
Less is More: Dynamic and Shared Headroom
Allocation in PFC-enabled Datacenter Networks

Danfeng Shan1, Yuqi Liu1, Tong Zhang2, Yifan Liu3, Yazhe Tang1, Hao Li1, Peng Zhang1

1Xi’an Jiaotong University 2Nanjing University of Aeronautics and Astronautics 3Tsinghua University

Abstract—In datacenters, lossless network is very attractive
as it can achieve ultra-low latency. In commodity Ethernet,
lossless forwarding is achieved by hop-by-hop Priority-based
Flow Control (PFC). To avoid buffer overflow, PFC-enabled
switches need to reserve some buffer as headroom, which is for
absorbing in-flight packets during the delay for backpressure
messages to take effect. However, with the growing link speed in
production networks, the buffer becomes increasingly insufficient,
and the headroom can occupy a considerable fraction of buffer.
As a result, the remaining buffer for absorbing normal traffic
bursts is significantly squeezed, leading to frequent PFC messages
that degrade the network performance.

However, the current static and queue-independent headroom
allocation scheme is inherently inefficient in solving this problem.
In light of this, we propose Dynamic and Shared Headroom
allocation scheme (DSH), which dynamically allocates headroom
to congested queues and enables the allocated headroom to
be shared among different queues. By statistical multiplexing,
DSH needs much less headroom to ensure lossless forwarding.
Furthermore, DSH can be implemented on switching chips with
moderate modifications. Extensive simulations show that DSH
can absorb 4× more bursts without triggering PFC messages
and reduce the flow completion time by up to ∼31%.

Index Terms—Priority-based Flow Control, Bursty Traffic,
Buffer Management

I. INTRODUCTION

Lossless network is increasingly attractive in datacenters as

it can provide ultra-low latency for applications [1]–[5]. In

commodity Ethernet, lossless transmission is achieved by the

hop-by-hop Priority-based Flow Control (PFC) mechanism. To

avoid packet dropping, a PFC-enabled switch sends a PAUSE

frame to its upstream device when its buffer is about to over-

flow. Receiving the PAUSE frame, the upstream device holds

back the packet transmission. To prevent buffer overflow, a

fraction of buffer should be reserved as headroom to absorb in-

flight packets before the PAUSE frame takes effect. However,

in large-scale networks, PFC messages can result in serious

performance issues, such as head-of-line blocking, congestion

spreading, collateral damage, and even deadlocks [3], [4],

[6]–[12]. Therefore, it is a common belief that PFC should be

triggered as few as possible. Ideally, PFC should only serve

as a backup method to ensure lossless packet transmissions.

However, due to the recent industrial trends, it is more

and more likely that datacenter networks (DCNs) suffer from

frequent PFC messages. Specifically, the link speed of DCN

has rapidly grown from 1Gbps to 40Gbps/100Gbps and will

continuously increase to 400Gbps in the near future [3], [13].

The amount of required headroom is increasingly large as it is

positively related to the link speed. Unfortunately, the memory

size in the switching chip cannot keep pace with the link

capacity [14]–[16]. This is because datacenter switches usually

employ on-chip memory for high-speed and low-latency mem-

ory access, and the memory size is limited by the chip area and

cost. Specifically, the buffer size (related to switching capacity)

has decreased by 4× over the past decade (§III-A). With these

trends, a considerable amount of buffer should be reserved

as headroom, significantly squeezing the buffer space for

accommodating normal traffic. As a result, the queue length

can easily hit the PFC pause threshold and PFC messages

will be frequently generated. Although recent advances in

end-to-end congestion control (CC) algorithms [1]–[4] can

keep persistent buffer occupancy low, they cannot completely

tackle this issue. This is because end-to-end CC takes at least

1 round-trip time (RTT) to react to traffic changes, and has

no control over short-term congestion events, which are very

common in DCNs. Specifically, studies have shown that most

flows will be finished within 1 RTT in future DCNs [17], [18]

and most congestion events will be caused by sub-RTT traffic

bursts [19]. Within 1 RTT, it is the buffer management scheme

that determines whether PFC messages can be avoided.

In face of the considerable headroom requirement, we find

that the current headroom allocation scheme (which is called

SIH in this paper) is quite inefficient in headroom utilization.

Our experiments show that 75% of headroom keeps unused

99% of the time even when the network load is up to 90%

(§III-B). This is because SIH reserves a static amount of worst-

case headroom independently for every ingress queue in every

port, which wastes a substantial amount of memory due to the

following two reasons:

(1) Not all ingress queues need to occupy the headroom. An

ingress queue takes up the headroom only when it becomes

congested and it is very unlikely that all ports/queues are con-

gested at the same time. Thus in most cases, most headroom

keeps unused and is wasted.

(2) Every ingress queue is allocated with the worst-case

headroom, while the worst case rarely occurs for all ingress

queues simultaneously. The worst-case headroom requirement

assumes that traffic arrives at the highest rate. In reality, queues

of the same ingress port share the common uplink capacity,

and thus it is impossible that all ingress queues are receiving

traffic at line rate.

Note that SIH’s inefficiency is inherent, lying in its queue-

independent and static headroom allocation method. Thus, the

problem cannot be simply addressed by adjusting the amount

of reserved headroom, which may lead to unacceptable packet

591

2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDCS57875.2023.00019

20
23

 IE
EE

 4
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

Sy
st

em
s (

IC
DC

S)
 |

 9
79

-8
-3

50
3-

39
86

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DC
S5

78
75

.2
02

3.
00

01
9

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

Upstream Port Downstream Port

Egress Queue Ingress Queue

�

XonXoff

DATA DATA DATA

PAUSE

Headroom

Fig. 1: Hop-by-hop priority-based flow control

loss for lossless networks. In this case, a brand-new headroom

allocation scheme is needed to radically resolve this issue.

In light of this, we propose Dynamic and Shared Headroom
allocation scheme (DSH) (§IV) to significantly reduce the

headroom allocation without risking packet loss. To this end,

DSH combines port-level flow control and queue-level flow

control. The port-level flow control performs flow control

operations on port-wise, which enables DSH to guarantee

lossless transmission with a small amount of reserved head-

room. It is based on the observation that different ingress

queues in the same port naturally share the common uplink

capacity. Thus, to avoid packet overflow, there is no need

to independently reserve headroom for each ingress queue.

Instead, DSH only needs to reserve headroom for each port and

make the ingress queues in the same port share the reserved

headroom. However, the headroom reduction comes at a cost.

Occupying the headroom reserved for each port will pause

the entire traffic from the upstream link, which is harmful to

performance as performance isolation is violated. Thus, DSH

also utilizes queue-level flow control most of the time and

makes port-level flow control merely an insurance method

against packet loss.

The queue-level flow control performs flow control actions

on queue-wise, which is the same as PFC. It is based on the

observation that not all queues need to occupy headroom at the

same time. Thus, DSH dynamically allocates headroom to each

queue only when the queue gets congested. In this way, the

headroom is allocated only when truly needed, and thus will

not be wasted. Furthermore, DSH enables the headroom to be

shared among different ingress queues. In this way, DSH can

take advantage of statistical multiplexing to efficiently utilize

the allocated headroom.

We evaluate DSH with extensive ns-3 simulations (§V).

Our microbenchmarks show that DSH can absorb over 4×
more bursty traffic without triggering PFC messages, and

can effectively mitigate the impairments (including collateral

damage and deadlock) induced by PFC (§V-A). Our large-

scale simulations show that DSH reduces the flow completion

time by up to ∼57.7% for short fan-in flows and up to ∼31.1%

for other flows (§V-B).

The rest of the paper is organized as follows. §II introduces

the background of PFC and switch buffer. §III discusses the

problem of the current headroom allocation scheme. Next, §IV

describes the design of DSH. In §V, we present the evaluations

of DSH. Finally, §VII concludes the paper.

Shared by All Queues

PrivateShared

Per Queue

Per Queue

Per Queue

Per Queue

Per Queue

Per Queue

Per Queue

Per Queue

Lossless Pool

Lossy Pool

Headroom Buffer Shared Buffer Private Buffer

Fig. 2: Buffer Partition in a PFC-enabled Switch

II. BACKGROUND

In this section, we introduce the background of PFC and

switch buffer.

A. Priority-based Flow Control

Ethernet-based datacenter networks rely on Priority-based

Flow Control (PFC) [20] to guarantee lossless packet forward-

ing. PFC is a hop-by-hop flow control mechanism (as shown in

Fig. 1). In a PFC-enabled switch, once the length of an ingress

queue exceeds a preset threshold (i.e., Xoff), the switch sends

a PAUSE frame to the upstream device. Receiving the PAUSE

frame, the upstream device suspends the packet transmission

for some duration specified by the PAUSE frame. When the

ingress queue length falls below another threshold (i.e., Xon),

the device sends a PAUSE frame with zero duration (we refer

to it as RESUME frame in this paper) to the upstream device,

which recovers the packet transmission.

To prevent packet dropping, Xoff should be set conserva-

tively. This is because it takes time for the PAUSE frame to

arrive at the upstream device and take effect. To prevent buffer

overflow, enough buffer beyond Xoff should be reserved to

accommodate in-flight packets during this time. The reserved

buffer beyond Xoff is called buffer headroom.

In the PFC standard [20], traffic can be classified into 8

priority classes. Each priority class is mapped to a separate

queue and packets belonging to different priority classes are

placed into different queues. The PFC messages carry the

priority information and can only pause/resume a specific

traffic class.

B. Buffer Architecture in PFC-enabled Switches

On a switching chip, the packets waiting to be transmitted

are stored in a packet buffer. Today’s commodity high-speed

switching chips usually employ on-chip shared memory for

high-bandwidth and low-latency packet access [3], [13], [21]–

[28].

Basically, in a PFC-enabled switch, the buffer is partitioned

into two pools [25], [29], [30] (as shown in Fig. 2). One pool

is dedicated to lossless traffic that relies on PFC to avoid

congestion loss. The other pool is dedicated to lossy traffic

that is allowed to be dropped due to buffer overflow. Buffer is

hard partitioned in such way to ensure performance isolation

between two kinds of traffic. In this paper, we mainly focus

on the lossless pool.

In the lossless pool, the buffer is further partitioned into

three segments:

592

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

• Private buffer: buffer space reserved for each queue,

which guarantees each queue’s minimum buffer resource.

• Shared buffer: buffer space shared among all queues.

• Headroom buffer: buffer space reserved for each queue,

which absorbs in-flight packets after sending PAUSE

frames.

C. Buffer Allocation and Management in the Lossless Pool

The switching chip utilizes a Memory Management Unit

(MMU) to allocate the buffer to arriving packets. For lossless

traffic, MMU manages the buffer from the ingress perspective

[29]–[31] (i.e., allocating buffer to ingress ports/queues). The

sizes of private buffer and headroom buffer are explicitly

configured. The remaining buffer serves as shared buffer.

Private buffer. There is no explicit rule specifying how to

configure the private buffer size. Nevertheless, the amount of

private buffer is relatively small (e.g., 16% in Arista 7050X3

switches [26]).

Headroom buffer. Different from the private buffer, the size

of the headroom buffer should be carefully configured to

prevent packet loss. This is because it takes some delay for a

PAUSE frame to take effect, and the MMU needs to reserve

enough headroom to absorb the arriving traffic during this

delay. According to [1], [3], [32], [33], the headroom size

for each ingress queue (denoted by η) is given by

η = 2 (C ·Dprop + LMTU) + 3840B (1)

where C is the capacity of the upstream link, Dprop is the

propagation delay of the upstream link, and LMTU is the

length of an MTU-sized packet. The rationale of such a setting

is as follows. The delay for PFC pause to take effect comprises

the following five parts:

1 Waiting delay: A port may be busy transmitting another

packet when a PAUSE frame is generated. The PAUSE

frame needs to wait for the transmission to be finished.

In the worst case, the port just begins to transmit the first

bit of an MTU-sized packet, and thus the PAUSE frame

needs to wait for LMTU/C time.

2 Propagation delay (of PAUSE frame): It takes Dprop time

for the PAUSE frame to arrive at the upstream device.

Dprop depends on the cable length and propagation

speed of signals. In datacenters, the distance between two

connected switches can be as large as 300 meters [3]. For

single-mode fibers, the speed of light is 65% of that in a

vacuum. As a result, the propagation delay is ∼1.5μs.

3 Processing delay: It takes some time for the switch to

process the PAUSE frame and stop the transmission. The

PFC definition has capped this time to 3840B/C [32].

4 Response delay: When the upstream port decides to

execute the pause action, it might be sending another

packet. In the worst case, the switch just begins to

transmit the first bit of an MTU-sized packet. Thus, it

takes LMTU/C for the pause action to truly take effect.

5 Propagation delay (of the last packet): When the upstream

device stops sending packets, there are still some in-flight

ON OFF

Contition: ωi,j
s (t) � Xoff

Action: Send PFC PAUSE

Condition: ωi,j
s (t) � Xon

Action: Send PFC RESUME

Fig. 3: State transition diagram of PFC

packets on the link, which should also be absorbed by the

headroom. It takes another Dprop time for the last sent

packet to arrive at the downstream switch.

Combining the above five parts results in Eq. (1).

Shared buffer. The shared buffer is available to all queues.

MMU utilizes a buffer management scheme to ensure fair

and efficient allocation of the shared buffer among all

queues. Among various buffer management schemes, Dynamic

Threshold (DT) is the most common one on commodity

switching chips [3], [4], [21]–[23], [26], [29], [34]–[36].

DT uses a threshold to restrict the length of each queue. The

threshold is dynamically adjusted according to the remaining

buffer size. Specifically, let T (t) denote the threshold at time

t, ωi,j
s (t) denote the amount of shared buffer occupation for

queue j in port i at time t, and Bs denote the buffer size of

the shared segment. The threshold is given by

T (t) = α ·
⎛
⎝Bs −

∑
i

∑
j

ωi,j
s (t)

⎞
⎠ (2)

where α is a control parameter. The rationale behind DT is

as follows. When the network is less congested, the amount

of buffer occupancy is low and thus the remaining buffer size

is high. DT adjusts the threshold to a higher value, which

enables each queue to occupy more buffer, making the buffer

efficiently used. On the contrary, when the network is more

congested, the amount of buffer occupancy is high and thus

the remaining buffer size is low. DT adjusts the threshold to

a lower value, which restricts the buffer occupations of each

queue, making the buffer fairly shared among different queues.

MMU workflow with PFC enabled. With PFC enabled,

MMU monitors the ingress queue lengths (denoted by qi,j(t))
and decides where to place each arriving packet. Further-

more, MMU generates PFC PAUSE messages to upstream

devices based on the amount of shared buffer occupancy and

Xoff /Xon thresholds1. The PFC mechanism can be described

as the state transition diagram in Fig. 32.

1With private buffer, the Xoff /Xon thresholds are compared with the
amount of shared buffer occupancy, rather than queue length.

2Note that the PFC standard uses pause timers to suspend the traffic
transmission rather than ON/OFF states. Nonetheless, it is logically identical
to the ON/OFF signals as the pause duration specified by a PAUSE frame is
usually longer than the duration for the queue length to fall bellow the Xon

threshold. Thus, we use ON/OFF states to describe the PFC mechanism for
the ease of understanding.

593

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

Specifically, for each arriving packet, there are four cases:

1 qi,j(t) < φ (φ is the amount of private buffer reserved

for each ingress queue): MMU puts the packet into the

private buffer.

2 φ � qi,j(t) < φ + T (t): MMU puts the packet into

the shared buffer. Furthermore, if the ingress queue is in

OFF state and ωi,j
s (t) < Xon, MMU triggers a RESUME

frame (i.e., PFC PAUSE frame with zero pause duration)

to the upstream device and makes the ingress queue turn

into ON state.

3 φ+T (t) � qi,j(t) < φ+T (t)+η: MMU puts the packet

into the headroom buffer. Furthermore, if the ingress

queue is in ON state, MMU triggers a PAUSE frame

to the upstream device and makes the ingress queue turn

into OFF state.

4 qi,j(t) � φ+ T (t) + η: MMU drops the packet.

III. MOTIVATION

In this section, we present the problem of the current

headroom allocation scheme.

A. Headroom Occupies Considerable Memory

It is expected that most of the memory should serve as

shared buffer to absorb bursty traffic without triggering PFC

messages. However, with the current buffer allocation scheme,

the headroom buffer occupies considerable memory, which can

significantly squeeze “footroom” buffer3 and result in frequent

PFC messages.

Specifically, the current buffer allocation scheme indepen-
dently reserves a static headroom for every ingress queue [1],

[3]. Assume that each ingress queue requires η headroom. The

total headroom size (denoted by h) is given by

h = Np ×Nq × η (3)

where Np is the number of ingress ports, Nq is the number

of queues per port, and η is given by Eq. (1).

With such method, MMU has to allocate worst-case head-

room for every ingress queue, and headroom can occupy a
large fraction of memory. For example, Broadcom Trident2

switching chip contains 12MB memory. It has 32 40GbE ports

(i.e., Np = 32 and C = 40Gbps). For each port, the PFC

standard supports 8 queues (i.e., Nq = 8). Assume that the

MTU is 1500B (i.e., LMTU = 1500B) and Dprop = 1.5μs,

MMU needs to allocate ∼5.33MB memory for headroom

buffer in total, which occupies 44.4% of total memory.

With the growing link capacity, this situation gets worse.

The link speed of production DCN has grown from 1Gbps

to 40Gbps and 100Gbps in the past decade [4], [13] and is

continuously growing. With higher link speed, MMU needs

to allocate more headroom to avoid buffer overflow. However,

the buffer size is limited by the chip area and cost, and thus

cannot scale with the switching capacity [14]–[16]. As a result,

the fraction of required headroom becomes increasingly large,

significantly squeezing the footroom buffer. Fig. 4 depicts the

3For convenience, we define footroom as the buffer other than headroom.

Chip Trident+ Trident2 Tomahawk2 Tomahawk3 Tomahawk4

Capacity 480Gbps 1.28Tbps 6.4Tbps 12.8Tbps 25.6Tbps

Year 2010 2012 2016 2017 2019

40

80

120

160

B
uff
er
S
iz
e
/
C
ap
ac
it
y
(μ
s) Headroom Size

Buffer Size

Fraction of Headroom

0.4

0.5

0.6

0.7

0.8

F
ra
ct
io
n

Fig. 4: Trends of buffer in Broadcom’s switching chips

14 16 18 20 22 24 26 28 30
Buffer Size (MB)

1.5

2.0

2.5

3.0

F
C
T
(m

s)

Fig. 5: FCT vs. buffer size

0 20 40 60
Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Fig. 6: Headroom utilization

trend of buffer size and the fraction of required headroom in

Broadcom’s switching chips. The switch buffer size per unit of

capacity has decreased by 4× in the last decade (from 157μs to

37μs), while the fraction of required headroom has increased

by 56% (from 43% to 67%).

Without enough “footroom” buffer, PFC messages can be

frequently triggered, which may result in serious performance

impairments (e.g., head-of-line blocking, congestion spread-

ing, collateral damage) and even network deadlocks.

To quantitatively demonstrate the performance degradation

brought by inadequate buffer, we perform a large-scale ns-3

simulation on a 256-server leaf-spine topology (more details in

§V-B). The congestion control algorithm is PowerTCP [37],

which can effectively keep persistent queue length low. We

use the widely-used web search workload [27] to generate

realistic DCN traffic. The total network load is 90%. Fig. 5

shows the average flow completion time (FCT) with different

buffer sizes. The FCT with 14MB buffer is 78.1% worse than

that with 30MB buffer.

To alleviate this problem, current network operators have

to restrict the number of priority queues [3]. However, this ad

hoc approach can aggravate the head-of-line blocking problem,

as different services cannot be isolated and the congestion of

one point can spread to the entire network. Furthermore, lots

of studies [17], [38]–[41] have shown that multiple service

queues can greatly improve the network performance. Restrict-

ing the number of queues prevents the network applications

from benefiting from them.

B. Current Headroom Allocation Scheme is Inefficient

Despite the increasingly large fraction of headroom, the

current static and independent headroom allocation scheme

(referred to as SIH) is still quite inefficient and wasteful. This

is due to three reasons:

594

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

(1) Not all queues need to occupy headroom. An ingress

queue needs to occupy headroom only when it is congested

and its queue length is higher than the Xoff threshold. In

reality, it is unlikely that all queues are congested at the same

time [42]. Despite this, SIH conservatively allocates worst-

case headroom size for all ingress queues. As a result, most

headroom buffer keeps unused.

(2) Traffic heading for different ingress queues at the
same port shares the capacity of uplink. In a port, all ingress

queues are connected to the same uplink and thus the traffic

heading for them shares the link capacity. When a traffic class

of a port needs to be paused, its traffic arriving rate should be

lower than C as long as other traffic classes also have in-flight

packets on the uplink. Thus, the actual required headroom size

can be lower than η.

(3) The upstream device is not always sending traffic
at full rate. When allocating headroom buffer for an ingress

queue, SIH assumes that the upstream device will always send

packets at line rate before PAUSE frame takes effect. However,

the upstream queue can be empty. As a result, the sending rate

of upstream device can be lower than link capacity and the

headroom can be over-allocated.

To quantitatively demonstrate the inefficiency, we perform

a large-scale ns-3 simulation with the same settings as the

previous one except that the congestion control algorithm is

DCQCN [1], which has higher buffer occupancy. To examine

the efficiency of headroom, we extract the local maximum

values of headroom occupancy, which indicates the actual

required headroom size. Fig. 6 shows the distribution of

headroom utilization for a port at the local maximum point.

The headroom utilization is only 4.96% at the median and

25.33% at the 99th percentile.

Note that the inefficiency of SIH is inherent and cannot be

avoided by simply adjusting the headroom buffer size. This is

because SIH has to allocate headroom buffer in the worst case

to ensure that buffer never overflows, even though the worst

case rarely occurs. Thus, to efficiently utilize the headroom

buffer, we need to seek another headroom allocation scheme.

IV. DSH DESIGN

To address the inefficiency problem of SIH, we propose

Dynamic and Shared Headroom (DSH) allocation, which aims

to efficiently allocate headroom while ensuring no congestion

loss. In this section, we first explain the key ideas behind DSH

(§IV-A). Then we present the details of our design (§IV-B),

and theoretically analyze DSH’s ability of burst absorption

(§IV-C). Finally, we show that DSH is easy to be implemented

on switching chips (§IV-D).

A. Key Ideas

DSH utilizes two ideas to achieve efficient headroom allo-

cation while ensuring no congestion loss.

(1) DSH proactively reserves a small amount of buffer as
insurance headroom to avoid packet loss. Different ingress

queues in the same port share the uplink capacity. Thus, to

avoid buffer overflow under any circumstances, there is no

Shared by All Queues

Per Port

Per Port

Per Queue

Per Queue

Per Queue

Per Queue

Insurance

Headroom

(Bi)

Shared Buffer

(Shared Headroom+Shared Footroom)

(Bs)

Private Buffer

(Footroom)

(Bp)

Fig. 7: Buffer partition with DSH

need to allocate η headroom for each ingress queue. Rather, we

only need to reserve η buffer for each port. When any ingress

queue in a port starts to occupy the insurance buffer, the port

pauses the entire upstream port. In this way, the amount of

reserved headroom is significantly reduced. Of course, this can

violate performance isolation among different traffic classes.

Thus, we also have the following mechanism to make the port-

wise pause rarely triggered.

(2) DSH dynamically allocates the headroom to con-
gested queues and makes the allocated headroom shared
among different ingress queues. An ingress queue needs

to occupy headroom only when it is congested. Thus, rather

than wasting headroom for uncongested queues, DSH tries to

allocate headroom to a queue only when it becomes congested.

In this way, when few queues are congested, most buffer can

serve as “footroom” to absorb bursty traffic without triggering

PFC pauses. Furthermore, as the allocated headroom buffer

is not necessarily used up, DSH enables the headroom buffer

to be shared among ingress queues. In this way, DSH can

take advantage of statistical multiplexing to improve the buffer

efficiency.

B. DSH Mechanisms

Next, we show how to realize the above key ideas with

simple mechanisms.

Buffer organization. Fig. 7 shows the buffer organization

with DSH. In addition to the traditional buffer partitions,

DSH further divides the headroom into two parts: shared

headroom and insurance headroom. The insurance headroom

is statically reserved for each port to guarantee no congestion

loss. The shared headroom is dynamically allocated as needed

and shared among different ingress queues.

Furthermore, as both shared headroom and shared buffer

are dynamically shared and allocated, DSH integrates them

into a single segment, collectively called shared buffer. Such a

design brings two benefits: (1) It facilitates the implementation

of DSH on switching chips, as the buffer partition is the

same as the existing one on commodity switching chips. (2)

It improves the buffer utilization. By integrating two kinds of

buffer, both headroom and footroom share the same piece of

buffer, increasing the degree of statistical multiplexing. As a

result, the buffer can be more efficiently utilized.

Buffer allocation and management. The management of the

private buffer keeps unchanged. For insurance headroom, DSH

595

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

QON QOFF

Contition: ωi,j
s (t) � Xqoff

Action: Send Queue-level PAUSE

Condition: ωi,j
s (t) � Xqon

Action: Send Queue-level RESUME

(a) Queue-level flow control

PON POFF

Condition: ωi
s(t) � Xpoff

Action: Send Port-level PAUSE

Condition: ωi
s(t) � Xpon

Action: Send Port-level RESUME

(b) Port-level flow control

Fig. 8: State transition diagrams at ingress side (receiver)

statically reserves some memory for each ingress port. Assume

that there are Np ports, the insurance headroom size (denoted

by Bi) is given by

Bi = Np × η (4)

where η is given by Eq. (1).

The remaining memory is for shared buffer, which is

dynamically allocated to ingress queues. DSH uses a threshold

T (t) to restrict the buffer occupancy (including both shared

headroom and shared footroom) for each ingress queue.

Furthermore, DSH adopts DT to dynamically adjust the

threshold T (t) based on the remaining buffer. DT has been

widely used in commodity switching chips for decades. It

can make DSH adaptive and efficient while simple to be

implemented.

The calculation of threshold T (t) is the same as that

in existing switching chip (i.e., Eq. (2)), except that the

amount of shared buffer occupancy (i.e., ωi,j
s (t)) should in-

clude the buffer occupancy of both shared headroom and

shared footroom. Thus, DSH does not need to modify the

existing hardware logic of threshold maintenance, facilitating

its implementation.

Flow control. DSH has two types of flow control mechanisms

to guarantee against packet loss: queue-level flow control and

port-level flow control.

The queue-level flow control is similar to the PFC mech-

anism. Specifically, a PFC PAUSE frame is sent to the

upstream port when the amount of shared buffer occupancy

for an ingress queue becomes higher than the pause threshold

(denoted by Xqoff). Arriving at the upstream port, the PFC

PAUSE frame will suspend the packet transmission of the

corresponding traffic class.

The only difference is the setting of Xqoff threshold. With

DSH, the Xqoff (t) threshold is set as

Xqoff (t) = T (t)− η (5)

The rationale is two-fold. (1) When an ingress queue

becomes congested, DSH tries to reserve enough headroom

(i.e., η) for it. (2) When an ingress queue is less congested,

it contributes the unused buffer to other congested queues.

Specifically, the buffer occupancy of an uncongested queue is

much lower than T (t). In other words, it occupies less buffer

and leaves much room as free buffer, which raises the value of

T (t) (recall that T (t) is proportional to the free buffer size).

Accordingly, this raises the Xqoff threshold and enables other

QON QOFF

Contition: Receive Queue-level PAUSE

Action: Pause Transmission for the Queue

Condition: Receive Queue-level RESUME

Action: Resume Transmission for the Queue

(a) Queue-level flow control

PON POFF

Condition: Receive Port-level PAUSE

Action: Pause Transmission for the Port

Condition: Receive Port-level RESUME

Action: Resume Transmission for the Port

(b) Port-level flow control

Fig. 9: State transition diagrams at egress side (sender)

congested queues to occupy more buffer before triggering PFC

messages. In summary, DSH tries to reserve enough headroom
for an ingress queue if and only if it becomes congested.

Of course, DSH cannot guarantee that every ingress queue

can get η headroom when becoming congested, as the shared

headroom is dynamically allocated as needed rather than stati-

cally reserved beforehand. Thus, DSH also contains port-level

flow control to avoid buffer overflow under any circumstances.

The port-level flow control is triggered when the total

occupancy of shared footroom and headroom of all queues

in a port becomes higher than a pause threshold (denoted

by Xpoff). When triggered, the ingress port sends a port-

level PAUSE frame (i.e., a PFC PAUSE frame with all pause

timers of priorities set) to the upstream port. Arriving at the

upstream port, the port-level PAUSE frame (i.e., a PFC PAUSE

frame with all pause timers of priorities unset) will suspend

the packet transmissions of all traffic classes.

The Xpoff (t) threshold is set as

Xpoff (t) = Nq × T (t) (6)

The intuition is simple. DSH allocates T (t) buffer as

footroom and headroom for each ingress queue. Thus, for all

ingress queues in a port, the total allocated buffer is Nq×T (t).
The rationale behind the intuition is that DSH allows the

ingress queues in the same port to share the allocated buffer,

especially headroom. Specifically, by restricting the port-level

buffer occupancy (rather than queue-level), a congested queue

can occupy the headroom allocated to other queues (in the

same port) if it has used up its allocated headroom. As the

traffic heading for the ingress queues in the same port naturally

shares the capacity of uplink, port-level buffer share is both

efficient and fair. In this way, not only can DSH utilize the

shared buffer more efficiently, but also the port-level flow

control can be less triggered.

MMU workflow with DSH. Putting all together, the workflow

of DSH can be described as state transition diagrams depicted

in Fig. 8 (at ingress side) and Fig. 9 (at egress side).

At ingress side, there are two queue-level states for each

ingress queue:

• QON: The ingress queue is not congested. The upstream

port is allowed to send packets of the corresponding

traffic class to the ingress queue. Arriving packets are put

into either private buffer (if qi,j � φ) or shared buffer (if

qi,j > φ).

596

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

• QOFF: The ingress queue is congested. The correspond-

ing traffic class in the upstream port is being paused.

Arriving packets are put into the shared buffer.

Without congestion, an ingress queue is in QON state. It

turns into the QOFF state when its shared buffer occupancy

becomes higher than Xqoff (t). During the transition, a PFC

PAUSE frame is sent to the upstream port to suspend the

packet transmission of the corresponding traffic class. If the

congestion is mitigated and the buffer occupancy of the ingress

queue becomes lower than Xqon(t), the ingress queue turns

into the QON state. During the transition, a queue-level

RESUME frame (i.e., PFC PAUSE frame with zero pause

duration) is sent to the upstream port to recover the packet

transmission of the corresponding traffic class.

Furthermore, for each ingress port, there are two port-level

states:

• PON: The ingress port is not congested. The upstream

port is allowed to send packets if the corresponding traffic

class is not paused by queue-level flow control. Arriving

packets are put into either private buffer (if qi,j � φ) or

shared buffer (if qi,j > φ).

• POFF: The ingress port is congested. All traffic classes

in the upstream port are being paused. Arriving packets

are put into the insurance headroom.

Without congestion, the port is in PON state. If the total

buffer occupancy of an ingress port becomes higher than

Xpoff , the ingress port turns into POFF state. During the

transition, a port-level PAUSE frame is sent to the upstream

port to suspend the packet transmission of all traffic classes.

When the congestion of the port is mitigated and its buffer

occupancy becomes lower than Xpon, the ingress port turns

into PON State. During the transition, a port-level RESUME

frame (i.e., PFC PAUSE frame with all pause timers unset) is

sent to cease the previous (port-level) pause action.

The egress-side workflow is similar except for the condi-

tions/actions of state transitions, which is omitted due to space

limitations.

C. DSH Analysis

In this part, we theoretically analyze the ability to absorb

bursty traffic of DSH.

We consider the same scenario as that in [43]. Specifically,

N ingress queues (i.e., queue 0, . . . , queue N − 1) become

congested at time t0 (t0 � 0). At t = 0, another M empty

ingress queues (i.e., queue N , . . . , queue N +M − 1) begin

to transmit bursty traffic simultaneously. Traffic arriving at

N +M queues has an offered load of R (R > 1), which has

normalized to the traffic departure rate. For ease of analysis,

we further make the following assumptions:

1) There is no private buffer, namely Bp = 0.

2) The resume threshold is infinitely close to but lower than

the pause threshold, namely 0 < Xqon −Xqoff < ε for

every ε > 0.

3) The delay for a PFC PAUSE frame to take effect is

infinitely close to 0.

Queue Length

Time

qN...(N+M−1)

T (t)

Xqoff (t)
q0...(N−1)

t1

Q1

0

(a) R � 1−αN
αM

+ 1

Queue Length

Time

qN...(N+M−1)

q0...(N−1)

T (t)

Xqoff

t2

Q2

0

(b) R > 1−αN
αM

+ 1

Fig. 10: Evolutions of queue length and threshold

Under these assumptions, the ability of burst absorption for

DSH and SIH can be given by Theorem 1 and Theorem 2,

respectively.

Theorem 1. For ingress queue N , . . . , ingress queue (N +
M − 1), DSH can avoid PFC PAUSEs if and only if

d <

{
α(B−Np·η)−η

[1+α(N+M)](R−1) , ifR � 1−αN
αM + 1

α(B−Np·η)−η
(1+αN)[(1+αM)(R−1)−αN] , ifR > 1−αN

αM + 1
(7)

where d is the duration of bursty traffic.

Proof. At t = 0, the length of ingress queue 0, . . . , ingress

queue (N − 1) (denoted by q0(t), . . . , qN−1(t)) is the same

as the Xqoff threshold, namely

qi(0) = Xqoff (0) = T (0)− η, 0 � i < N (8)

where threshold T (t) is given by

T (t) = α · (Bs −
∑
i

qi(t)) (9)

Substituting Eq. (8) into Eq. (9) yields{
T (0) = α(Bs+Nη)

1+αN

qi(0) = T (0)− η = αBs−η
1+αN

(10)

At t = 0+, M ingress queues become active. Their queue

lengths begin to increase and T (t) begins to decrease. Ac-

cordingly, the Xqoff threshold will also decrease, which in

turn makes q0(t), . . . , qN−1(t) decrease. Let T ′(t) denote the

derivative of T (t) and q′i(t) denote the derivative of q(t), then

we have

T ′(0+) = −α ·
∑
i

q′i(0
+) (11)

q′i(0
+) =

{
max (T ′(0),−1) , 0 � i < N
R− 1, N � i < N +M

(12)

Substituting Eq. (12) into Eq. (11) yields

T ′(0+) = −α ·N ·max(T ′(0),−1)− α ·M · (R− 1) (13)

There are two cases:

1) R � 1−αN
αM + 1

In this case, T ′(0+) � −1. Thus, qi(t) (0 � i < N) is

decreasing at the same rate of Xqoff threshold. The queue

length evolution is depicted in Fig. 10a. qi(t) (N � i < N +

597

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

M − 1) will keep increasing. During this time, T (t) and qi(t)
can be given by

T (t) =
α

1 + αN
[Bs +Nη −M(R− 1)t] (14)

qi(t) =

{
αBs−η−αM(R−1)t

1+αN , 0 � i < N

(R− 1)t, N � i < N +M − 1
(15)

This situation continues until qi(t) (N � i < N + M − 1)
reaches the Xqoff threshold at t = t1, namely qi(t1) =
T (t1)− η. Solving t1 from it, we get

t1 =
αBs − η

[1 + α(N +M)](R− 1)
(16)

At t = t1, queue N , . . . queue (N +M − 1) begin to pause

upstream devices. Thus, DSH can avoid PFC PAUSEs if and

only if d < t1, where d is the duration of bursty traffic arriving

at queue N , . . . queue (N +M − 1).

2) R > 1−αN
αM + 1

In this case, T ′(0+) < −1. Thus, qi(t) (0 � i < N) is

decreasing at a rate lower than Xqoff threshold. The queue

length evolution is depicted in Fig. 10b. During [0, t2], T (t)
and qi(t) can be given by

T (t) =
α(Bs +Nη)

1 + αN
− [αM(R− 1)− αN] t (17)

qi(t) =

{
αBs−η
1+αN − t, 0 � i < N

(R− 1)t, N � i < N +M − 1
(18)

This situation continues until qi(t) (N � i < N + M − 1)
reaches the Xqoff threshold at t = t2, namely qi(t2) =
T (t2)− η. Solving t2 from it, we get

t2 =
αBs − η

(1 + αN) [(1 + αM)(R− 1)− αN]
(19)

At t = t2, queue N , . . . queue (N +M − 1) begin to pause

upstream devices. Thus, DSH can avoid PFC PAUSEs if and

only if d < t2, where d is the duration of bursty traffic arriving

at queue N , . . . queue (N +M − 1).

Theorem 2. For ingress queue N , . . . , ingress queue (N +
M − 1), SIH can avoid PFC PAUSEs if and only if

d <

{
α(B−Nq·Np·η)

[1+α(N+M)](R−1) , ifR � 1−αN
αM + 1

α(B−Nq·Np·η)
(1+αN)[(1+αM)(R−1)−αN] , ifR > 1−αN

αM + 1
(20)

where d is the duration of bursty traffic.

Proof. With SIH, the queue length evolution is the same as

Fig. 10, except that Xoff = T (t). Thus, we can solve t1 and

t2 by simply let η = 0, which yields{
t1 = αBs

[1+α(N+M)](R−1)

t2 = αBs

(1+αN)[(1+αM)(R−1)−αN]

(21)

Thus, SIH can avoid PFC PAUSEs if and only if

d <

{
αBs

[1+α(N+M)](R−1) , ifR � 1−αN
αM + 1

αBs

(1+αN)[(1+αM)(R−1)−αN] , ifR > 1−αN
αM + 1

(22)

On the other hand, for SIH, Bs = B−Nq ·Nq ·η. Substituting

it into Eq. (22) yields (20).

Remarks. Theorem 1 and Theorem 2 prove that DSH has

better scalability to the number of queues than SIH. Specifi-

cally, DSH’s ability of burst absorption is irrespective of the

number of queues per port (i.e., Nq). In comparison, SIH’s

ability of burst absorption is negatively related to the number

of queues per port. This implies that DSH can support as many

queues as possible, which can improve performance isolation

between different services and enable the deployment of many

advanced traffic optimization systems (e.g., PIAS [38], Homa

[17]).

D. DSH Implementation

In this part, we discuss the feasibility of implementing DSH

on switching chips. We show that DSH is very easy to be

implemented, as it does not need to change the existing buffer

architecture and only needs some moderate changes to existing

flow control mechanisms.

Queue-level flow control. As shown in §II-B, existing PFC

mechanism triggers PFC PAUSE messages when the queue

length reaches T (t) and PFC RESUME message when the

queue length reaches T (t) − δ, where δ is a configurable

parameter. DSH’s queue-level flow control mechanism is the

same except that the threshold to trigger a PFC PAUSE

message (i.e., Xqoff) is T (t)− η, and the threshold to trigger

a PFC RESUME message (i.e., Xqon) is T (t) − η − δq .

Thus, we only need to change the conditions of generating

PFC message. Specifically, the switching chip needs two extra

subtractors. One is for calculating the Xqoff threshold, whose

inputs are T (t) and η. The other is for calculating the Xqon

threshold, whose inputs are Xqoff and δq .

Port-level flow control. Lots of commodity switching chips

have already supported port-level flow control based on port-

wise buffer occupancy [29], [35]. Thus, to achieve port-

level flow control, we only need to change the conditions of

generating port-level PAUSE/RESUME messages. The pause

threshold (i.e., Xpoff) is Nq ·T (t), where Nq is the number of

queues per port. The switching chip needs a multiplier, whose

inputs are Nq and T (t), to calculate the pause threshold. In

particular, if Nq is a power of two, only a shift register is

needed for the calculation. The resume threshold (i.e., Xpon)

is Xpoff − δp, where δp is a configurable parameter. The

switching chip needs a subtractor, whose inputs are Xpoff

and δp, to calculate the resume threshold.

Consolidating two kinds of flow controls. For the down-

stream port, two kinds of flow control work independently, and

thus no further modifications are required to consolidate them.

For the upstream port, we only need to change the condition

598

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

...

Port 0

Port 1

Port 2

Port 17

Port 31

Port 30

Background

Flows

Fan-in

Flows

(a) Scenario

0.0 0.2 0.4 0.6 0.8 1.0
Burst Size (% of Buffer Size)

0

5

10

15

20

P
au
se

D
ur
at
io
n
(m

s) DSH

SIH

(b) Total pause duration

Fig. 11: PFC avoidance

L0

...

L1

...

L2

...

L3

...

S0 S1

16 Hosts 16 Hosts 16 Hosts 16 Hosts

(a) Scenario

0 20 40 60 80 100
Deadlock Onset Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

DSH/DCQCN

SIH/DCQCN

DSH/PowerTCP

SIH/PowerTCP

(b) CDF of deadlock onset time

Fig. 12: Deadlock avoidance

of suspending packet transmissions. Specifically, each egress

queue suspends packet transmissions if the egress queue is in

QOFF state or the egress port is in POFF state. To realize this,

the switching chip needs to maintain a queue-level state per

egress queue and a port-level state per egress port as Fig. 9

shows. Then the pause condition can be easily generated by

an OR gate.

Overall resource increments to the switch ASIC. Based

on the above analysis, we argue that DSH brings acceptable

resource increments to switch ASIC due to the following rea-

sons. (1) DSH does not require additional counters/registers.

DSH only requires the buffer occupancy of each queue/port,

which is already available in existing switch ASIC. (2) DSH

does not touch the memory allocation and management mech-

anisms. DSH’s physical memory architecture (Fig. 7) is the

same as the existing one in commodity switches (Fig. 2).

Furthermore, DSH does not modify the the memory allocation

and management mechanisms of footroom buffer, while the al-

location of headroom buffer can be realized by additional flow

control mechanisms. Thus, implementing DSH does not need

to modify the existing memory allocation and management

mechanisms. (3) Simple and cheap comparison/arithmetic op-

erations are required to realize the conditions of triggering

PFC messages. DSH can be implemented by modifying the

conditions of triggering PFC messages, while all conditions

are based on comparison between buffer occupancy (and its

derivatives) and thresholds. Thus, DSH only requires compar-

ison and simple arithmetic operations (i.e., subtraction).

V. EVALUATION

In this section, we evaluate DSH’s performance with exten-

sive packet-level simulations on the ns-3 platform [44]. We

summarize the results below.

• DSH can absorb 4× more bursty traffic without triggering

PFC messages.

• DSH can effectively mitigate the performance impair-

ments (i.e., collateral damage and deadlock) brought by

PFC messages.

• DSH can reduce the FCT by up to 57.7% for short fan-in

flows and up to 31.1% for one-to-one background flows

in large-scale DCN topology.

A. Microbenchmarks

In this part, we evaluate DSH’s basic performance with care-

fully constructed microbenchmarks. We emulate the Broadcom

Tomahawk switching chip, which has 32 100Gbps ports and

16MB shared memory. Each port has 8 queues. One queue

is reserved for ACK packets and PAUSE/RESUME messages,

and has the highest priority. Other seven queues are scheduled

by the DWRR algorithm with a quantum of 1600B. The link

delay is 2μs and thus η = 56840B. The total headroom size

for SIH is 56840B × 32× 7 = 12MB. The private buffer size

is 672KB (3KB for each DWRR-scheduled queue). For DT,

α is set to 1/16 according to [3]. The Xqon/Xpon threshold is

the same as the Xqoff /Xpoff threshold.

PFC avoidance. First, we evaluate the ability of DSH to avoid

PFC messages. As shown in Fig. 11a, we start two background

flows at the beginning, which are from ingress port 0 and

ingress port 1, respectively, and head for egress port 31. At

t = 0.1s, we start 16 fan-in bursty flows, which are from

ingress port 2-17 to egress port 30. Fig. 11b shows the total

pause duration of all fan-in flows. DSH can avoid PAUSE

messages when the burst size is no larger than 40% of buffer

size, which is over 4× better than SIH.

Deadlock avoidance. One impairment brought by PFC mes-

sages is deadlock [3], [6]–[8], [11], which is a serious problem

as it can make a large part of network unusable. In this part,

we evaluate the ability of DSH to avoid deadlock.

We consider a topology shown in Fig. 12a, which is a leaf-

spine topology with two link failures marked with dashed lines

(i.e., S0-L3 and S1-L0). In the topology, there are two spine

switches (S0 and S1) and four leaf switches (L0 − L3). Each

leaf switch is connected to 16 hosts with 100Gbps downlinks,

and connected to two spine switches with 400Gbps uplinks.

The link delay is 2μs. We generate fan-in flows, which are

from L0 to L3, from L3 to L0, from L1 to L2, and from

L2 to L1, respectively. As a result, there is a cyclic buffer

dependency marked as red lines: S0 → L1 → S1 → L2 → S0.

The fan-in ratio (i.e., the number of flows) ranges from 1 to

15. The flow size is randomly chosen based on the Hadoop

workload [28], and flow arrivals follow a Poisson process.

The network load is 0.5 at the downlinks of each leaf switch.

Each scheme is tested 100 times and each simulation lasts for

100ms.

Fig. 12b shows the CDF of deadlock onset time. With

SIH, deadlock occurs for all simulations either with DCQCN

[1] or PowerTCP [37]. In comparison, DSH can avoid 96%

deadlocks with DCQCN and all deadlocks with PowerTCP.

This is because DSH can leave more “footroom” to absorb

599

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

S0 S1

H0

H1

H2 H25

...

R0

R1

F0

F1

Burst

(a) Scenario

0.0 0.2 0.4 0.6 0.8
Time (ms)

0

20

40

60

80

100

T
hr
ou
gh
pu
t
(G
bp
s)

DSH

SIH

(b) Throughput of F0 (w/o CC)

0.0 0.2 0.4 0.6 0.8
Time (ms)

0

20

40

60

80

100

T
hr
ou
gh
pu
t
(G
bp
s)

DSH

SIH

(c) Throughput of F0 (DCQCN)

0.0 0.2 0.4 0.6 0.8
Time (ms)

0

20

40

60

80

100

T
hr
ou
gh
pu
t
(G
bp
s)

DSH

SIH

(d) Throughput of F0 (PowerTCP)

Fig. 13: Mitigation of collateral damage

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load of Background Traffic

0.4

0.6

0.8

1.0

1.2

N
or
m
al
iz
ed

F
C
T

DSH

SIH

(a) [DCQCN] Fan-in traffic

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load of Background Traffic

0.6

0.8

1.0

1.2
N
or
m
al
iz
ed

F
C
T

DSH

SIH

(b) [DCQCN] Background traffic

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load of Background Traffic

0.4

0.6

0.8

1.0

1.2

N
or
m
al
iz
ed

F
C
T

DSH

SIH

(c) [PowerTCP] Fan-in traffic

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load of Background Traffic

0.6

0.8

1.0

1.2

N
or
m
al
iz
ed

F
C
T

DSH

SIH

(d) [PowerTCP] Background traffic

Fig. 14: Average FCTs with different loads of background traffic

bursty traffic, avoiding PFC messages.

Collateral damage mitigation. Another impairment brought

by PFC messages is that it can lead to performance degradation

of innocent flows, which is known as collateral damage [3].

In this part, we show that DSH can mitigate this problem by

avoiding PFC PAUSEs. We consider a typical scenario shown

in Fig. 13a, which is a common unit in datacenters and widely

adopted by other work [9], [45], [46]. All links are 100Gbps

and the propagation delay is 2μs. Two long-lived flows, F0

and F1, are sending traffic from H0 and H1 to R0 and R1,

respectively. After their throughputs reach 50Gbps, H2-H25

generate 24 concurrent fan-in flows to R1. Each flow has a

size of 64KB, which is smaller than a BDP and thus the fan-

in traffic is uncontrolled by congestion control algorithms. At

this time, the congestion point is S1 and both F1 and fan-in

flows contribute to the congestion. On the other hand, F0 is

an innocent flow that does not contribute to the congestion.

Ideally, the throughput of F0 should not be reduced.

Fig. 13 shows the throughput of F0. With SIH, the through-

put of F0 is significantly reduced. This is because the pause

threshold Xpoff is very low and thus PFC PAUSEs can be

easily triggered. As a result, switch S0 is paused and the

packet transmission of F0 is suspended. In comparison, DSH

can effectively avoid performance degradation for F0. This

is because it can efficiently utilize the headroom and leave

enough “footroom” for PFC avoidance. Besides, we observe

that the state-of-the-art congestion control algorithms (Fig. 13c

and Fig. 13d) are not able to avoid the collateral damage. This

is because end-to-end congestion control requires at least 1

RTT to react to traffic changes. Within 1 RTT, it is the buffer

management scheme that determines whether PFC messages

can be avoided.

B. Benchmark Traffic

In this part, we evaluate DSH in a large-scale DCN topol-

ogy.

Topology. We build a leaf-spine topology with 16 leaf

switches, 16 spine switches, and 256 servers. Each leaf switch

is connected to 16 servers with 100Gbps downlinks and 16

spine switches with 100Gbps uplinks, forming a full-bisection

network. The link delay is 2μs and thus the base RTT is 16μs

across the spine. We employ ECMP for load balancing.

Switch. We emulate the Broadcom Tomahawk switching chip.

The settings are the same as those in previous simulations.

Transport. We consider two end-to-end congestion control

algorithms: DCQCN [1] and PowerTCP [37]. We use the

default parameter settings in their open-source simulations.

Workload. We generate two kinds of traffic: background

traffic and bursty fan-in traffic. The background traffic follows

one-to-one pattern. The sender and receiver are randomly

chosen. The flow sizes are generated according to a web search

workload [27]. The fan-in traffic follows many-to-one pattern,

where 16 senders simultaneously transmit 64KB data to the

same receiver. The senders are randomly chosen and are in

different racks from the receiver. Fan-in flows are classified

into the same traffic class. Background flows are randomly

classified into other traffic classes. Flow arrivals follow a

Poisson process. The total network load is 0.9.

Results. Fig. 14 shows the flow completion time (FCT) under

different loads of background traffic. For clear comparison,

we normalize each FCT to the value achieved by SIH. The

results show that both fan-in flows and background flows can

benefit from DSH. With DCQCN, DSH can reduce the average

FCTs of background traffic and fan-in traffic by up to 10.1%

and 43.3%, respectively. With PowerTCP, DSH can reduce the

600

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load of Background Traffic

0.4

0.6

0.8

1.0

1.2
N

o
rm

al
iz

ed
F

C
T

DSH

SIH

(a) Leaf-Spine + Data mining

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load of Background Traffic

0.4

0.6

0.8

1.0

1.2

N
o
rm

al
iz

ed
F

C
T

DSH

SIH

(b) Leaf-Spine + Cache

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load of Background Traffic

0.4

0.6

0.8

1.0

1.2

N
o
rm

al
iz

ed
F

C
T

DSH

SIH

(c) Leaf-Spine + Hadoop

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load of Background Traffic

0.6

0.8

1.0

1.2

N
o
rm

al
iz

ed
F

C
T

DSH

SIH

(d) Fat-Tree (k=16) + Web Search

Fig. 15: Average FCTs across different workloads and topologies (transport: DCQCN)

average FCTs of background traffic and fan-in traffic by up

to 31.1% and 57.7%, respectively. This is because DSH can

provide more footroom to absorb transient bursty traffic and

avoid PFC messages.

Furthermore, we evaluate DSH across different DCN ap-

plications and network architectures. Besides the web search

workload, we also consider other three realistic workloads:

a data mining workload [47], a cache workload [28], and

a Hadoop workload [28]. Besides leaf-spine topology, we

also consider fat-tree topology (k=16) [48]. Other settings

keep unchanged. Fig. 15 shows the FCT of background traffic

across different workloads and topologies with DCQCN. The

results confirm that DSH can improve FCT with different DCN

workloads and network topologies.

VI. RELATED WORK

To reduce PFC messages, lots of end-to-end congestion

control mechanisms [1], [2], [4], [6], [9], [37], [46], [49]–[52]

are proposed in recent years. They aim to maintain persistent

queue length low, which avoids triggering PFC messages.

However, it usually requires 1 RTT for the sources to receive

the congestion feedback. Within 1 RTT, it is the switch’s local

mechanisms (e.g., buffer management and flow control) that

determine whether PFC messages are generated. Thus, DSH

is complementary to them.

Besides the congestion control mechanisms, lots of studies

focus on mitigating the impairments of PFC in other ways.

PLB [12] leverages load balancing to alleviate PFC’s head-

of-line problem. Several approaches (i.e., TCP-Bolt [6], Tag-

ger [7], GFC [8], ITSY [11]) focus on detecting, avoiding, and

recovering from PFC deadlocks. To reduce the queue buildup

caused by incast traffic, P-PFC [10] uses the derivative of

buffer change to predict the buffer occupancy, and proactively

generates PFC messages to avoid queue buildup. In compar-

ison, DSH focuses on efficient headroom allocation and thus

is orthogonal to them.

VII. CONCLUSION

In datacenter networks, PFC-enabled switches need to re-

serve some buffer as headroom to avoid buffer overflow. How-

ever, with the growing link speed, the buffer becomes increas-

ingly inadequate, and the headroom occupies a considerable

fraction of buffer, significantly squeezing the buffer space for

accommodating normal traffic. As a result, PFC messages can

be frequently generated, bringing about serious performance

impairments. In this paper, we argue that the current static and

queue-independent headroom allocation scheme is inherently

inefficient. We propose Dynamic and Shared Headroom (DSH)

allocation scheme, which dynamically allocates headroom to

congested queues and enables allocated headroom to be shared

among different queues. Extensive simulations show that DSH

can significantly reduce the PFC messages and improve the

network performance.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive

comments. This work was supported in part by the National

Key R&D Program of China (No. 2022YFB2901700), in part

by the National Natural Science Foundation of China (No.

62002165, No. 62172323, and No. 62272382), and in part

by the Natural Science Foundation of Jiangsu Province (No.

BK20200445).

REFERENCES

[1] Y. Zhu, H. Eran, D. Firestone, et al., “Congestion Control for
Large-Scale RDMA Deployments,” in ACM SIGCOMM, 2015.

[2] R. Mittal, V. T. Lam, N. Dukkipati, et al., “TIMELY: RTT-
based Congestion Control for the Datacenter,” in ACM SIG-
COMM, 2015.

[3] C. Guo, H. Wu, Z. Deng, et al., “RDMA over Commodity
Ethernet at Scale,” in ACM SIGCOMM, 2016.

[4] Y. Li, R. Miao, H. H. Liu, et al., “HPCC: High Precision
Congestion Control,” in ACM SIGCOMM, 2019.

[5] Z. He, D. Wang, B. Fu, et al., “MasQ: RDMA for Virtual
Private Cloud,” in ACM SIGCOMM, 2020.

[6] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and W.
Felter, “Practical DCB for Improved Data Center Networks,”
in IEEE INFOCOM, 2014.

[7] S. Hu, Y. Zhu, P. Cheng, et al., “Tagger: Practical PFC Dead-
lock Prevention in Data Center Networks,” in ACM CoNEXT,
2017.

[8] K. Qian, W. Cheng, T. Zhang, and F. Ren, “Gentle Flow
Control: Avoiding Deadlock in Lossless Networks,” in ACM
SIGCOMM, 2019.

[9] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren, “Re-
architecting Congestion Management in Lossless Ethernet,” in
USENIX NSDI, 2020.

[10] C. Tian, B. Li, L. Qin, et al., “P-PFC: Reducing Tail Latency
with Predictive PFC in Lossless Data Center Networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31,
no. 6, pp. 1447–1459, 2020.

601

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

[11] X. C. Wu and T. S. Eugene Ng, “Detecting and Resolving
PFC Deadlocks with ITSY Entirely in the Data Plane,” in
IEEE INFOCOM, 2022.

[12] J. Hu, C. Zeng, Z. Wang, H. Xu, J. Huang, and K. Chen, “Load
Balancing in PFC-Enabled Datacenter Networks,” in APNet,
2022.

[13] A. Singh, J. Ong, A. Agarwal, et al., “Jupiter Rising: A Decade
of Clos Topologies and Centralized Control in Google’s Dat-
acenter Network,” in ACM SIGCOMM, 2015.

[14] W. Bai, S. Hu, K. Chen, K. Tan, and Y. Xiong, “One More
Config is Enough: Saving (DC)TCP for High-speed Extremely
Shallow-buffered Datacenters,” in IEEE INFOCOM, 2020.

[15] G. Zeng, J. Qiu, Y. Yuan, H. Liu, and K. Chen, “FlashPass:
Proactive Congestion Control for Shallow-buffered WAN,” in
IEEE ICNP, 2021.

[16] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh, and
T. E. Anderson, “Backpressure Flow Control,” in USENIX
NSDI, 2022.

[17] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa:
A Receiver-driven Low-latency Transport Protocol Using Net-
work Priorities,” in ACM SIGCOMM, 2018.

[18] S. Hu, W. Bai, G. Zeng, et al., “Aeolus: A Building Block
for Proactive Transport in Datacenters,” in ACM SIGCOMM,
2020.

[19] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-
resolution Measurement of Data Center Microbursts,” in ACM
IMC, 2017.

[20] IEEE DCB. “802.1Qbb – Priority-based Flow Control.”
(Jul. 16, 2011), [Online]. Available: https : / / 1 . ieee802 . org /
dcb/802-1qbb.

[21] S. Das and R. Sankar, “Broadcom Smart-Buffer Technology in
Data Center Switches for Cost-Effective Performance Scaling
of Cloud Applications,” Broadcom, White Paper, Apr. 2012.

[22] “Congestion Management and Buffering in Data Center Net-
works,” Extreme Networks, White Paper, 2014. [Online].
Available: http : / / learn . extremenetworks . com / rs / extreme /
images/Congestion-Management-and-Buffering-wp.pdf.

[23] A. Arcilla and T. Palmer, “Broadcom Trident 3 Platform
Performance Analysis,” Broadcom, White Paper, May 2019.
[Online]. Available: https : / / docs . broadcom . com / doc /
12395356.

[24] B. Wheeler, “Tomahawk 4 Switch First to 25.6Tbps, Broad-
com Doubles 400Gbps Ports With Unprecedented 512 Serdes,”
The Linley Group, Microprocessor Report, Dec. 2019. [On-
line]. Available: https : / /www. linleygroup .com/mpr /article .
php?id=12237.

[25] “Cisco Nexus 9300 Platform Buffer and Queuing Architec-
ture,” Cisco, White Paper, Nov. 2014. [Online]. Available:
https://www.cisco.com/c/en/us/products/collateral/switches/
nexus-9000-series-switches/white-paper-c11-732452.pdf.

[26] “Arista 7050X3 Series Switch Architecture,” Arista, White
Paper, Oct. 2013. [Online]. Available: https://www.arista.com/
assets/data/pdf/Whitepapers/7050X3 Architecture WP.pdf.

[27] M. Alizadeh, A. Greenberg, D. A. Maltz, et al., “Data Center
TCP (DCTCP),” in ACM SIGCOMM, 2010.

[28] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren,
“Inside the Social Network’s (Datacenter) Network,” in ACM
SIGCOMM, 2015.

[29] BCM88800 Traffic Management Architecture, Design Guide,
Broadcom, Feb. 2021. [Online]. Available: https : / / docs .
broadcom.com/doc/88800-DG1-PUB.

[30] “How To Configure Mellanox Spectrum Switch for Lossless
RoCE,” Mellanox. (Dec. 2018), [Online]. Available: https://
support .mellanox.com/s/article/howto- configure- mellanox-
spectrum-switch-for-lossless-roce.

[31] “Cisco Nexus 9300-EX Platform Switches Architecture,”
Cisco, White Paper, 2017. [Online]. Available: https : / /

www . cisco . com / c / dam / global / nl nl / solutions / data -
center- virtualization/pdfs /Cisco Nexus 9300 EX Platform
Switches white paper NL.pdf.

[32] “Priority Flow Control: Build Reliable Layer 2 Infrastructure,”
Cisco, White Paper, Sep. 2015. [Online]. Available: https:/ /
www.cisco.com/c/en/us/products/collateral/switches/nexus-
7000-series-switches/white paper c11-542809.pdf.

[33] IEEE DCB. “Proposal for Priority Based Flow Control.”
(May 8, 2008), [Online]. Available: https://www.ieee802.org/
1/files/public/docs2008/bb-pelissier-pfc-proposal-0508.pdf.

[34] “Understanding the Alpha Parameter in the Buffer Configura-
tion of Mellanox Spectrum Switches,” Mellanox. (Dec. 2018),
[Online]. Available: https: / /support .mellanox.com/s/article/
howto-configure-mellanox-spectrum-switch-for-lossless-roce.

[35] Cisco Nexus 9000 Series NX-OS Quality of Service Con-
figuration Guide, Release 6.x, Cisco, Apr. 22, 2020. [On-
line]. Available: https : / / www . cisco . com / c / en / us /
td / docs / switches / datacenter / nexus9000 / sw / 6 - x / qos /
configuration / guide / b Cisco Nexus 9000 Series NX - OS
Quality of Service Configuration Guide.pdf.

[36] Y. He, N. Batta, and I. Gashinsky, “Understanding Switch
Buffer Utilization in CLOS Data Center Fabric,” in Workshop
on Buffer Sizing, 2019.

[37] V. Addanki, O. Michel, and S. Schmid, “PowerTCP: Pushing
the Performance Limits of Datacenter Networks,” in USENIX
NSDI, 2022.

[38] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-Agnostic Flow Scheduling for Commodity Data
Centers,” in USENIX NSDI, 2015.

[39] M. P. Grosvenor, M. Schwarzkopf, I. Gog, et al., “Queues
Don’t Matter When You Can JUMP Them!” In USENIX NSDI,
2015.

[40] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy,
“Approximating Fair Queueing on Reconfigurable Switches,”
in USENIX NSDI, 2018.

[41] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling
Deep Reinforcement Learning for Datacenter-Scale Automatic
Traffic Optimization,” in ACM SIGCOMM, 2018.

[42] W. Bai, S. S. Abdeen, A. Agrawal, et al., “Empowering Azure
Storage with RDMA,” in USENIX NSDI, 2023.

[43] A. K. Choudhury and E. L. Hahne, “Dynamic Queue Length
Thresholds For Shared-memory Packet Switches,” IEEE/ACM
Transactions on Networking, vol. 6, no. 2, pp. 130–140, 1998.

[44] “ns-3.” (), [Online]. Available: https://www.nsnam.org/.
[45] M. Handley, C. Raiciu, A. Agache, et al., “Re-architecting

Datacenter Networks and Stacks for Low Latency and High
Performance,” in ACM SIGCOMM, 2017.

[46] Y. Zhang, Y. Liu, Q. Meng, and F. Ren, “Congestion Detection
in Lossless Networks,” in ACM SIGCOMM, 2021.

[47] A. Greenberg, J. R. Hamilton, N. Jain, et al., “VL2: A Scalable
and Flexible Data Center Network,” in ACM SIGCOMM, 2009.

[48] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable,
Commodity Data Center Network Architecture,” in ACM SIG-
COMM, 2008.

[49] P. Taheri, D. Menikkumbura, E. Vanini, S. Fahmy, P. Eug-
ster, and T. Edsall, “RoCC: Robust Congestion Control for
RDMA,” in ACM CoNEXT, 2020.

[50] J. Zhang, J. Shi, X. Zhong, et al., “Receiver-Driven RDMA
Congestion Control by Differentiating Congestion Types in
Datacenter Networks,” in IEEE ICNP, 2021.

[51] J. Zhang, Y. Zhang, Z. Guan, et al., “HierCC: Hierarchical
RDMA Congestion Control,” in APNet, 2022.

[52] X. Zhong, J. Zhang, Y. Zhang, Z. Guan, and Z. Wan, “PACC:
Proactive and Accurate Congestion Feedback for RDMA Con-
gestion Control,” in IEEE INFOCOM, 2022.

602

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 13,2026 at 03:20:55 UTC from IEEE Xplore. Restrictions apply.

