRIBIn[routel],
var node = routel.node,
var dst = routel.dst,
var route = Aggregate((node, dst), select_best (routel))

function select_best (g: Group<’K, AdjRIBIn>): AdJjRIBIn {
var route = group_first(g);
for (routel in q) {
if (routel.LocalPref > route.LocalPref) route = routel

else if (routel.LocalPref == route.LocalPref) ({
if (len(routel.path) < len(route.path)) route =
routel

// origin, MED, eBGP < iBGP, router-id,
b

route // return the best route

}

	Introduction
	Motivation
	Control plane changes are often small
	Identifying behaviors to (re-)verify is hard

	Overview
	The DNA workflow
	Challenges in realizing DNA

	Differential Control Plane Simulation
	Modeling the control plane
	Executing the control plane model
	Optimizations

	Differential Data Plane Modeling
	Single-rule model update
	Batched model update

	Differential Property Checking
	Defining differential properties
	Computing differential properties

	Implementation
	Experiments
	Synthetic changes
	Real changes
	Large changes and parallel simulation
	Enumerating link failures

	Related Work
	Conclusion
	An Algorithm for Computing Differential Reachability
	Experiments for Fat Tree Running OSPF
	Customized function for BGP best route selection in DDlog-based model

