
Future Generation Computer Systems 143 (2023) 105–117

a

b

c

d

v
d
i
i
p

b

J

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Detecting DGA-based botnets through effective phonics-based
features✩

Dan Zhao a,b, Hao Li a, Xiuwen Sun c, Yazhe Tang a,d,∗

School of Computer Science and Technology, Xi’an Jiaotong University, China
Xi’an University of Finance and Economics, China
School of Computer Science and Technology, Anhui University, China
Science and Technology on Communication Networks Laboratory, China

a r t i c l e i n f o

Article history:
Received 22 March 2022
Received in revised form 23 January 2023
Accepted 29 January 2023
Available online 2 February 2023

Keywords:
DGA
Domain names
Machine learning
RFs
Botnet
Intrusion detection

a b s t r a c t

Botnets are machines that are increasingly controlled by cybercriminals to perform various attacks.
Traditional methods of defense, such as blocklisting, become ineffective because illegitimate domain
names are sprung out by the domain generation algorithm (DGA) periodically and rapidly to maintain
command and control (C&C) on servers. Deep learning and machine learning are candidate solutions
to the problem. Deep learning methods leverage high accuracy but cost more time. Machine learning
methods are qualified with high training speed in the context of frequent retraining to obtain high
accuracy. However, the existing machine learning solutions cannot precisely capture the linguistic char-
acteristics of domain names, which causes many false positives. For a comprehensive understanding
of strings of domain names, we present the DOmain Linguistic PHonIcs detectioN (DOLPHIN) method,
a novel method that can detect DGA-based botnets. Considering the context of detecting and the
correspondence between pronunciations and spellings of words, we design DOLPHIN patterns. They are
the classifications of variable-length vowels and consonants following the principles of phonics. Based
on DOLPHIN patterns, a novel matching automation is used to reconstruct domain names with the
components of variable-length vowels and consonants. From those domain names, DOLPHIN extracts
phonics-based features. We implement DOLPHIN in supervised learning methods and compare them
to the foremost methods FANCI, HAGDetector, and LSTM.MI. The experimental results show that,
compared to FANCI with random forests, DOLPHIN can achieve a higher detection accuracy of 0.0265
with lower FPR and FNR without bringing much overhead. DOLPHIN is also able to generalize to other
sources of data in the real world with the FPR decreasing by 0.0801 (62.97%) compared with FANCI.
DOLPHIN can cooperate with most linguistic features and brings an improvement in performance
compared to that of the existing linguistic feature-based methods.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Botnets are distributed networks that consist of infected de-
ices (bots), such as computers, cellphones, and Internet of Things
evices, which can launch various attacks, e.g., DDoS, data steal-
ng, and spam sending. They may make target networks or hosts
naccessible or crash. It is thus important to block botnets to
revent such attacks.
One mainstream way to achieve this goal is to identify and

lock the communication channel between bots and command

✩ The preliminary version was accepted at IEEE Global Communications
Conference 2021.
∗ Corresponding author at: School of Computer Science and Technology, Xi’an

iaotong University, China.
E-mail address: yztang@mail.xjtu.edu.cn (Y. Tang).
ttps://doi.org/10.1016/j.future.2023.01.027
167-739X/© 2023 Elsevier B.V. All rights reserved.
and control (C&C) servers [1]. For example, since many IP ad-
dresses or domain names of C&C servers are hard-coded into
malware binaries, one can undertake reverse engineering of bi-
nary and maintain a large blocklist of those IPs or domain names
[2]. Then, the online security systems can block the connections
to those IPs or domains according to blocklists.

Unfortunately, this method has become ineffective, as bot-
nets tend to use the domain generation algorithm (DGA) [3] to
periodically generate large numbers of pseudorandom domain
names. These illegitimate domain names, known as illegitimate
algorithmically generated domains (AGDs) [4], can change very
frequently. Only a few of them are registered. Thus, they can
barely be identified by fixed blocklists. DGA has become the
cornerstone technique for botnets. Specifically, measurements in-
dicate that the majority of the observed botnets use DGA as their
only mechanism for communication. Most of them are valid for a

short period, e.g., within only one day [5]. In addition, they may

https://doi.org/10.1016/j.future.2023.01.027
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.01.027&domain=pdf
mailto:yztang@mail.xjtu.edu.cn
https://doi.org/10.1016/j.future.2023.01.027

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117

s
t
b

e
[

t
s
f
F
5
m
u

s
i
[
s
o
T
a
c
t
c
t
d
r

c
n
a
a
s
c

D
c
o
t

p
D
I
i
c

o
p
g
T
t
c

2

c
n
n

l
i
w

pread out over different top-level domains worldwide. Hence,
he identification of illegitimate AGDs is the key to blocking most
otnets.
To overcome this problem, researchers have developed a vari-

ty of machine learning methods [6,7] and deep learning methods
8,9].

The deep learning methods leverage a high accuracy. However,
hey require training massive data and considerable time. In this
ituation, they are not acceptable for retraining to reduce the
alse negative rate [10] when DGAs produce new domains rapidly.
or example, the famous Conficker botnet (version C) generated
0,000 domain names per day [11]. In contrast, machine learning
ethods are qualified with a short training time. They can be
sed in most contexts.
Most machine learning methods analyze the patterns in the

trings of domain names: a legitimate domain must be mean-
ngful to humans; otherwise, it tends to be an illegitimate AGD
8,9,12]. The major features they are concerned with include
tructural features (e.g., the length of domain names, the number
f subdomains) and statistical features (e.g., n-gram, entropy).
hese features are used in machine learning classifiers. They
re the crucial inputs to the results of identification since the
lassifiers learn from these inputs and give the mapping between
hem and the classified results [13]. More recent approaches [9]
laim that involving linguistic features (e.g., the vowel ratio and
he ratio of consecutive consonants) can boost the accuracy of the
etection of illegitimate AGDs. Please note that ‘‘AGDs’’ hereafter
efers to the illegitimate AGDs.

However, previous linguistic features might not sufficiently
apture the real linguistic characteristics carried by a domain
ame, which may cause false positives and further lower the
ccuracy. Take the domain name nationalgeographic.com as
n example. The classical methods tend to mark it as an AGD
ince they identify this domain name as having many repeated
haracters (5 in total) and consecutive consonants (lg, gr, and
ph, 6 in total). Obviously, this is a false positive since this domain
name is the official website for the famous magazine National
Geographic.

Many false alarms are not allowed by a qualified botnet de-
tection system in real-world deployment [6,14], because this
would cause a frustrating user experience [6]. Therefore, when
identifying AGDs, it is essential to keep the false positive rate as
low as possible [14–16].

To determine the main factors that led to the above false
positives, we analyze 2000 prediction results using a classical
linguistic-feature-based method [9]. After inspecting the results,
there were 4.4% false positive samples (88).

We believe this is primarily because classical methods use
single letters as vowels and consonants to calculate linguistic
features which is not reasonable. According to inspection, we find
that 63.63% (56) of the aforementioned false positives have the
issue that vowels and consonants are spelled in multiple letters.
To address this problem, we explore the rationale behind the
classification of vowels and consonants.

Classical methods classify them based on single letters, i.e., a,
e, i, o, and u are classified as vowels, and the other letters
are consonants. However, this classification is not precise, as
vowels and consonants are defined by their pronunciations in
words. Therefore, single characters may not fully capture the
components in words. For example, graphic pronounces /græ-
fIk/, which contains two vowels, i.e., /æ/ and /I/, and three
consonants, i.e., /gr/, /f/ and /k/. That the pronunciation of /f/
maps to the spelling of ph is obvious. As a result, ph should
be considered a whole consonant instead of two consecutive
consonants. The spelling of ph, i, and c are called graphemes [17],

i.e., one or multiple letters, which are the smallest spelling units

106
[18]. The rationale behind the above example is phonics which
gives the mapping between the graphemes and their pronunci-
ations and proves that graphemes can be spelled with variable
lengths [18–20]. Therefore, it is necessary to change the classi-
fication of vowels and consonants by following the principles of
phonics so that the linguistic features can better contribute to the
detection of AGDs.

In this paper, we propose DOmain Linguistic PHonIcs detec-
tioN (DOLPHIN). We analyze and define DOLPHIN patterns, which
present a novel classification of consonants and vowels. The pat-
terns comprehend the correspondence between graphemes and
their pronunciations. These patterns are elaborately selected in
the context of identifying AGDs. Then, DOLPHIN identifies such
patterns and precisely extracts linguistic features from domain
names. In the former example of nationalgeographic.com,
OLPHIN views a, ion, al, e, o, i as vowels and n, t, g gr, ph,
as consonants. Since there are no consecutive consonants and
nly one repeated character (i.e., a) with the current classifica-
ion, the domain can be correctly identified as benign.

The most important innovation of this research is combining
honics-based linguistic features and using machine learning for
GA-based botnet detection with a lower false positive rate.
t offers an easy way to improve the performance of the ex-
sting methods that involve linguistic features. The significant
ontributions are listed as follows.

• To our knowledge, DOLPHIN is the first method to intro-
duce phonics for detecting AGDs. Specifically, we propose
DOLPHIN patterns in the context of identifying AGDs that
classify variable-length vowels and consonants following
the principle of phonics.
• We then design a novel matching automaton based on the

AC algorithm to address the varied-length letters (i.e., vow-
els and consonants) in domain names. The phonics-based
features can be extracted from the reconstructed domain
names.
• We provide a concrete implementation of DOLPHIN and

evaluate it with a real configuration and supporting elabo-
ration on phonics-based features. The results show a lower
false positive rate and a higher accuracy than the state-of-
the-art approaches. The results also argue that the phonics-
based features can contribute to a lower false positive rate
and a higher accuracy.
• To reveal the performance of detecting unknown DGA-based

botnets using traffic, a higher accuracy with a lower false
positive rate of DOLPHIN is also shown using heterogeneous
data in a real-world application.

The rest of this paper is organized as follows. The background
f linguistics is introduced in Section 2. Section 3 describes the
atterns and how we construct domain names and extract lin-
uistic features. We outline the implementations in Section 4.
he evaluation and experimental analysis are described in Sec-
ion 5. The related works are introduced in Section 6. Finally, we
onclude this paper in Section 7.

. Background of linguistics

This section introduces the traditional and a new way of
lassification of vowels and consonants. It also presents why the
ew classification of vowels and consonants helps classify domain
ames.
Traditionally, words are made up of units, which are single

etters within the alphabet. The single-letter units are classified
nto vowels (i.e., a, e, i, o, and u) and consonants (i.e., the rest
ithin the alphabet).

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117

t
v
n
(
p

i
p
r
l

p
a
E
/

g
g

linguists hold different opinions on phonology. They believe
hat the smallest units are vowels and consonants, which are
aried-length characters. For example, see consists of two pro-
unciations: a consonant /s/ (i.e., single letter) and a vowel /i:/
i.e., two characters). These units of pronunciation are called
honemes [21].
The above opinion is elaborated on in some of the follow-

ng points. First, vowels and consonants are recognized by their
ronunciations. Second, phonemes and graphemes (i.e., their cor-
esponding written symbols) are highly related [18]. Third, the
engths of graphemes are variable.

Next, we explicate the second point. It is supported by the
rinciples of phonics, which provide the indices of the particular
ssociations of phonemes and the corresponding graphemes in
nglish [18,19]. Let us take measure as an example. /m/, /e/,
Z/, and /@/ are four phonemes and m, ea, s, and ure are the

four graphemes. The correspondences could offer guides for clas-
sification, as well as predict graphemes with given phonemes or
predict phonemes with given graphemes following the instruc-
tion of the principles. According to correspondence, graphemes
are classified consistently with pronunciations. For example, m
and s are consonant graphemes, and ea and ure are vowel
graphemes. Thus, vowels and consonants are no longer written
as single letters.

How do the new vowels and consonants affect how we com-
pute the linguistic ratios of the strings of domain names?

First, we will elaborate on the constitution of the strings of
domain names. A domain name string may consist of one or sev-
eral words, and a word consists of one single or several syllables.
A syllable is defined as a combination of vowels and consonants,
and it is formed as a vowel preceded or followed by a consonant
or combination of consonants in English [22].

Based on the above relationship, vowel and consonant
phonemes affect the ratio of vowels and consonants in words
in the following way. The frequency of vowel and consonant
phonemes in a specific syllable is mostly fixed. Moreover, differ-
ent syllables have different frequencies of vowel and consonant
phonemes. Therefore, frequencies of the occurrence of vowel and
consonant phonemes are related to the number of syllable struc-
tures and which structures are present. Thus, the ratio of vowels
and consonants appears more accurately at specific ranges.

Accordingly, the frequency of pronunciations can be seen as
the frequency of graphemes. Thus, those ratios for legitimate
domain names will also appear at specific ranges since the names
are composed of one or several meaningful words. The ratios for
AGDs will not appear at the same ranges since AGDs are not
composed of meaningful words.

Therefore, the new phonics-based classification of vowels and
consonants leads to more accurate computing of linguistic ratios,
and it can provide a solution to the inaccurate classification of the
previous methods. Thus, it can lead to a better understanding of
the real linguistic characteristics of domain names.

3. Design of DOLPHIN

This section presents the design of DOLPHIN. We first intro-
duce DOLPHIN patterns that classify vowels and consonants based
on phonics. Then, we present a new matching method to recon-
struct domain names using DOLPHIN patterns. We also show how
to extract phonics-based features using the new domain names.

3.1. DOLPHIN patterns

Vowels and consonants are defined by their pronunciations,
and phonics connects the pronunciations with their spellings. The

key to phonics is that the pronunciation of a vowel or consonant

107
Table 1
DOLPHIN patterns.
Type Length Graphemes

1 a,e,i,o,u

D-Vowel 2 ai,al,ar,au,aw,ay,ea,ee,ei,
er,eu,ew,ey,ia,ie,ir,oa,oe,
oi,oo,or,ou,ow,oy,ue,ui,ur

3 air,ear,eer,igh,ign,ing
ion,oew,ore,our,ure

1 b,c,d,f,g,h,j,k,l,m,n
p,q,r,s,t,v,w,x,y,z

D-Consonant 2 bl,br,ch,ck,cl,cr,dr,fl,fr,
gh,gl,gr,kn,ld,lk,mb,mn,mp,
nd,ng,nk,nt,ph,pl,pn,pr,ps,
qe,qu,rh,sc,sh,sk,sl,sm,sn,
sp,st,sw,th,tr,wh,wr

3 dge,gue,nch,que,shr,spl
spr,squ,str,tch,thr

maps to a grapheme, which can be a single letter or a multigraph
that consists of multiple letters. We introduce the new classifica-
tion of vowels and consonants following the principles of phonics
since they lead to more accurate linguistic ratios, as explained in
2.

However, we cannot directly use all the graphemes in identify-
ing AGDs. Some graphemes are not typical and offer little support
for identification. For example, the grapheme ed is added to verbs
to make the past tense. However, most domain names include
no verb. If we use ed as a DOLPHIN pattern for identification,
it may lead to more consecutive consonants. In this situation,
the legitimate domain reddit.com will have three consecutive
consonants r, ed, and d, which would be mistakenly classified as
an AGD.

To this end, we select the graphemes based on the follow-
ing rules. (1) We exclude multigraphs with more than 3 let-
ters because they are infrequent, e.g., ngue. (2) We exclude the
graphemes that are rare, e.g., sch. (3) We exclude the graphemes
that do not conform to domain naming conventions by humans,
e.g., ed and es. (4) We exclude the graphemes that are consecu-
tively repeated letters, e.g., cc, ss, and cch. These consecutively
repeated letters may cause fewer consecutively repeated letters
when calculating features of AGDs.

Specifically, according to the above rules, we define DOL-
PHIN patterns based on the principles of phonics [18,19,23] and
mappings from the spellings of graphemes to their classification,
i.e., vowels or consonants.

We name the new type of vowels and consonants D-vowel
and D-consonant, respectively, as shown in Table 1. The total
number of selected graphemes is 118. D-vowels consist of 5
vowel characters, 27 vowel digraphs (i.e., multigraphs with 2
letters), and 11 vowel trigraphs (i.e., multigraphs with 3 letters).
Analogously, D-consonants consist of 21 consonant characters, 43
consonant digraphs, and 11 consonant trigraphs. For example, er
in butter is a vowel digraph by our new classification, instead
of a vowel e and a consonant r.

There are still some cases of inaccurate classification. Some
raphemes have variant pronunciations. For example, the
rapheme of qu in quarter is pronounced as /kw/. The same

grapheme in mosquito is pronounced as /k/.
These differences are a concern for linguists. However, we

focus on the classification of graphemes rather than specific pro-
nunciations. The classification of most variant pronunciations for
a grapheme is one and only one: either vowels or consonants,
e.g., the two pronunciations of qu all function as consonants.
Hence, the use of DOLPHIN patterns is unaffected by variant

pronunciations in most cases.

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117

o
b
s
g

3

p
t
i
p
l
a

A
m
i
f

i
i
n
t
o
s

g
t
d
n
u
t
c
a

(
Q
n

f

s

Thus, unlike the traditional detection system’s classification
f vowels and consonants, phonics-based vowels or consonants
ehave as different lengths of letters to stand for vowel or con-
onant sounds. For example, in the patterns, the lengths of the
raphemes of s and er in butter are 1 and 2, respectively.

.2. Extracting graphemes with Dolphin patterns

We have defined a more accurate classification of DOLPHIN
atterns. Now the remaining problem is how to adopt and locate
hese potential graphemes in a domain name. The essential work
s to split a string into several patterns defined with DOLPHIN
atterns. It is not a simple string matching problem since the
engths of the graphemes and which grapheme should be used
re not fixed.
A well-known algorithm for matching multiple patterns is the

C algorithm [24]. It is a finite state string pattern matching
achine. It consists of states, transitions, and 3 functions that

ndicate behaviors: a goto function, a failure function and a output
unction.

However, although it is a seemingly helpful technique, AC fails
n our case for the following reasons. First, AC accepts patterns
f the current state is a terminal state. If we use AC, domain
ames should be accepted by the single letters since the state
hat presents a single letter is a terminal state. Second, AC only
utputs the accepted characters, while in our case, the outputs
hould contain every character in domain names.
To solve the above problem, we design the following strate-

ies. First, the matching method should greedily match the pat-
erns. For example, when addressing the word of pair, the D-
omain name is [p, air] instead of [p, ai, r]. Therefore, we can-
ot judge whether we have read the maximum-length grapheme
ntil we read the next character. Second, it should recognize
he graphemes in a domain name from left to right since that
onforms to our reading habits. Third, the characters that are not
ccepted should be saved for further outputting.
Accordingly, we design a new finite state machine M =

Q , Σ, functions, q0, F) based on the classical AC algorithm, where
is the set of all states, Σ is the acceptable characters in domain

ames, functions contain 3 functions (i.e., the goto function g , the
failure function f , and the output function o), q0 is the initial state,
and F is the set of accepted states. The construction of the output
function and the behavior of the matching function are rewritten.
They are shown as algorithm 1 and algorithm 2, respectively. The
two algorithms will make sure to accept DOLPHIN Patterns when
the goto function returns fail. The design of the goto function and
ailure function remains unchanged in our method.

The constructor of the output function gives the output of each
tate when the goto function returns fail. The output function
saves the mapping between the state and the output; thus, the
algorithm can query the output quickly. It first calculates all the
partitions of each state from the initial state with the greedy
match. The output of a state s is assigned to the partitions. Then
the algorithm calculates the final output of s through the output
of s minus the output of the failure state of s. The subtraction is
done under the condition that the depth of the state is from the
minimum to 1.

The matching function puts a character into the register by
reading one from the input. The transitions of states follow the
goto function. When the result of the goto function is the message
of fail and the register is not empty, the algorithm calls the output
function and removes the output from the register. If the result
of the goto function is a state, the algorithm goes on to read the
next character. After reading the entire input, the state is set to
fail, and then the algorithm goes on to process the characters in
the register. When the register is empty, the algorithm stops.
108
Algorithm 1: Construction of Output Function
input : DOLPHIN pattern dp, failure function f and

deterministic finite automation dfa
1 function ConstructingOutput(dp, f , dfa)
2 q0.output ← empty;
3 for each state ̸= q0 do
4 str ← the successive letters from qo to state;
5 i← 0;
6 while i < len(str) do
7 lenGra← len(str)− i;
8 for lenGra ≥ 1 do
9 if str[i, lenGra] in dp then

10 state.output.append(str[i, lenGra]);
11 break;
12 else
13 lenGra−−;

14 i← i+ lenGra;

15 for n← 1−maxLenGrpheme) do
16 for each state.depth == n do
17 state.output ← state.output − f (state).output;

Algorithm 2: Matching Function
input : string of a domain name str , failure function f , go

function g , output function o and deterministic
finite automation dfa

1 function Matching(i, dist, len, curState)
2 state, i← 0; reg.append(str[0]);
3 state← g(state, str[0]);
4 while true do
5 if g(state, ch) is fail then
6 if reg is not empty then
7 o(state);
8 reg.remove(chars of output);
9 else

10 break;
11 state← f (state);
12 if there is a ch then
13 while g(previous, ch) is fail do
14 state← f (state);

15 else
16 i++;
17 if i < len(str) then
18 ch← str[i];
19 reg.append(ch);
20 state← g(state, ch);
21 else
22 state← fail;

We take the graphic as an example to elaborate on how
the algorithms work. First, we build M using DOLPHIN patterns
and functions. The state diagram of M for graphic is shown in
Fig. 1. We only use the related states and transitions for a clear
description. We also omit the failure transitions emitting to q0
for the same purpose. In Fig. 1, the solid arrows indicate the
transition in the goto function. The dashed arrows indicate the
transition in the failure function. The double circle marked with
x/y means that it is in the state x, and the output of the state
is y. The output of each state is calculated by Algorithm 1. For
example, in the first step of the algorithm, 2 and 8 greedily match
{r} and {gr}, respectively. f (2) = 0, and the output of 0 is empty,

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117

i

s
f

i
r
g
I
r
o
u
T
I
r
c
{

t
A
t
T

w
a
f

3

d

f
o
D
p
s

f
d
a
t
r
F
a

a
T

w
p
a

t
a
b

g
c

v
r
v
s
i

o
m
I
c
b

i
i
t
s
a
B
c

o
v
c
o
l
f

m
f
o
b
(
l
b
o

4

p
d
m

w
n
i
e

i
n
U
c
t

y
n

Fig. 1. The state diagram of M for graphic. x/y in the state circle means it is
n the state x and the output of state is y.

o the final output of 2 is {r}. In the same way, f (8) = 2, so the
inal output of 8 is {gr} − {r} = {gr}.

Second, we give the operating circle of Algorithm 2 with the
nput of graphic. Let s be the current state and reg be the
egister for letters that have not yet been output. After it reads
and calculates s = g(0, g) = 1, it enters the loop of while.

t reads r and calculates s as g(1, r) = 8. Then, it reads a with
eg = [g, r, a] and calculates s as g(8, a) = fail. Then, it outputs
(8) = {gr} and sets reg = [a]. Now, it calculates a new s = f (s)
ntil the next result of s is not fail. Thus, s is set to 2, 0, 3 in turn.
hen, it reads the next letter p, and the result of f (3, p) is fail.
t outputs o(3) = {a}. Analogously, {ph, i} are outputted. After
eading the last character c with reg = [c], s is set to fail for
ontinuing to output. Accordingly, the output of Algorithm 2 is
gr, a, ph, i, c}.

In this example, there is no digit or hyphen in the string. If
here is, there should be an additional state of default characters.
ccordingly, there is a transition from q0 to the state and a failure
ransition from the state to q0. The state is an acceptable state.
hus, all the characters in the domain name can be output.
Applying the new algorithms, M addresses a domain name

ith the output of a D-domain name that consists of D-vowels
nd D-consonants. They are regarded as a whole part in the
eature calculation.

.3. Phonics-based features

In this subsection, we explain how DOLPHIN patterns work in
etecting AGDs.
The proposed DOLPHIN patterns can be used in most linguistic

eatures since most of them are computed by the occurrences
f vowels and consonants. The linguistic features equipped with
OLPHIN patterns will have a better understanding of the com-
onents of domain names. Thus, they will result in a higher
ensitivity to the values of features.
Before we show how to calculate with the phonics-based

eatures, the following definitions are given. A domain name is
efined as d = s1.s2.sn.p1.p2.pm, which consists of the
cceptable characters denoted as Σ . In d, p1.p2. · · · .pm denotes
he public suffix defined by [25] under which users can directly
egister domains. s1.s2. · · · .sn denotes the user subdomains of d.
or example, in www.google.co.uk, co.uk is a public suffix,
nd www.google is the user subdomain.
In most cases, the subdomain sn is registered at p1.p2 · · · pm by

n organization or person denoted as the top-user subdomain.
he subdomain s .s · · · s is named by person or algorithm,
1 2 n−1

109
hich is benign and referred to as the host subdomain. For exam-
le, facebook is the top-user subdomain of www.facebook.com
nd www is the host subdomain.
Please note that we calculate the linguistic features only on

he top-user subdomain sn since host subdomains named by
lgorithms may not be meaningful and cannot be recognized well
y DOLPHIN patterns.
Based on the above definitions, we choose 3 representative lin-

uistic features to analyze: the vowel ratio, the ratio of repeated
haracters and the ratio of consecutive consonants.
The vowel ratio is calculated as the ratio of the number of

owel characters to the length of a domain (we use domain to
epresent the top-user subdomain in the rest of this section). The
owel ratio of facebook.com for character-based methods is 4/8
ince facebook has 4 vowel characters. DOLPHIN yields 3/7 since
t has 3 vowels and considers the oo as a whole part.

The ratio of repeated characters is referred to as the ratio
f the number of characters that are repeated throughout a do-
ain to the number of characters that appeared in the domain.

n the previous example, this feature evaluates to 1/7 in the
haracter-based methods. In contrast, the value is 0 as calculated
y DOLPHIN.
The last linguistic feature, the ratio of consecutive consonants,

s defined as the sum length of several successions (whose length
s greater than or equal to 2) of consonant characters divided by
he length of a domain. In the google example, ratio of con-
ecutive consonants of the character-based methods is calculated
s 2/6. The corresponding value by DOLPHIN is calculated as 0.
ecause gl is considered a whole part, there are no consecutive
onsonants.
There are some theoretical characteristics of the features based

n DOLPHIN patterns. A legitimate domain tends to have a larger
owel ratio, a smaller ratio of repeated characters, and a smaller
onsecutive consonants. In contrast an AGD has a high probability
f a smaller vowel ratio, a larger ratio of repeated chars and a
arger consecutive consonant. More examples and analysis are
urther elaborated on in 5.3.

Some benign domain names that do not consist of words
eaningful to humans can hardly be improved by phonics-based

eatures. For example, some domains are the abbreviations of
rganizations or numbers. The question exists in most linguistic-
ased machine learning methods and sequence model-based
e.g., LSTM) deep learning methods. Their inputs are highly re-
ated to the sequences of domain names. They can be identified
y combining side information. We will explore this question in
ur future work.

. Implementation

To prove the effectiveness, we implement DOLPHIN and
honics-based features with machine learning techniques in the
etection of DGA-generated domain names from legitimate do-
ain names.
We present an overview of the implementation and the way

e use DOLPHIN in Fig. 2. We employ supervised learning tech-
iques to detect AGDs. According to the order of processing steps,
t is made up of a preprocessing module, DOLPHIN, a feature
xtraction module, a training module, and a classification module.
In the preprocessing step, negative data are cleaned by delet-

ng the samples without any public suffix. Domain names that do
ot end with any public suffix are unacceptable for DNS systems.
sually, these domain names are produced by mistyping or mis-
onfiguration, so they cannot apply the principle of phonics, and
hey are not legitimate domains.

After that, DOLPHIN addresses the preprocessed data and
ields top-user subdomains and then reconstructs the D-domain
ames following DOLPHIN patterns.

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117
Fig. 2. The implementation of the detection of AGDs.

Then, we extract linguistic features, structural features, and
statistical features from domain names in the feature extraction
module. The structural and statistical features used are the same
as those of other methods, such as the lengths of domain names,
the numbers of subdomains, and entropy. They are straight-
forwardly extracted from domain names. The three linguistic
features related to vowel and consonant letters are extracted
from the D-domain names.

Next, in the training module, features are trained by a classi-
fier, which yields a trained model.

Finally, in the classification module, the trained model reads
a submitted domain name. It extracts features from the corre-
sponding D-Domain name and predicts whether the domain is
an AGD.

The classification model can finally be used in intrusion de-
tection systems that detect DGA-based botnets in real time. In
a real-world deployment, allowlists should be used to filter fre-
quently used legitimate domains first to accelerate detection and
enhance accuracy. These will be discussed in the future since they
are outside the scope of this paper.

5. Evaluation

In this section, we evaluate DOLPHIN. The experiments are
performed over a series of datasets and aim to answer the fol-
lowing questions:

(1) Can DOLPHIN achieve a higher accuracy, a lower false positive
rate and other metrics compared to the state-of-the-art approach?
We find that DOLPHIN exhibits better performance than FANCI
[9] in terms of each evaluation metric on datasets with varied
sizes. With DOLPHIN employed, the overall mean ACC of 5-folds
increases to 0.9384 (by 0.0265) on different datasets. In particular,
the false positive rate and false negative rate are reduced by
0.0220 (28.76%) and 0.0311 (31.19%), respectively.

(2) Can DOLPHIN be generalized to other classifiers? The ex-
periment shows that DOLPHIN with XGBoost [26] and SVMs
[27] also achieve overall mean accuracies of 0.9322 and 0.9229,
respectively. They are 2.23% and 1.21% more accurate than FANCI
with RFs [28].

(3) Can DOLPHIN be generalized to other detection methods using
different linguistic features? We find that DOLPHIN can be tai-
lored to cooperate with other linguistic features in HAGDetector
[29]. The experiment shows that the accuracy of HAGDetector
with DOLPHIN has an increase of 0.0201 (2.19%) compared to
the original HAGDetector. The false positive rate of HAGDetector
with DOLPHIN has a decrease of 0.0174 (25.15%) compared to the
original method.

(4) Can DOLPHIN be generalized to applications using hetero-
geneous data in real cases? The experiment shows that the false
positive rate of DOLPHIN has a decrease of 0.0801 (62.97%) com-
pared to FANCI and 0.0380 (44.65%) compared to LSTM.MI [7]. The
accuracy of DOLPHIN has an increase of 0.0453 (5.06%) compared
to FANCI and 0.0156 (1.68%) compared to LSTM.MI.
110
(5) Does DOLPHIN bring additional overhead for better perfor-
mance? Experiments show that the training times of FANCI and
DOLPHIN using RFs are within the same order of magnitude. This
means that DOLPHIN can achieve better performance without
bringing additional overhead. The main factors for increasing
training time are the selection of classifiers and the sample size.

5.1. Experimental setup

Datasets. The training processes of methods require labeled
data. We collect multiple heterogeneous data from 4 data sources
as follows.

We obtain positive samples, i.e., illegitimate DGA-generated
domain names, from (1) The Open-Source Intelligence (OSINT)
DGA feed [30] and (2) 360netlab [31].

We obtain negative samples, i.e., legitimate domain names,
from (3) Alexa Top domain names.

We obtain (4) DNS traffic data collected from a campus net-
work. The data last for approximately half an hour and include
53,038 DNS responses.

Preprocessing datasets.We preprocess source data for further
use. To guarantee the validity of the input, we clean the negative
data by deleting the samples without any public suffix. To avoid
overly inflated performance, we take the following two measures.
First, we remove the samples from 360netlab that are overlapping
samples to reduce the correlation between the two positive data.
Second, we clean the data source (4) by deleting illegitimate
domain names and repeated domain names in traffic. Finally, we
obtain 9727 legitimate ones.

We create two datasets after preprocessing as follows. In each
dataset, the numbers of negative and positive samples are the
same.

(1) In the first one, we create 40 datasets with varied sizes
ranging from 500 to 20,000 using the data from the OSINT DGA
feed and Alexa.

(2) In the second one, there are 9727 legitimate domain names
from the cleaned traffic data and 9727 illegitimate domain names
from 360netlab. The sizes of the positive and negative data are the
same since the dataset is relatively balanced to reveal the metrics.
The dataset is used to detect unknown AGDs in traffic.

Experimental Design. To evaluate the proposed method, we
perform four experiments.

The first three experiments are conducted with a 5-fold cross
validation (CV) for a less biased estimate. Each dataset is ran-
domly split into five groups. Every group will be used as predict-
ing data, with the remaining four as training data in turn.

(1) Models trained with RFs are performed on the first datasets
with varied sizes. The purpose of the experiment is to ensure that
considering phonics is the only factor that can help improve the
identification of AGDs with lower FPR. Thus, the effect of other
features (e.g., length of domain names) in the experiment is ruled
out.

To this end, we extract three groups of features for com-
parison: DOLPHIN, FANCI, and the baseline. They all have 18
identical structure or statistical features. They are distinguished
from 3 additional linguistic features: DOLPHIN uses phonics-
based linguistic features, FANCI uses character-based linguistic
features, and the baseline uses no linguistic features. Phonics-
based and character-based linguistic features are calculated in
different ways: they are calculated using the phonics-based and
character-based classification of vowels and consonants, respec-
tively.

These groups of features are trained, and their output models
are used to classify AGDs. The classification results measure the
effectiveness of DOLPHIN in detecting AGDs, if any, compared
with that of FANCI.

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117

B
c

c
k
s
v

t
t
w
i
f

s
d
a
f
v
b
D
a

p
w
m

d
d
c
o
L

3
e
s

w
A

t
l
i
p
r

c
h
e

5

R

c
A
(

(2) The performances of DOLPHIN with RFs, SVMs, and XG-
oost are compared. We aim to demonstrate whether DOLPHIN
an generalize to other classifiers in addition to RFs.
We choose these classifiers because they are representative

lassifiers for bagging ensemble methods, generalized linear or
ernel methods, and gradient boosting ensemble methods, re-
pectively. They have different characteristics and different ad-
antages.
(3) DOLPHIN is applied to the linguistic features of HAGDe-

ector [29]. The performance of HAGDetector with DOLPHIN and
he original HAGDetector are compared. We aim to demonstrate
hether DOLPHIN can cooperate with other linguistic features

n other methods except for the aforementioned three linguistic
eatures.

To this end, we extract two groups of features for compari-
on: HAGDetector and HAGDetector with DOLPHIN on the first
atasets with 10,000 samples. They have 2 identical features, such
s length of domain and entropy. HAGDetector has 12 other help-
ul linguistic features, such as the number of switches between
owels and consonants. They are calculated by the character-
ased classification of vowels and consonants. HAGDetector with
OLPHIN calculates these 12 features using phonics-based vowels
nd consonants.
(4) DOLPHIN with RFs, FANCI with RFs and LSTM.MI are com-

ared to predict domain names in real traffic. We aim to validate
hether DOLPHIN can achieve better performance than other
ethods in real applications.
To this end, the training and predicting data are taken from

ifferent sources. Specifically, we train DOLPHIN and FANCI using
ataset (1) and predict domains using dataset (2). Therefore, we
hoose a one-fold model in the first experiment, which is trained
n the dataset with 10,000 samples. Moreover, we also train an
STM.MI model on the same dataset for further prediction.
All experiments are performed on an x86 PC with a 6×Intel

GHz CPU and 8 G RAM on Windows 10. We do not use a high-
nd server because the experiments focus on accuracy instead of
peed.
Evaluation Metrics. To measure the quality of the methods,

e introduce the evaluation metrics: accuracy, FNR and FPR.
ccuracy is defined as ACC = TP+TF

TP+TF+FP+FN and measures the ratio
of correct predictions to the total number of samples. Here, TP
denotes the number of AGDs correctly predicted. FN denotes the
number of AGDs that are predicted to be legitimate domains. TN
denotes the number of legitimate domains correctly predicted. FP
denotes the number of legitimate domains that are predicted to
be AGDs. The false positive rate (FPR) is defined as FP

TN+FP . This is
he proportion of legitimate domains incorrectly predicted in all
egitimate domains in this paper. The false negative rate (FNR)
s defined as FN

TP+FN . It is the proportion of the AGDs that are
redicted to be legitimate domains in all AGDs. The true positive
ate (TPR) is defined as TP

TP+FN and measures the proportion of
AGDs predicted correctly in all AGDs. The true negative rate (TNR)
is defined as TN

TN+FP , which is the proportion of legitimate domains
orrectly predicted in all legitimate domains. Among them, FPR
as gained more attention in practical applications regarding user
xperience [14]. A higher FPR may trigger off many false alarms.

.2. Different features with RF model

The presentation of the mean ACCs of the 5-fold results using
Fs with DOLPHIN, FANCI, and the baseline are shown in Fig. 3.
Fig. 3 shows that DOLPHIN and FANCI both have larger ACCs

ompared with that of the baseline. Specifically, the overall mean
CCs of the two methods rise by 0.0628 (7.17%) and 0.0363
4.15%), respectively. This illustrates that applying vowels and
111
Fig. 3. ACCs of DOLPHIN, FANCI, and the baseline on different sizes of samples.

Fig. 4. FPRs of DOLPHIN, FANCI, and the baseline on different sizes of samples.

consonants in the linguistic features is helpful. The overall mean
ACC of DOLPHIN is 0.9384 with an increase of 0.0265 (2.91%)
compared with FANCI. This reveals the validity of phonics-based
linguistic features; the graphemes could catch more accurate
characteristics of domain names than the traditional methods.
The ACCs of the above two methods tend to stabilize after the size
of the dataset increases to 3000. Note that the ACC of DOLPHIN
is still greater in small datasets, e.g., with a size of 2000, where
the mean ACC of DOLPHIN is 0.9450.

The results of FPRs among DOLPHIN, FANCI, and the baseline
are shown in Fig. 4. It shows that DOLPHIN performs best, and the
baseline performs worst. Specifically, their overall mean FPRs are
0.0545, 0.0765, and 0.1142 over the whole datasets, respectively.
The overall mean FPR of DOLPHIN presents a reduction of 0.0220
(28.76%) compared to FANCI. As the number of samples grows,
the FPRs of DOLPHIN and FANCI are more stable, but that of the
baseline is growing. This means that it is more likely that the
baseline method mistakenly predicts legitimate domains as AGDs,
especially when using larger datasets.

The comparison for FNRs of DOLPHIN, FANCI, and the base-
line is shown in Fig. 5. It shows that DOLPHIN outperforms the
other methods in FNR. DOLPHIN and FANCI run relatively well
compared to the baseline. Their overall mean FNRs are 0.0686,
0.0997 and 0.1347, respectively. In the worst case of the baseline
(the size of the dataset is 10,500), the mean FNR of 5-fold is
0.1508. With the same dataset used, the FNR of DOLPHIN is
0.0692, representing a decrease of 33.08% compared with FANCI
and 54.11% compared with the baseline. This means that applying
DOLPHIN can reduce the chances of false negative errors.

The performance of FANCI in our experiments is lower than
that in its original paper [9] because we do not use NXDomain
as the training dataset as the paper did. DOLPHIN cannot di-
rectly use NXDomain because phonics cannot be applied to most

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117

T
i

f
c
N
n
r
a
D

a
(
A

f
T
0
c
s
o
a
c
w
u
f

s
t
a
8

D
D
3
m
T
n

w
n
f

Fig. 5. FNRs of DOLPHIN, FANCI, and the baseline on different sizes of samples.

host subdomains of NXDomain. For example, one legitimate NX-
Domain 410.0.va8q5gjksrir5536.avts.mcafee.com has
many characters that are automatically generated, and phonics
cannot be applied to it. Therefore, to control the value of a single
variable in the first two experiments, we use domains that are
not NXDomain to train and predict. These degradations of the
performance of FANCI are also mentioned in [10] when using
ALEXA as training data.

In summary, we argue that DOLPHIN can achieve better ACC
and FPR by using phonics-based features. We also validate that
linguistic features are helpful in the detection of AGDs.

5.3. Analysis of phonics-based features

To reveal DOLPHIN’s effectiveness, we explore the relationship
between the feature values of DOLPHIN and those of FANCI. We
choose one-fold results for the experiment on the dataset with
10,000 samples for analyze since it manifests the median size of
the datasets.

In 2000 testing samples, FP and FN of FANCI are 88 and 109,
and DOLPHIN decreases those values to 48 (by 45.45%) and 69 (by
36.70%), respectively. The feature values for different methods are
shown in Table 2. The Method−Feature in the first column means
that Feature is calculated by Method (i.e., DOLPHIN or FANCI).
Method−Result in the first two rows means that the samples are
classified as Result by using Method. The values indicate the mean
feature values calculated by different methods under specific
conditions. For example, for the samples classified as FP by FANCI
and DOLPHIN, the mean vowel ratio of these samples is 0.3556
calculated by DOLPHIN and 0.3091 calculated by FANCI.

Analysis of FP. We investigate the negative samples incor-
rectly classified by FANCI. With DOLPHIN employed, 56 (63.63%)
of them are correctly classified, while 32 are still not able to be
identified correctly by both methods.

We compare the values of the samples that are FP samples for
FANCI as well as TN samples for DOLPHIN. With DOLPHIN used,
the results conform with our expectations mentioned in 3.3. We
summarize the observations in Table 2: the mean vowel ratio
increases by 0.0678, and the mean ratio of repeated chars and
the mean ratio of consecutive consonants decrease by 0.1656 and
0.2370 after DOLPHIN is employed, respectively. For each sample
mentioned above, at least two feature values change. Signifi-
cantly, the ratios of repeated chars of 18 samples are computed
as 0, and the ratios of consecutive consonants of 7 samples are
computed as 0. Only 7 samples with 9 values do not go with what
we expected, regardless of 5 unchanged values. These variations
in feature values lead to correct classification.

The above point is verified by the following findings. Whether
DOLPHIN classifies samples correctly depends on how much vari-
ation of feature values there is. Specifically, the variation after
112
Table 2
Feature values. D denotes DOLPHIN, and F denotes FANCI.
Features values F-FP F-FN

D-TN D-FP D-TP D-FN

D-Vowel ratio 0.4045 0.3556 0.2781 0.3639
F-Vowel ratio 0.3367 0.3091 0.3062 0.3627
D-Ratio of repeated characters 0.1019 0.1924 0.1844 0.1312
F-Ratio of repeated characters 0.2675 0.3254 0.2683 0.2054
D-Ratio of consecutive consonants 0.2602 0.4302 0.6034 0.3978
F-Ratio of consecutive consonants 0.4972 0.5653 0.5860 0.4354

applying DOLPHIN is significantly different. For the FP samples for
FANCI that DOLPHIN correctly classifies, the mean percentage of
variations for each domain name of the above three features are
20.14%, 61.91%, and 47.67%, respectively. In contrast, for the sam-
ples incorrectly classified by DOLPHIN (32), the mean variations
are 15.04%, 40.87%, and 23.90%.

We will elaborate on the effect of DOLPHIN using the previous
example of nationalgeographic.com. FANCI assumes that the
name top-user subdomain has a length of 18 and consists of 8
vowels and 10 consonants. The vowel ratio is 8/18. The number
of unrepentant characters is 12. There are 5 characters repeated
in the name: a, n, i, o, g, and the ratio of repeated chars is 5/12.
he consecutive consonants are lg, gr, ph, and the total number
s 6, so the ratio of consecutive consonants is 6/18.

DOLPHIN considers ion, al, gr, and ph as graphemes. There-
ore, the D-domain name is [n, a, t, ion, al, g, e, o, gr, a, ph, i,
]. In the D-domain name, the number of elements becomes 13.
ow, it has 7 D-vowels: a, ion, al, e, o, a, i, and 6 D-consonants:
, t, g, gr, ph, c. Therefore, the corresponding vowel ratio, the
atio of repeated chars, and consecutive consonants are computed
s 7/13, 1/12, and 0, respectively. Using these new feature values,
OLPHIN can now correctly classify this domain.
Analysis of FN. The work in decreasing FN has motivated us to

nalyze the negative samples for FANCI. Among them, 52 samples
47.71%) are correctly classified after applying DOLPHIN, and 57
GDs cannot be identified correctly by both methods.
For these FN samples for FANCI which are also the TP samples

or DOLPHIN, we observe the change from Table 2 as follows.
he mean value of the vowel ratio of DOLPHIN decreases by
.0281 compared to that of FANCI. The mean ratio of repeated
hars decreases by 0.0839. The mean value of the ratio of con-
ecutive consonants increases by 0.0174. The mean percentages
f variations for each domain name of the above three features
re 9.18%, 31.27% and 2.97%, respectively. As we expected, the
hanged values of vowels and consecutive consonants accords
ith the characteristics of AGDs: fewer vowels and more consec-
tive consonants. The value of repeated chars is slightly different
rom what we expected.

If DOLPHIN identifies these positive samples incorrectly (i.e.,
amples are FNs for DOLPHIN), the mean values for the vowel ra-
io and the ratio of repeated chars decrease by 0.33% and 36.13%,
nd the mean of the ratio of consecutive consonants increases by
.64%.
We use three types of outcomes for features to show how

OLPHIN classifies correctly. First, at least two of the features of
OLPHIN match with the theoretical feature values (mentioned in
.3), whose number is 24. Second, at most one feature of DOLPHIN
atched with the theoretical feature values, whose number is 14.
hird, there is no change in all features by using DOLPHIN, whose
umber is 14.
In the first type, AGDs mostly do not spell like legitimate

ords according to DOLPHIN patterns. For example, the D-domain
ame of the AGD tferererwyatanb.com is regarded as [t,
, er, er, er, w, y, a, t, a, n, b]. This brings the following

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117

v
t
0
0
r
c

n
s
F
n
r
o
s
h
o
E
w
f
A
i

c
v
A
h
j
s
o
v
A

i
D
w
a
t
t
t
r
v

5

s
s
t
o
w
m
t
D
m

s
0
t
w
B
f
t
w
b

A

ariation: the vowel ratio from 0.3333 to 0.4167 (which is against
he theoretical feature values); the ratio of repeated chars from
.4444 to 0.3750; and the ratio of consecutive consonants from
.4667 to 0.5000. After applying DOLPHIN, it has relatively more
epeated chars and consecutive consonants, leading to correct
lassification.
The second and third types are classified correctly since the

ew model set the threshold more reasonably, and meanwhile,
ome of the relatively reasonable values can dominate the result.
or example, the values of a third type AGD xwfubvj.su have
o change after applying DOLPHIN. For this AGD, the vowel
atio is 0.1429, the ratio of repeated chars is 0, and the ratio
f consecutive consonants is 0.8571. From the values, we can
ay that the value of the ratio of consecutive consonants is very
igh, which dominates the result. We also find that the number
f unchanged feature values is much greater than in FP cases.
specially for the third type, the number of FN samples for FANCI,
hich are TP samples for DOLPHIN (14), is more than that of FP

or FANCI, which are TN for DOLPHIN (0). That is, because the
GDs are generated randomly, they are less likely to be processed
nto multigraphs.

Theoretical Analysis. In summary, DOLPHIN can effectively
lassify domains correctly by changing the values. The feature
alues of AGDs mainly differ from those of legitimate domains.
GDs are generated by various kinds of algorithms. Hence, they
ave various characteristics that cannot easily be summarized by
ust one pattern. However, the structures of legitimate domain
trings are relatively describable, resulting in the specific values
n behalf of the structures. Therefore, the domains having those
alues of features in the opposite manners can be identified as
GDs. More theory can be found in 2.
Meanwhile, DOLPHIN can also classify correctly without chang-

ng all the values for the following two reasons. First, using
OLPHIN changes the length of D-domain names. Therefore,
hen calculating the features, the values may appear to go
gainst the trends. Second, some values are very representa-
ive in distinguishing AGDs from other variations that are not
hat important in some cases. Those important values dominant
he results. Third, the model trained by DOLPHIN learns more
easonable values and then sets the threshold to a reasonable
alue.

.4. Different models with phonics-based features

The ACCs of DOLPHIN with RFs, XGBoost, and SVMs appear as
hown in Fig. 6. The ACCs of RFs and XGBoost remain relatively
table, with overall mean values of 0.9384 and 0.9322, respec-
ively. The overall mean ACC of SVMs is 0.9229. However, the ACC
f SVMs consistently falls as the number of samples increases,
hich might be due to the noise in the input datasets. The overall
ean ACCs of DOLPHIN using different methods are larger than

he best mean ACC of FANCI (i.e., employed RFs). The ACCs for
OLPHIN with different classifiers are 2.91%, 2.23%, and 1.21%
ore accurate than FANCI with RFs, respectively.
We compare the FPRs of DOLPHIN using different classifiers, as

hown in Fig. 7. The overall mean FPRs of SVMs and XGBoost are
.0665 and 0.0604, respectively. The two values are smaller than
hat of FANCI using RFs. On the small datasets, i.e., the datasets
ith sizes from 500 to 2500, SVMs show the smallest FPR. XG-
oost presents a greater FPR among them on datasets with sizes
rom 500 to 4000. On datasets larger than 2500, RFs perform with
he lowest FPR. SVMs are a smart choice for small datasets if
e prefer less legitimate domains mistakenly predicted. RFs are
etter under the condition of using more training samples.
The FNRs of different classifiers are also compared in Fig. 8.

lthough it shows the change of FNR on the datasets with varied
113
Fig. 6. ACCs of DOLPHIN using different classifiers on different sizes of samples.

Fig. 7. FPRs of DOLPHIN using different classifiers on different sizes of samples.

Fig. 8. FNRs of DOLPHIN using different classifiers on different sizes of samples.

sizes, the FNR of RFs can outperform on all the datasets. The
lowest FNR is 0.0613 using the dataset with 19,000 samples. The
overall mean FNRs of SVMs and XGBoost are 0.0876 and 0.0752,
respectively.

In the experiment, we learn that the performance of the RFs
classifier is generally the best. They have the largest ACC and
the smallest FPR and FNR among the methods on most datasets.
Meanwhile, SVMs work slightly worse than the other classifiers,
which indicates performance degradation since the size of the
dataset grows to 10,000. We find that the metrics of DOLPHIN
with SVMs are even better than those of FANCI with RFs. There-
fore, we believe that DOLPHIN can perform well with the change
of classifiers; a specific classifier does not bring improvement.

5.5. Different methods with phonics-based features

This subsection presents the ability of DOLPHIN to cooper-
ate with other methods. The performances of HAGDetector and

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117

o
p
v
v
m
a

5

t
m
t
I
c
T
t
t
D
b
m
g
c
e
w

p

t
d
l
p
t
g
s
g
d
p
t
p

S
a

Table 3
Performances of HAGDetector and HAGDetector with DOLPHIN.
Method ACC TPR TNR FPR FNR

HAG-D 0.9393 0.9304 0.9482 0.0518 0.0696
HAG 0.9192 0.9076 0.9308 0.0692 0.0924

Table 4
Generalization results.
Method ACC TPR TNR FPR FNR

DOLPHIN 0.9399 0.9268 0.9529 0.0471 0.0732
FANCI 0.8946 0.9163 0.8728 0.1272 0.0837
LSTM.MI 0.9244 0.9339 0.9149 0.0851 0.0661

HAGDetector with DOLPHIN are shown in Table 3, where HAG-D
denotes HAGDetector with DOLPHIN and HAG denotes HAGDe-
tector. It shows that HAGDetector with DOLPHIN outperforms
the original HAGdetector. The FPR and FNR of HAGDetector with
DOLPHIN decrease by 0.0174 (25.15%) and 0.0228 (24.68%), re-
spectively, compared to the original method. The ACC, TPR, and
TNR of HAGDetector with DOLPHIN have increases of 0.0201
(2.19%), 0.0228 (2.51%), and 0.0174 (1.87%), respectively.

The experiment reveals that DOLPHIN can cooperate with
ther manually crafted linguistic features/methods with better
erformance. Because most linguistic features are designed with
owels and consonants, DOLPHIN has a better understanding of
owels and consonants. Thus, DOLPHIN can calculate the features
ore accurately. More analysis of how the phonics-based features
ffect the results is shown in 5.3.

.6. Generalization

This subsection presents the ability of DOLPHIN to classify
raffic data in the real world with different training data. The
etrics for different methods are shown in Table 4. It shows

hat DOLPHIN outperforms FANCI and LSTM.MI on each metric.
n detail, the ACC of DOLPHIN has an increase of 0.0453 (5.06%)
ompared to FANCI and 0.0155 (1.68%) compared to LSTM.MI.
he FPR of DOLPHIN has a decrease of 0.0801 (62.97%) compared
o FANCI and 0.0380 (44.65%) compared to LSTM.MI. This means
hat DOLPHIN can decrease the rate of false alarms. The TNR of
OLPHIN has a decrease of 0.0105 (12.54%) compared to FANCI
ut an increase of 0.0071 (10.74%) compared to LSTM.MI. This
eans that DOLPHIN improves the identification ability of ille-
itimate AGDs compared to FANCI. Thus, LTSM.MI can be used in
ases requiring a better ability to identify AGDs than a good user
xperience. DOLPHIN is a better choice to use in the real world
ith a higher accuracy and FPR.
Next, we consider the reasons that FANCI and LSTM.MI cannot

erform well compared with DOLPHIN in the experiment.
First and foremost, the training data are heterogeneous from

he prediction data. (1) Heterogeneity in source data. The training
ata are primarily different from the prediction data. Particu-
arly for the positive samples, we exclude duplicates from the
redicting data. For the negative samples, the predicting and
raining data are collected from different sources. (2) Hetero-
eneity in naming behaviors. In real traffic, domains include host
ubdomains. They are generated by algorithms or named by pro-
rammers, and they may have different features according to the
esign of algorithms, coding habits, and languages from different
rogrammers. This problem can be largely avoided by ignoring
he host subdomains. Thus, DOLPHIN can achieve relatively better
erformance in this way.
Second, the size of the training dataset is relatively small.

upposing the size of the training dataset is large enough, the
ccuracy of FANCI and LSTM.MI may become much better.
114
Fig. 9. Training times of DOLPHIN, FANCI, and the baseline on different sizes of
samples.

Third, the negative training data of FANCI are not NXDomains.
The main purpose of using NXDomain is to reduce the number
of predicting samples in real cases. Instead of using NXDomain,
we use all DNS request traffic as predicting data since it has the
advantage that identification is done before machines controlled
by C&C servers. DOLPHIN can thus be used in the intrusion
detection systems for detecting known and unknown DGA-based
botnets.

In conclusion, this experiment illustrates the effectiveness of
DOLPHIN in the real world. Its effectiveness is less affected by
generalizing to unseen data and using a small size of training data.

5.7. Training speed

This subsection presents whether DOLPHIN requires extra
training time in the first two experiments.

The training times of different methods using RFs with differ-
ent sample sizes are shown in Fig. 9. The figure shows that all the
training times increase almost linearly as the size of the training
samples increases. DOLPHIN spends slightly more training time
on the same datasets than FANCI. For example, 80% of the dataset
with a size of 10,000 samples, which are training data, takes
DOLPHIN 1.0636 s which is 0.0331 s more than that of FANCI.
It also shows that the baseline spends the least time on training
step, because the number of features used in the baseline is the
smallest.

The training times of the different classifiers are compared
in Fig. 10. In general, the training times with different models
increase at different rates. All the training times are less than one
second when the size of the dataset is smaller than 9000. SVMs
classifier requires more time to train on datasets with a size of
over 12,500 and indicate exponential growth as the amount of
data increases. XGBoost costs the minimum time when training
in each dataset.

In summary, in our experiments, the linguistic features using
phonics-based features are the most significant contributing fac-
tor to improving performance. Moreover, it is straightforward to
generalize DOLPHIN to most linguistic features and data of varied
sizes and extents.

6. Related work on AGD detection

Recent studies are mainly dedicated to the detection of AGDs
[6,7,9,29], the adversarial defenses of DGA [32–36], the collabora-
tive learning of existing methods [16], class imbalance or specific-
family DGA classification [14,15,37,38], the improvement of the
preprocessing stage [39], and privacy preserving and analysis
[40,41].

We will present research on the detection of AGDs in terms
of machine learning methods and deep learning methods. The

original version is also compared with this paper in this section.

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117
Fig. 10. Training times of DOLPHIN using different classifiers on different sizes
of samples.

6.1. Traditional machine learning approaches

Most machine learning detection methods classify domains
with manually created features. Machine learning models can be
divided into two categories.

The first category is string-based methods. Pleiades [12] clus-
ters the domains by statistical features and bipartite graphs using
hidden Markov models and then classifies domains using NXDo-
main response traffic. FANCI [9] is one of the state-of-the-art sys-
tems [15,16,40] that uses 21 meaningful features extracted from
domain names and machine learning for classification, which is
the closest work to ours. It uses data obtained from NXdomain.
HAGDetector [29] creatively combines traditional machine learn-
ing and deep learning methods by heterogeneous methods to
detect domain names.

The second category is time-based methods that employ the
chronological features of DNS transactions, e.g., time series and
gaps between DNS requests and responses [42,43]. BotFinder
[42] uses a machine learning model and offers the informa-
tion extracted from reassembled NetFlow and traces. However,
it must obtain the sequences of chronologically ordered flows
first. PsyBoG [43] leverages the frequencies of botnet behavior
to distinguish them from normal behaviors using power spectral
density (PSD) analysis. Phoenix [8] first uses a combination of IP
pools and linguistic features of domain names to cluster and iden-
tify AGDs. However, the only linguistic feature used in Phoenix is
the n-gram normality score, which measures the relations within
characters split by constant lengths. This is not in accord with
the theory of phonemes. [44] proposes a PSO algorithm that
employed features by voting on the results from a neural network
algorithm, SVMs, and decision tree C4.5. The effective features
are extracted from traffic, such as delay time. The work improves
the accuracy of detecting botnets on the IoT dataset. While these
approaches cannot be used effectively in real-time, they must
collect DNS traces beforehand. In contrast, the patterns extracted
from string-based methods can be directly used in an online
system, e.g., an intrusion detection system [45], to identify and
block C&C channels.

6.2. Deep learning approaches

Some approaches use deep learning techniques, e.g., neural
networks, to identify illegitimate AGDs from legitimate domain
names. In [6], the LSTM network-based method is first introduced
for detecting DGAs. The approach only uses strings of domain
names as input without any feature extraction. It can classify 90%
of AGDs with a false positive rate of 1:10000. It only takes 20 ms
to predict a domain name. In [46], convolutional and recurrent

neural networks (CNN and LSTM, respectively) on the NXDomain

115
response are compared in DGA detection. To overcome some DGA
families with a small size of data, which may cause multiclass
imbalance problems, [7] presents the LSTM.MI method. It com-
bines both binary and multiclass classification models to achieve
higher performance in the metrics of macroaveraging recall and
precision.

Some works [47,48] need to cooperate with side information,
such as IP addresses, clients, and return of WHOIS lookup. This
information can help enhance the performance of classifiers, but
may raise privacy concerns [16] and cost extra time.

Deep learning approaches can achieve high accuracy. Some
researchers argue that deep learning approaches do not perform
well on new AGDs since new data are not trained by the pre-
vious model [32]. Therefore, defenders should train the model
as frequently as possible to reduce FPR [10]. Machine learning
methods are qualified for this term, as deep learning approaches
require much more training time compared to machine learning
methods.

6.3. Comparison of previous methods

The key novelty of DOLPHIN is that we use phonics-based
vowels and consonants as the smallest units in calculating lin-
guistic features, and we use the phonics-based features with ma-
chine learning classifiers to detect AGDs with a lower false posi-
tive rate. Thus, DOLPHIN distinguishes itself from other methods
in terms of purpose, linguistic principle, features, and methods
which are shown in Table 5.

Khaos [32] is an adversarial DGA instead of a detection method.
The purpose of the work is different from ours. It is a very
impressive work that considers domain names composed of syl-
lables. They use the top n-grams of Alexa to split domain names,
and n-gram embeddings are fed into the Wasserstein generative
adversarial network. For example, they split google into [goo,
gle]. These sequences of letters are reasonable to feed into deep
learning methods. However, using n-grams to split domain names
might fail to present syllables correctly. Moreover, this method
uses no features and can hardly be used in linguistic features,
such as the ratio of vowels.

Phoenix [8] supposes that combinations of phonemes can cap-
ture the pronounceability of domain names. It uses the phonemes
to calculate the n-gram normality score and then defines a hyper-
ellipsoid for detection.

In fact, the work splits domain names using n-grams and then
counts the occurrences and computes the mean value. For exam-
ple, it will consider the 2-gram of google as [go, oo, og, gl,
le]. It is a very creative idea, but n-grams cannot truly capture the
phonemes in words; e,g., og is not a phoneme. Meanwhile, this
design is only used for calculating the n-gram normality score.

FANCI [9], HAGDetector [29] and LSTM.MI [7] all consider
the smallest units of domain names to be letters, which we call
character-based or letter-based. The similarity between character-
based methods and DOLPHIN is that we all suppose that most
benign domain names are meaningful while most illegitimate
ones are meaningless. However, they are totally different in
calculating linguistic features.

FANCI [9] extracts structural, statistical, and linguistic features
from domain names and uses machine learning classifiers to iden-
tify AGDs. FANCI calculates linguistic features on single characters
in an easy way. For example, FANCI splits google into [g, o, o,
g, l, e] and then calculates linguistic features.

HAGDetector [29] finds that the length of domains has an
impact on the performance of detection models. It splits the
length of domains into three types of lengths. It uses an attention-
based method to extract features and feeds them into convolution
to detect short domain names. It uses an n-gram-based CNN to

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117

i
o
n
W
m
t

a
s
t
w
o
f
D

6

i
f
d
e
c
c
s
A
p
t
d
t
A
P
H
t
a
v
f
u
D

7

p
i
p
t
a
t
B
d

Table 5
Comparison of the previous methods.
Method Purpose Linguistic principle Example of split domains Linguistic features Classifiers or methods

DOLPHIN Detection AGDs Phonics-based g, oo, gl, e Involved Machine learning classifiers
FANCI Detection AGDs Character-based g, o, o, g, l, e Involved Machine learning classifiers
HAGDetector Detection AGDs Character and ngram-based g, o, o, g, l, e g, go, oo... Involved Convolution, CNN, and RFs
Phoenix Detection AGDs Phonemes-based go, oo, og, gl, le Involved Define Hyperellipsoid
Khaos Adversarial AGDs Syllables-based goo, gle None WGAN
LSTM.MI Detection AGDs Character-based g, o, o, g, l, e None LSTM
detect moderate-length domains. It also designs 14 novel fea-
tures with RF classifiers to detect long domains. The method for
long domains is compared in this paper because it has linguistic
features.

LSTM.MI [7] uses the LSTM classifier, which employs the gat-
ng mechanism to preserve and control letters to memorize with-
ut any features. Since it is based on deep learning classifiers with
o manual features, we cannot open its black boxes to improve it.
e can analyze the different values of features of feature-based
ethods for improvement. Such methods require much more

raining time than methods using machine learning classifiers.
DOLPHIN considers phonics (the relationship between spellings

nd sounds) to split domain names; for example, DOLPHIN will
plit google into [g, oo, gl, e] and then calculate the linguis-
ic features. To achieve this goal, we design DOLPHIN patterns,
hich are phonics-based vowels and consonants in the context
f detecting AGDs. Then, the linguistic features are calculated and
ed into machine learning classifiers for training and prediction.
OLPHIN patterns can be used in other linguistic features.

.4. Comparison of original version

The idea of using phonics in AGD detection was first presented
n our previous work in [49]. The previous work uses linguistic
eatures and machine learning methods to detect DGA-generated
omain names based on DOLPHIN patterns. This paper is an
xtension of the previous paper with more sufficient theoreti-
al knowledge, explanation, and experiments with the following
ontributions. (1) This paper gives the background of phonics to
how how phonics affects the computing of linguistic features.
dditionally, this paper raises the issue that we cannot bring all
honics knowledge to detecting DGA-based botnets and gives
he corresponding solutions to the issues that have not been
iscussed before. (2) This paper presents a novel matching au-
omation to extract graphemes in domain names based on the
C algorithm. (3) In our previous work [49],we showed that DOL-
HIN can improve performance by conducting two experiments.
owever, we do not analyze the causes. In this paper, we explore
he different values to show how the phonics-based features
ffect performance. (4) This paper presents an experiment to
alidate the ability of DOLPHIN to cooperate with other linguistic
eatures well. (5) This paper adds a real-world experiment, that
ses heterogeneous data to provide the ability to detect unknown
GA-based botnets.

. Conclusion

In this paper, we motivate the need for decreasing the false
ositive rate in linguistic-feature-based methods in the context of
llegitimate AGD classification. To address this challenge, we pro-
ose DOLPHIN following the mature principles of phonics to bet-
er classify vowels and consonants. DOLPHIN patterns introduce
mapping between the vowel and consonant classification and

he spelling of graphemes according to the responding sounds.
ased on such patterns, DOLPHIN then identifies these patterns in

omain names by a novel matching automation and extracts the

116
linguistics features from the domain names. We conduct experi-
ments to train those features on the same or heterogeneous data
with various classifiers. The results show that when detecting
AGDs, DOLPHIN can achieve a higher mean accuracy of 0.0265
and a lower mean FPR of 0.0220 (28.76%) than the state-of-the-
art approach with the RFs classifier. It can also generalize to other
classifiers, other linguistic features, and other data in the real
world with similar improvement.

CRediT authorship contribution statement

Dan Zhao: Conceptualization, Methodology, Software, Writing
– original draft. Hao Li: Supervision, Writing – review & editing.
Xiuwen Sun: Visualization, Validation. Yazhe Tang: Supervision,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The authors do not have permission to share data.

Acknowledgments

This research was partially supported by the National Nat-
ural Science Foundation of China [U19B2025, 62172323, and
62102001], the Open-end Fund Project of Science and Technology
on Communication Networks Laboratory [FFX22641X005], and
Natural Science Foundation of Anhui Higher Education Institution
of China [KJ2020A0037].

References

[1] G. Jacob, R. Hund, C. Kruegel, T. Holz, JACKSTRAWS: Picking command and
control connections from bot traffic, in: 20th USENIX Security Symposium
(USENIX Security 11), Vol. 2011, San Francisco, CA, USA, 2011, pp. 443–458.

[2] M. Kührer, C. Rossow, T. Holz, Paint it black: Evaluating the effectiveness
of malware blacklists, in: International Workshop on Recent Advances in
Intrusion Detection, Springer, 2014, pp. 1–21.

[3] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kem-
merer, C. Kruegel, G. Vigna, Your botnet is my botnet: analysis of a botnet
takeover, in: Proceedings of the 16th ACM Conference on Computer and
Communications Security, 2009, pp. 635–647.

[4] S. Yadav, A.K.K. Reddy, A.N. Reddy, S. Ranjan, Detecting algorithmically
generated malicious domain names, in: Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, 2010, pp. 48–61.

[5] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, E. Gerhards-Padilla, A com-
prehensive measurement study of domain generating malware, in: 25th
USENIX Security Symposium (USENIX Security 16), 2016, pp. 263–278.

[6] J. Woodbridge, H.S. Anderson, A. Ahuja, D. Grant, Predicting domain
generation algorithms with long short-term memory networks, 2016, arXiv
preprint arXiv:1611.00791.

[7] D. Tran, H. Mac, V. Tong, H.A. Tran, L.G. Nguyen, A LSTM based
framework for handling multiclass imbalance in DGA botnet detection,

Neurocomputing 275 (2018) 2401–2413.

http://refhub.elsevier.com/S0167-739X(23)00034-1/sb1
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb1
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb1
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb1
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb1
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb2
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb2
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb2
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb2
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb2
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb3
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb3
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb3
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb3
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb3
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb3
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb3
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb4
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb4
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb4
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb4
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb4
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb5
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb5
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb5
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb5
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb5
http://arxiv.org/abs/1611.00791
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb7
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb7
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb7
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb7
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb7

D. Zhao, H. Li, X. Sun et al. Future Generation Computer Systems 143 (2023) 105–117
[8] S. Schiavoni, F. Maggi, L. Cavallaro, S. Zanero, Phoenix: DGA-based botnet
tracking and intelligence, in: International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, Springer, 2014, pp.
192–211.

[9] S. Schüppen, D. Teubert, P. Herrmann, U. Meyer, FANCI: Feature-based au-
tomated nxdomain classification and intelligence, in: 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 1165–1181.

[10] A. Drichel, U. Meyer, S. Schüppen, D. Teubert, Analyzing the real-world
applicability of DGA classifiers, in: Proceedings of the 15th International
Conference on Availability, Reliability and Security, 2020, pp. 1–11.

[11] N. Fitzgibbon, M. Wood, Conficker. C: A Technical Analysis, Vol. 1, Sophos
Labs, Sophos Inc, 2009.

[12] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee,
D. Dagon, From throw-away traffic to bots: detecting the rise of DGA-based
malware, in: 21st USENIX Security Symposium (USENIX Security 12), 2012,
pp. 491–506.

[13] J. Cai, J. Luo, S. Wang, S. Yang, Feature selection in machine learning: A
new perspective, Neurocomputing 300 (2018) 70–79.

[14] N. Gupta, V. Jindal, P. Bedi, CSE-IDS: Using cost-sensitive deep learning and
ensemble algorithms to handle class imbalance in network-based intrusion
detection systems, Comput. Secur. 112 (2022) 102499.

[15] A. Drichel, U. Meyer, S. Schüppen, D. Teubert, Making use of NXt to
nothing: the effect of class imbalances on DGA detection classifiers, in:
Proceedings of the 15th International Conference on Availability, Reliability
and Security, 2020, pp. 1–9.

[16] A. Drichel, B. Holmes, J. von Brandt, U. Meyer, The more, the better: A
study on collaborative machine learning for DGA detection, in: Proceedings
of the 3rd Workshop on Cyber-Security Arms Race, 2021, pp. 1–12.

[17] A. Rey, J.C. Ziegler, A.M. Jacobs, Graphemes are perceptual reading units,
Cognition 75 (1) (2000) B1–B12.

[18] P.R. Hanna, et al., Phoneme-Grapheme Correspondences As Cues To
Spelling Improvement, ERIC, 1966.

[19] R.S. Berndt, J.A. Reggia, C.C. Mitchum, Empirically derived probabilities for
grapheme-to-phoneme correspondences in English, Behav. Res. Methods
Instrum. Comput. 19 (1) (1987) 1–9.

[20] M. Patricia, E. Witting, L. Stehr, Phonics They Use: Words for Reading and
Writing, Pearson, 1995.

[21] G.L. Trager, B. Bloch, The syllabic phonemes of English, Language (1941)
223–246.

[22] J.B. Hooper, The syllable in phonological theory, Language (1972) 525–540.
[23] E. Fry, Phonics: A large phoneme-grapheme frequency count revised, J. Lit.

Res. 36 (1) (2004) 85–98.
[24] A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bibliographic

search, Commun. ACM 18 (6) (1975) 333–340.
[25] Mozilla, Public suffix list, 2020, https://publicsuffix.org/ [EB/OL].
[26] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Pro-

ceedings of the 22nd Acm Sigkdd International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 785–794.

[27] C. Cortes, V. Vapnik, Support vector machine, Mach. Learn. 20 (3) (1995)
273–297.

[28] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[29] J. Liang, S. Chen, Z. Wei, S. Zhao, W. Zhao, HAGDetector: Heterogeneous

DGA domain name detection model, Comput. Secur. (2022) 102803.
[30] BembenekConsulting, DGA domain feed, 2019, https://osint.

bambenekconsulting.com/feeds/ [EB/OL].
[31] N.S.R.L. at 360, 2019, http://data.netlab.360.com/feeds/dga/dga.txt [EB/OL].
[32] X. Yun, J. Huang, Y. Wang, T. Zang, Y. Zhou, Y. Zhang, Khaos: An adversarial

neural network DGA with high anti-detection ability, IEEE Trans. Inf.
Forensics Secur. 15 (2019) 2225–2240.

[33] L. Sidi, A. Nadler, A. Shabtai, MaskDGA: An evasion attack against DGA
classifiers and adversarial defenses, IEEE Access 8 (2020) 161580–161592.

[34] V. Ravi, M. Alazab, S. Srinivasan, A. Arunachalam, K. Soman, Adversarial
defense: DGA-based botnets and DNS homographs detection through
integrated deep learning, IEEE Trans. Eng. Manage. (2021).

[35] J. Peck, C. Nie, R. Sivaguru, C. Grumer, F. Olumofin, B. Yu, A. Nascimento,
M. De Cock, CharBot: A simple and effective method for evading DGA
classifiers, IEEE Access 7 (2019) 91759–91771.

[36] J. Spooren, D. Preuveneers, L. Desmet, P. Janssen, W. Joosen, Detection of
algorithmically generated domain names used by botnets: a dual arms
race, in: Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, 2019, pp. 1916–1923.

[37] A. Drichel, N. Faerber, U. Meyer, First step towards explainable dga mul-
ticlass classification, in: The 16th International Conference on Availability,
Reliability and Security, 2021, pp. 1–13.

[38] V. Le Pochat, S. Maroofi, T. Van Goethem, D. Preuveneers, A. Duda,
W. Joosen, M. Korczyński, et al., A practical approach for taking down
avalanche botnets under real-world constraints, in: Proceedings of the 27th
Annual Network and Distributed System Security Symposium, Internet
Society, 2020.
117
[39] M. Tong, G. Li, R. Zhang, J. Xue, W. Liu, J. Yang, Far from classification
algorithm: dive into the preprocessing stage in DGA detection, in: 2020
IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), IEEE, pp. 468–474.

[40] A. Drichel, M.A. Gurabi, T. Amelung, U. Meyer, Towards privacy-preserving
classification-as-a-service for DGA detection, in: 2021 18th International
Conference on Privacy, Security and Trust (PST), IEEE, 2021, pp. 1–10.

[41] B. Holmes, A. Drichel, U. Meyer, Sharing FANCI features: A privacy analysis
of feature extraction for DGA detection, 2021, arXiv preprint arXiv:2110.
05849.

[42] F. Tegeler, X. Fu, G. Vigna, C. Kruegel, Botfinder: Finding bots in network
traffic without deep packet inspection, in: Proceedings of the 8th Interna-
tional Conference on Emerging Networking Experiments and Technologies,
2012, pp. 349–360.

[43] J. Kwon, J. Lee, H. Lee, A. Perrig, PsyBoG: A scalable botnet detection
method for large-scale DNS traffic, Comput. Netw. 97 (2016) 48–73.

[44] M. Asadi, M.A.J. Jamali, S. Parsa, V. Majidnezhad, Detecting botnet by using
particle swarm optimization algorithm based on voting system, Future
Gener. Comput. Syst. 107 (2020) 95–111.

[45] S.A.R. Shah, B. Issac, Performance comparison of intrusion detection sys-
tems and application of machine learning to snort system, Future Gener.
Comput. Syst. 80 (2018) 157–170.

[46] B. Yu, D.L. Gray, J. Pan, M. De Cock, A.C. Nascimento, Inline DGA detection
with deep networks, in: 2017 IEEE International Conference on Data
Mining Workshops (ICDMW), IEEE, 2017, pp. 683–692.

[47] R.R. Curtin, A.B. Gardner, S. Grzonkowski, A. Kleymenov, A. Mosquera,
Detecting DGA domains with recurrent neural networks and side informa-
tion, in: Proceedings of the 14th International Conference on Availability,
Reliability and Security, 2019, pp. 1–10.

[48] X. Sun, Z. Wang, J. Yang, X. Liu, Deepdom: Malicious domain detection
with scalable and heterogeneous graph convolutional networks, Comput.
Secur. 99 (2020) 102057.

[49] D. Zhao, H. Li, X. Sun, Y. Tang, DOLPHIN: Phonics based detection of
DGA domain names, in: 2021 IEEE Global Communications Conference
(GLOBECOM), IEEE, 2021, pp. 01–06.

Dan Zhao is a Ph.D. student in the School of Computer
Science and Technology at Xi’an Jiaotong University and
works in Xi’an University of Finance and Economics.
Her research interests are network measurement and
network security.

Hao Li received his Ph.D. degree in computer sci-
ence from Xi’an Jiaotong University in 2016 and is
now an associate professor in the School of Computer
Science and Technology at the same university. His
research interests are programmable networks and
high-performance network functions.

Xiuwen Sun received his Ph.D. degree in computer
science from Xi’an Jiaotong University in 2019 and is
now an assistant professor in the School of Computer
Science and Technology at Anhui University. His re-
search interests are computer networks and network
security.

Yazhe Tang received his Ph.D. degree in computer
science from Xi’an Jiaotong University in 2002. He is
now an associate professor of the School of Computer
Science and Technology, Xi’an Jiaotong University. His
research interests include software defined networking
and network security.

http://refhub.elsevier.com/S0167-739X(23)00034-1/sb8
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb8
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb8
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb8
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb8
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb8
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb8
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb9
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb9
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb9
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb9
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb9
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb10
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb10
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb10
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb10
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb10
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb11
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb11
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb11
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb12
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb12
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb12
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb12
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb12
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb12
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb12
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb13
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb13
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb13
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb14
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb14
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb14
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb14
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb14
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb15
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb16
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb16
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb16
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb16
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb16
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb17
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb17
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb17
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb18
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb18
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb18
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb20
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb20
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb20
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb21
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb21
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb21
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb22
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb23
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb23
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb23
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb24
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb24
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb24
https://publicsuffix.org/
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb26
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb26
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb26
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb26
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb26
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb27
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb27
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb27
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb28
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb29
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb29
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb29
https://osint.bambenekconsulting.com/feeds/
https://osint.bambenekconsulting.com/feeds/
https://osint.bambenekconsulting.com/feeds/
http://data.netlab.360.com/feeds/dga/dga.txt
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb32
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb32
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb32
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb32
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb32
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb33
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb33
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb33
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb34
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb34
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb34
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb34
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb34
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb35
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb35
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb35
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb35
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb35
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb36
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb36
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb36
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb36
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb36
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb36
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb36
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb37
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb37
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb37
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb37
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb37
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb38
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb38
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb38
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb38
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb38
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb38
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb38
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb38
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb38
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb39
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb39
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb39
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb39
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb39
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb39
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb39
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb40
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb40
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb40
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb40
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb40
http://arxiv.org/abs/2110.05849
http://arxiv.org/abs/2110.05849
http://arxiv.org/abs/2110.05849
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb42
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb42
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb42
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb42
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb42
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb42
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb42
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb43
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb43
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb43
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb44
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb44
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb44
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb44
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb44
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb45
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb45
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb45
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb45
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb45
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb46
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb46
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb46
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb46
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb46
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb47
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb47
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb47
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb47
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb47
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb47
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb47
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb48
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb48
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb48
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb48
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb48
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb49
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb49
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb49
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb49
http://refhub.elsevier.com/S0167-739X(23)00034-1/sb49

	Detecting DGA-based botnets through effective phonics-based features
	Introduction
	Background of Linguistics
	Design of DOLPHIN
	DOLPHIN Patterns
	Extracting Graphemes with Dolphin Patterns
	Phonics-based Features

	Implementation
	Evaluation
	Experimental Setup
	Different Features with RF Model
	Analysis of Phonics-based Features
	Different Models with Phonics-based Features
	Different methods with Phonics-based Features
	Generalization
	Training Speed

	Related Work on AGD Detection
	 Traditional Machine Learning Approaches
	Deep Learning Approaches
	Comparison of Previous Methods
	Comparison of Original Version

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

