
Towards the Fairness of Traffic Policer
Danfeng Shan1, Peng Zhang1, Wanchun Jiang2, Hao Li1, Fengyuan Ren3

1Xi’an Jiaotong University 2Central South University 3Tsinghua University

Abstract—Traffic policing is widely used by ISPs to limit
their customers’ traffic rates. It has long been believed that a
well-tuned traffic policer offers a satisfactory performance for
TCP. However, we find this belief breaks with the emergence of
new congestion control (CC) algorithms like BBR: flows using
these new CC algorithms can easily occupy the majority of
the bandwidth, starving traditional TCP flows. We confirm this
problem with experiments and reveal its root cause as follows.
Without buffer in traffic policers, congestion only causes packet
losses, while new CC algorithms are loss-resilient, i.e. they adjust
the sending rate based on other network feedback like delay.
Thus, when being policed they will not reduce the sending rate
until an unacceptable loss ratio for TCP is reached, resulting
in low throughput for TCP. Simply adding buffer to the traffic
policer improves fairness but incurs high latency. To this end, we
propose FairPolicer, which can achieve fair bandwidth allocation
without sacrificing latency. FairPolicer regards token as a basic
unit of bandwidth and fairly allocates tokens to active flows in a
round-robin manner. Testbed experiments show that FairPolicer
can significantly improve the fairness and achieve much lower
latency than other kinds of rate-limiters.

Index Terms—Internet, Traffic Policing, Congestion Control,
Packet Loss

I. INTRODUCTION

On the Internet, an Internet Service Provider (ISP) usually
needs to regulate its customers’ traffic rate to enforce various
network policies [1]–[5]. A common mechanism to enforce
traffic rate is traffic policing, which is usually implemented
by a bufferless token bucket [2], [6]. A token bucket policer
does not contain buffer and just drops packets if the traffic
rate is above the throttling rate. Thus, it is quite simple
to be implemented in both software and hardware, enabling
a network device to deploy hundreds of traffic policers. In
addition, without queueing, the token bucket policer does not
result in any latency inflation. Due to the above features, token
bucket policer is widely adopted by ISPs [1]–[3].

The impact of traffic policing on network performance has
been studied a lot in history [7]–[12]. It has been shown that
TCP flows can achieve satisfactory performance as long as
the parameters of traffic policing are well-tuned [10], [11].
However, this may no longer be true with the emergence of
new congestion control (CC) algorithms recently [13]–[22].
These CC algorithms are quite different from the traditional
CC algorithms used by TCP. In addition to packet loss, they
use various network feedback to achieve both high throughput
and low latency. Some of them [15], [16], [23], [24] have
already been deployed in the production networks. Under
this new trend, we find that a serious throughput unfairness
problem arises: when flows using these CCs are competing

with traditional TCP flows in a policer, the former can occupy
the majority of the bandwidth, starving traditional TCP flows.

In this paper, we validate this problem through experiments
and analyze its root causes (§III). We find that up to 99.8%
of bandwidth can be occupied by flows using new CCs when
contending with traditional TCP flows. Through analysis, we
find the reason is that traffic policer can only generate packet
loss as the signal of congestion, while the new and traditional
CC algorithms have different sensitivity to packet losses.
Traditional CC algorithms used by TCP are loss-sensitive: they
reduce the sending rate once a packet loss is experienced. The
new CC algorithms, on the other hand, are loss-resilient: in
addition to packet loss, they adjust their sending rates based
on other network feedback (e.g., delay). However, without
a queue, these new CCs can not observe other congestion
signals. Thus, the new CCs will not reduce their sending rates
until a high packet loss ratio is reached, which is unacceptable
for loss-sensitive TCP flows. As a result, the throughput of
traditional TCP drops dramatically.

A straightforward approach is to add a queue into the traffic
policer (which is called traffic shaper) so that the new CCs
can obtain feedback about network delay when encountering
congestion. However, this approach can incur a high queueing
delay, which is unacceptable as many applications in today’s
Internet demand ultra-low latency [25], [26]. Another approach
is to improve the CC algorithm at end hosts. However, it is
hard for this approach to be adopted in real networks. This is
because the service providers tend to deliver their data as fast
as possible and may not be willing to concede bandwidth for
the fairness purpose.

In this paper, we propose an active approach to tackle this
problem: rather than passively relying on end hosts to friendly
occupy the bandwidth, we propose to actively allocate band-
width at the traffic policer. Specifically, we present FairPolicer
(§IV), a low-latency traffic policer that can fairly allocate
bandwidth among competing flows regardless of their CC
algorithms. The observation behind FairPolicer is that token
is the basic unit of bandwidth in token bucket policer. Thus,
FairPolicer tries to fairly allocate tokens to active flows. To
achieve this, FairPolicer divides the token bucket into multiple
per-flow token buckets and allocates tokens to these buckets
in a round-robin manner.

Although the basic idea is quite simple, to make it practical
requires solving two key challenges. First, the number of
active flows is dynamically changing. When a flow becomes
inactive, the tokens in its bucket will never be used, leading
to a waste of bandwidth. Second, with many concurrent flows,
maintaining per-flow data requires lots of memory.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

978-1-6654-0325-2/21/$31.00 ©2021 IEEE

IE
EE

 IN
FO

C
O

M
 2

02
1

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-0
32

5-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
42

98
1.

20
21

.9
48

87
61

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 08:00:30 UTC from IEEE Xplore. Restrictions apply.

Regulator

Token Bucket Packet

Generating tokens
at a speed of R

Token

Fig. 1: Token Bucket Policer

We use two methods to address the above challenges
and make FairPolicer practical. First, rather than distributing
tokens among the per-flow token buckets, FairPolicer puts
all available tokens in a centralized global token bucket and
maintains the residual bucket space of each flow instead.
Allocating a token to a flow is achieved by decreasing its
residual bucket space. In this way, when a flow becomes
inactive, the tokens allocated to this flow are in the global
bucket. We can simply delete the bucket of the flow without
wasting tokens. Second, FairPolicer leverages a Count-Min
Sketch structure [27] to store the per-flow token occupancy,
which enables FairPolicer to maintain per-flow data with a
small memory footprint. As shown in §V, FairPolicer can scale
to 1,000 flows with only 32KB memory.

We implement a prototype of FairPolicer in the Linux
kernel1 and evaluate it on a real testbed (§V). Our experiments
demonstrate that (1) FairPolicer can ensure fair bandwidth
allocation among flows with different CCs, and (2) FairPolicer
can achieve low latency for short flows. Specifically, when
loading a web page, FairPolicer can reduce the tail latency by
up to 14.0× and 15.1× compared to token bucket policer and
traffic shaper, respectively.

In sum, our contribution is three-fold:
• To the best of our knowledge, we are the first to dis-

cover and validate the unfairness problem with new and
traditional CC algorithms competing in a traffic policer.

• We propose FairPolicer, a new traffic policer that can
fairly allocate bandwidth among contending flows regard-
less of their CC algorithms.

• We prototype FairPolicer and evaluate it on a real testbed
to demonstrate that it can greatly improve the fairness
while still achieving a much lower latency compared with
other kinds of rate-limiters.

II. BACKGROUND

In this section, we briefly describe how a traffic policer
works and discuss the trend of CC algorithms on the Internet.

A. Traffic Policing on the Internet

Traffic policing is widely used by ISPs to enforce a specific
traffic rate. For example, T-Mobile’s “Binge On” service
provides zero-rated access to video streaming while limiting
the traffic rate to 1.5Mbps with a traffic policer [1]. Some

1Source code available at https://github.com/ants-xjtu/fairpolicer.

ISPs use traffic policing to enforce their customers’ traffic rates
below the bandwidth of their data plans [2], [3].

Traffic policing is mostly implemented by the token bucket
algorithm [2], [6], which works as follows. As shown in Fig. 1,
to throttle the traffic rate to R, the policer generates tokens at a
rate of R and puts these tokens into a bucket. When a packet
arrives at the policer, a regulator checks whether there are
enough tokens in the bucket. If the number of tokens is no
less than the packet length (denoted by l), the policer delivers
the packet and removes l tokens from the bucket. Otherwise,
the packet is dropped.

Compared to other kinds of rate-limiters, traffic policer has
two advantages. First, it is very easy to be implemented. It only
requires a counter and a timer to implement its core algorithm.
The counter records the number of tokens in the bucket, and
the timer increases the counter at a rate of R. With such a
simplicity, one can easily deploy a large number of traffic
policers inside a single network device with little cost. Second,
without queueing, the traffic policer does not inflate network
latency. This is of great importance as the bandwidth of today’s
Internet has increased a lot and latency becomes the main
concentration for many network applications [26].

B. Congestion Control Algorithms

Congestion Control (CC) is crucial to the user experience
of Internet applications. Currently, CUBIC [28] — the default
CC in Linux and Windows [29] — is perhaps the most
popular CC algorithm on the Internet. However, as the network
becomes complex, its performance is far from satisfactory.
On the one hand, as a loss-based CC, CUBIC tends to fill
the bottleneck buffer regardless of the buffer size, causing
the “bufferbloat” problem that flows experience very high
latency. On the other hand, CUBIC cannot distinguish between
congestion-induced packet loss and non-congestion-induced
packet loss (e.g., random packet loss), leading to a degradation
of throughput in some lossy scenarios.

Due to the above reasons, lots of new CC algorithms have
been proposed recently [13]–[22]. In addition to packet loss,
these CC algorithms also incorporate other network feedback
to achieve low latency and high throughput simultaneously.
For example, BBR [16] maintains an estimate of the round-
trip propagation time (i.e., round-trip time without queue-
ing) and the bottleneck bandwidth. Utilizing these kinds of
feedback, it sends packets at a rate of bottleneck bandwidth
to achieve the maximum throughput and limits the inflight
packets to O(BDP) to achieve low queueing delay, where BDP
is the product of round-trip propagation time and bottleneck
bandwidth. BBR has already replaced CUBIC on Google’s
B4 and been deployed on YouTube video servers since 2016
[16]. Copa [18] is a delay-based CC algorithm. It adjusts its
congestion window towards a target value, which is inversely
proportional to the estimated queueing delay. Copa has been
deployed in Facebook for live video upload [23]. PCC Allegro
[14] and PCC Vivace [17] regard the network as a black box
and adjust the sending rate to maximize a utility value, which

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 08:00:30 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80
Time (s)

0

2

4

6

8

10
G

oo
dp

ut
(M

bp
s)

CUBIC 1

CUBIC 2

(a) 2 CUBICs

0 20 40 60 80
Time (s)

0

2

4

6

8

10

G
oo

dp
ut

(M
bp

s)

BBR

CUBIC

(b) 1 CUBIC vs. 1 BBR

0 20 40 60 80
Time (s)

0

2

4

6

8

10

G
oo

dp
ut

(M
bp

s)

Copa

CUBIC

(c) 1 CUBIC vs. 1 Copa

0 20 40 60 80
Time (s)

0

2

4

6

8

10

G
oo

dp
ut

(M
bp

s)

Vivace

CUBIC

(d) 1 CUBIC vs. 1 PCC Vivace

Fig. 2: Goodputs of CUBIC flows and BBR/Copa/PCC Vivace flows when rate-limited by the same token bucket policer

0 1 2 3 4
Time (s)

0

2

4

6

8

10

12

14

R
at

e
(M

bp
s)

Startup

ProbeBwProbeBw

Policer
Detected

Sending Rate

BtlBw (Estimated)

Fig. 3: Temporal behavior of BBR

101

102

103

104

W
nd

(p
kt

s)

Target Cwnd Cwnd

25

50

75
R

at
e

(M
bp

s)

Sending Rate

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

10

R
T

T
(m

s)

RTT Queueing Delay

Fig. 4: Temporal behavior of Copa

−100

−50

0

U
ti

lit
y

Utility

10

20

R
at

e
(M

bp
s)

Sending Rate

0 2 4 6 8 10
Time (s)

0.0

0.5

L
os

s
R

at
io

Loss Ratio

Fig. 5: Temporal behavior of PCC Vivace

is a function of the packet loss ratio, RTT (or its gradient),
and sending rate.

III. THE UNFAIRNESS OF TRAFFIC POLICER

Although these recently proposed CC algorithms are de-
signed with TCP-Friendliness in mind, they have not consid-
ered the wide presence of traffic policers. As a result, flows
using these new CCs can occupy the majority of bandwidth
when competing with traditional TCP flows. In the following,
we use real experiments to demonstrate this problem and
analyze its root cause.

A. Experimental Results
We have built a testbed with four hosts connected to a

server-emulated switch (more details in §V-A). One host
serves as a receiver and other hosts serve as senders. The
traffic rate is throttled to 10Mbps by a 50KB token bucket.
The base round-trip time (RTT) between hosts is 10ms.

As shown in Fig. 2a, two CUBIC flows can fairly share the
bandwidth in the traffic policer. However, with one CUBIC
flow and one BBR flow (Fig. 2b), the BBR flow can occupy
the majority of bandwidth, starving the CUBIC flow. The same
phenomenon can be observed with Copa and PCC (Fig. 2c
and Fig. 2d). Specifically, competing with a CUBIC flow, the
BBR, Copa, or PCC Vivace flow can occupy 90.6%, 99.8%,
and 93.8% of bandwidth, respectively.

B. Analysis of the Unfairness Problem
1) BBR: Fig. 3 shows the dynamic behavior of BBR when

competing with a CUBIC flow in a traffic policer. The solid
line depicts the sending rate and the dashed line depicts the
estimated bottleneck bandwidth. We can observe that the BBR
flow occupies the majority of the bandwidth by two steps.

First, when the BBR flow starts, it enters into a Startup
state. Like the slow start phase of TCP, the BBR flow in
this state doubles its sending rate for each round. Unlike the
slow start phase, BBR does not reduce the sending rate when
encountering packet losses. It stays in this state until it does not
observe an increment of delivery rate. On the other hand, the
CUBIC flow will continuously reduce its sending rate when
encountering packet losses. When competing with the CUBIC
flow, the BBR flow will quickly occupy the bandwidth freed
by the CUBIC flow. As a result, after the Startup state, BBR
can occupy most of the bandwidth. As shown in Fig. 3, the
BBR flow increases its sending rate to 7Mbps at the end of
the Startup state.

Second, even if the BBR flow has not occupied the majority
of the bandwidth during the Startup state, it can gradually
approach the throttling rate by increasing its sending rate
during the ProbeBW state. Specifically, in the ProbeBW state,
BBR periodically probes the available bandwidth through
increasing its sending rate by 25% for 1 RTT. During this
time, the CUBIC flow will experience more packet losses and
concede some bandwidth, which is quickly occupied by the
BBR flow. Consequently, after probing, the BBR flow can
observe a higher value of bottleneck bandwidth. As shown in
Fig. 3, during [0.9s, 1.2s] and [1.9s, 2.1s], BBR increases its
average sending rate to 10Mbps and 10.5Mbps, respectively2.

Although BBR contains a policer detector, it is unable to
discover the existence of the policer most of the time. As

2As one might have noticed, BBR can slightly overestimate the bottleneck
bandwidth. This is because traffic policer allows some degree of bursty
transmissions. Consequently, the delivery rate can be temporarily larger than
the policing rate.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 08:00:30 UTC from IEEE Xplore. Restrictions apply.

shown in Fig. 3, BBR is only able to detect the policer in
[0.15s, 0.82s] and [1.24s, 1.87s]. Besides, even after detecting
the policer, a BBR flow will send data at its estimated
throttling rate, which can be larger than the fair share rate. For
example, during [1.24s, 1.87s] in Fig. 3, the average sending
rate is ∼8Mbps, which is 60% higher than the fair share rate.

2) Copa: Fig. 4 depicts the dynamic behavior of Copa
when competing with 1 CUBIC flow in a token bucket policer.
Copa estimates the queueing delay by observing the current
RTT and global minimum RTT. It sets a target congestion
window according to the estimated queueing delay. As a traffic
policer does not contain a queue, the estimated queueing delay
is very small. As shown in Fig. 4, the queueing delay estimated
by Copa is smaller than 0.1ms most of the time. As a result, the
target congestion window is several orders of magnitude larger
than the Bandwidth-Delay Product (BDP). And the sending
rate of Copa is much higher than the throttling rate. As shown
in Fig. 4, the congestion window is around 30 packets and
the sending rate is around 60Mbps. With such a high sending
rate, the Copa flow occupies the majority of the bandwidth,
starving the CUBIC flow.

3) PCC Vivace: PCC Vivace adjusts its sending rate ac-
cording to a utility function. Its default utility function is

u = xt − bxi
d(RTT)

dT
− cxL (1)

where t, b, c are constants, x is the sending rate, d(RTT)

dT is the
RTT gradient, and L is the loss ratio. When rate-limited by a
token bucket policer, the RTT does not change much, namely,
d(RTT)

dT ≈ 0. Consequently, Eq. (1) can be rewritten as

u ≈ xt − cxL (2)

According to [17] and [30], Eq. (2) does not decrease until the
packet loss ratio achieves 6.3%. However, such a packet loss
ratio is too high for CUBIC. The throughput of a CUBIC flow
drops to 1% at a loss rate of 6% [17]. As a result, the majority
of the bandwidth is occupied by the PCC Vivace flow.

Fig. 5 depicts the dynamic behavior of PCC Vivace when
competing with 1 CUBIC flow in a token bucket policer. The
sending rate of the PCC Vivace flow is over the throttling rate
most of the time.

C. Summary

In summary, the causes of the throughput unfairness prob-
lem are two-fold. On the one hand, the traffic policer only
generates packet loss as the network feedback about conges-
tion status. On the other hand, CUBIC and new CC algorithms
have quite different tolerability to packet loss. CUBIC is
loss-sensitive; it reduces its sending rate dramatically when
encountering a high packet loss ratio. The new CC algorithms
are loss-resilient; they also rely on other network feedback to
determine the sending rate. However, in the policer, packet loss
is the only network feedback about congestion status. Without
the help of other network feedback, these loss-resilient CC
algorithms do not reduce their sending rate until the loss
ratio reaches an unbearable value for CUBIC. As a result,

Regulator

Generating Tokens at a speed of R

Packet
Classifier

Round-Robin Allocator

Per-flow Buckets

Packets

Fig. 6: Basic Idea

the majority of bandwidth is occupied by these loss-resilient
CC flows, starving the loss-sensitive CUBIC flows.

IV. MITIGATING THE UNFAIRNESS PROBLEM

In this section, we first discuss the limitations of another
rate-limiting method — traffic shaping. Then we propose
FairPolicer to fairly allocate bandwidth regardless of the CC
algorithms of contending flows.

A. Limitations of Traffic Shaping

Traffic shaping is another approach to achieve rate-limiting.
Different from the traffic policer, a traffic shaper contains a
queue and buffers the traffic above the throttling rate [6].
With a traffic shaper, senders can be aware of latency inflation
when the network becomes congestion. The loss-resilient CCs
will reduce their sending rates before overwhelming the buffer,
protecting loss-sensitive flows from starving for bandwidth.

However, traffic shaping has three drawbacks. First, loss-
based CCs tend to fill the buffer of the shaper, resulting in
high in-network latency. This is quite unacceptable as latency
is the limiting factor for many Internet applications today [26],
such as online gaming, financial trading, and VoIP. Second,
the traffic shaper cannot guarantee fair bandwidth allocation
in all cases. For example, if the packet buffer is not large
enough, BBR can still occupy the majority of bandwidth [31],
[32]. Third, as the traffic shaper needs some memory to store
packets, it can dramatically increase the cost of a rate-limiter,
especially when hundreds of rate-limiters need to be deployed
in a single network device.

B. Basic Idea

Given the limitations of traffic shaping as discussed above,
we set out to design a new traffic policer to solve the unfairness
problem.

We observe that a cause of the unfairness problem is a
lack of bandwidth allocation mechanism in the current traffic
policing scheme. Specifically, tokens are given to whatever
packets that arrive, without enforcing a fair share of tokens
among flows. Based on this observation, we propose Fair-
Policer. The basic idea of FairPolicer is splitting the token
bucket to multiple per-flow token buckets and fairly allocating
tokens to each flow. Specifically, as shown in Fig. 6, On the
data path (solid line), FairPolicer classifies the arriving packets

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 08:00:30 UTC from IEEE Xplore. Restrictions apply.

based on their flows. Different kinds of packets are regulated
by different token buckets. On the control path (dashed line),
FairPolicer generates tokens at a speed of throttling rate
(denoted by R). The generated tokens are allocated to non-
full token buckets in a round-robin manner.

C. Challenges

However, although the basic idea seems to be simple, its
realization faces two practical challenges.

First, the number of active flows is varying. After a flow
finishes its transmission, its bucket will be full of tokens. These
tokens will never be used and thus are wasted. One solution is
to reallocate these tokens to other active flows. However, it is
not easy to implement this solution in the hardware because
it requires an arbitrary number of hardware operations. On
the other hand, when a flow becomes active, its bucket is
empty at the beginning. The bucket should be filled with
tokens immediately. Otherwise, the arriving packets will be
dropped, degrading the performance of the flow. The tokens
to fill the bucket should be moved from other buckets rather
than generated all at once. Otherwise, FairPolicer is not able
to limit the overall traffic rate to its throttling rate. However,
moving tokens from other non-empty buckets requires lots of
non-trivial operations in hardware. What’s worse, lots of flows
can become active and inactive in a very short time, resulting
in difficulty in hardware implementation.

Second, the number of concurrent flows could be very large
on the Internet [33], [34]. Accurately maintaining per-flow
state in the policer requires a lot of memory, which burdens
the network devices deploying the policers.

We use two methods to address the above challenges and
make FairPolicer practical. First, rather than distributing the
available tokens among the per-flow token buckets, we put
them into a centralized global bucket. In each per-flow bucket,
we maintain the residual bucket space instead of available
tokens. The residual bucket space denotes the number of used
tokens of the flow. Thus, we use the number of occupied tokens
to denote the residual bucket space. Allocating a token to a
flow is achieved by decreasing the number of its occupied
tokens. In this way, FairPolicer can be adaptive to the variation
of active flows. Specifically, when a flow becomes inactive, the
number of its occupied tokens becomes zero. Reallocating its
tokens can be simply achieved by raising the bucket capacity
of other flows. When a flow becomes active, its number of
occupied tokens is zero at the beginning, which denotes that
its bucket is full of tokens. No further operations are needed
to fill the bucket except that FairPolicer needs to reduce the
bucket capacity of other flows to limit the overall number of
occupied tokens.

Second, we use the Count-Min Sketch structure [27] to
estimate the number of occupied tokens for each flow. A
Count-Min Sketch is a two-dimension array of counters with
d rows and w columns. Each row is associated with a sepa-
rate hash function. The d hash functions should be pairwise
independent. A Count-Min Sketch supports two operations.
(1) Update(f,c) updates the counter of flow f by c, where

Rate Limit Module

f1 f2 f3

Regulator

Global Bucket

Token Allocation Module

Push

f1

f2

f3

Pop

1

Active
List

Per-flow
Occupied Tokens

Count-min Sketch

Query Inc

Query
Dec

Generating
tokens

Fig. 7: Structure of FairPolicer

c is a given integer, which can be either positive or negative.
To achieve this operation, the Count-Min Sketch uses d hash
functions to locate a counter in each row and updates all
located counters by c. (2) Query(f) queries the counter of
flow f . To achieve this operation, the Count-Min Sketch uses
d hash functions to locate d counters and returns the minimum
counter. Both operations can be easily implemented in the
hardware [35]. Some recent studies have shown that Count-
Min Sketch can track per-flow statistics in sub-linear space
[35], [36]. In §IV-E and §V-D, we’ll further show that Count-
Min Sketch can achieve a high estimation accuracy with a
small memory footprint.

D. Details of FairPolicer
Fig. 7 shows the structure of FairPolicer, which consists of

two modules: rate limit module and token allocation module.
The rate limit module restricts the traffic rate of each

flow. FairPolicer preserves the key mechanism of token bucket
policer to limit the overall traffic rate. Specifically, FairPolicer
generates tokens at a rate of R and puts them into a global
bucket; an arriving packet is allowed to pass the regulator only
if there are enough tokens in the global bucket.

Furthermore, FairPolicer limits the per-flow traffic rate
through restricting the number of per-flow occupied tokens
by a threshold. The threshold represents the bucket capacity of
each flow. To ensure fairness, all flows use the same threshold.
Specifically, an arriving packet of flow i is allowed to pass the
regulator if and only if

o(i) < T (3)

where o(i) is the number of occupied tokens for flow i and
T is the threshold. As is mentioned before, the threshold is
adjusted according to the number of active flows. With n active
flows, FairPolicer sets the threshold as

T =
B

n+ 1
(4)

where B is the capacity of the global token bucket. We set the
threshold in this way for two reasons. First, FairPolicer tries

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 08:00:30 UTC from IEEE Xplore. Restrictions apply.

to reserve B/(n+ 1) free tokens so that newly arriving flows
won’t starve for available tokens. Second, except the reserved
ones, the remaining tokens can be equally distributed among
the active flows.

One may concern that setting threshold as Eq. (4) may lead
to a waste of bandwidth, especially when n is very small
and lots of tokens are reserved. We argue that the bandwidth
waste is negligible in the long run. Consider the case when
n = 1, half of the tokens are reserved. For a period of [0, t],
FairPolicer generates R · t tokens in total. During this period,
B/2 tokens are always reserved. Consequently, the fraction
of wasted tokens is given by B/(2Rt), which becomes very
small with a large t.

Nevertheless, such a threshold calculation raises two im-
plementation issues. First, FairPolicer needs to determine the
number of active flows. Second, calculating the threshold
needs a divider, which can introduce some implementation
overhead.

To simplify the implementation, we borrow the idea of
DT [37] to approximately adjust the threshold as in (4).
Specifically, we set the threshold as

T = k = B −
n∑
i=1

o(i) (5)

where k is the number of available tokens in the global bucket.
With Eq. (5), FairPolicer dynamically adjusts T according
to the current unused tokens. As all flows share the same
threshold, in the steady state, FairPolicer can fairly allocate
tokens to all bandwidth-demanding flows.

To show how Eq. (5) can approximate Eq. (4), consider the
case that there are n active flows whose traffic rates are all
higher than R/n. In the beginning, some flows arrived earlier
and may have occupied much more tokens than others. As
new flows arrive and occupy the free tokens, the threshold T
becomes smaller, obliging previously arrived flows to concede
tokens to newly arrived flows. Eventually, in the steady state,
all flows will occupy the same number of tokens, namely,
o(1) = o(2) = · · · = o(n) = T . According to (5), the threshold
can be given by

T = B −
n∑
i=1

o(i) = B − nT (6)

which is equivalent to (4).
Finally, when a packet is allowed to pass the regulator, Fair-

Policer increases the number of occupied tokens by updating
the Count-Min Sketch.

The token allocation module fairly allocates the generated
tokens to the active flows. The core of this module is maintain-
ing the active flow list. Ideally, to determine whether a flow
is active, we need to observe its traffic during a time window.
However, such a method complicates the implementation of
FairPolicer, especially in hardware.

Fortunately, we observe that there is no need to maintain a
“real” active flow list. Specifically, FairPolicer does not need to
allocate tokens to the flows whose buckets have already been

filled with tokens. In other words, FairPolicer only needs to
maintain a list of flows whose numbers of occupied tokens are
non-zero.

To maintain such a list, FairPolicer adds a flow into the
list whenever its number of occupied tokens becomes non-
zero, and removes a flow from the list whenever its number
of occupied tokens becomes zero. The former operation is
conducted when a packet is allowed to pass the regulator.
Specifically, FairPolicer pushes the corresponding flow into the
list if the token occupancy before the packet arrival is zero.
The latter operation is conducted after a token is generated.
Whenever generating a token, FairPolicer pops a flow from the
list and allocates the token to the flow by decreasing its number
of occupied tokens. Then FairPolicer determines whether this
flow still has token occupancy by querying the Count-Min
Sketch. If the number of occupied tokens for this flow becomes
zero, FairPolicer removes this flow from the list. Otherwise,
FairPolicer appends the flow to the end of the list.

However, with a high throttling rate (e.g., 10Gbps), the
operation frequency can be very high. To reduce the imple-
mentation complexity in such environments, we can generate
a number of tokens, say, 10KB at a time and allocate them to a
flow. Such method trades off bandwidth. Specifically, if a flow
occupies less than 10KB tokens, some generated tokens are
wasted. However, we think that this is not a serious problem
in high-bandwidth environments.

E. Accuracy of Count-Min Sketch

Count-Min Sketch can over-estimate a flow’s occupied
tokens in case of hash collisions, causing flows to obtain
bandwidth smaller than their fair share rate. Nevertheless,
FairPolicer can achieve a high estimation accuracy with small
memory for the following two reasons.

First, the estimation error is bounded. The accuracy of a
Count-Min Sketch is highly related to the total number of
increments to its counters. In FairPolicer, the total number of
increments is no larger than B. Therefore, the estimation error
is bounded. Formally, we have the following theorem, which
can be easily derived from Theorem 1 in [27].

Theorem 1. The estimation error is within εB with a proba-
bility of 1− δ, where ε = e/w and δ = 1/ed.

Second, a single counter only needs a small amount of
memory. For a single counter, its maximum value is no larger
than B. Therefore, it is sufficient to use Θ(log2B) bits for
a counter. For example, if a counter is at a granularity of
40B and B = 100KB, then 2B memory is sufficient for a
single counter. A 4×1024 Count-Min Sketch only needs 8KB
memory. Therefore, it is possible to employ a large Count-Min
Sketch in FairPolicer.

F. Parameter Settings

FairPolicer has two kinds of parameters: bucket capacity B
and Count-Min Sketch size (i.e., depth d and width w). The
Count-Min Sketch size can be set according to Theorem 1. In
this part, we mainly analyze the setting of bucket capacity B.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 08:00:30 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Key Notations

Not. Description

B Bucket capacity / Maximum burst size
R Throttling rate
T Token threshold
t Time elapsed since the last window reduction

w(t) Congestion window at time t
wmax The window size just before the last reduction
C The scaling factor of CUBIC
β The window reduction factor of CUBIC
D Round-trip time
n Number of active flows

We focus on the influence of bucket capacity on the loss-
sensitive flows. This is because loss-resilient flows usually
send packets at a rate higher than the fair share rate regardless
of how large the bucket capacity is. For loss-sensitive flows,
there are two considerations when setting the bucket capacity.
On the one hand, the bucket capacity should be large enough
so that the throughput of a flow can achieve its fair share
rate [11]. On the other hand, the bucket capacity should not
be too large. This is because a larger bucket capacity allows
a higher degree of traffic burstiness, which can result in a
higher probability of packet dropping in the successive hops
[2]. In this part, we aim to derive the smallest bucket capacity
to ensure full throughput of a flow. The key notations are
summarized in TABLE I for the sake of terseness.

We start from a simple scenario that only one flow is passing
through a token bucket policer, which has a bucket capacity
of B. We consider CUBIC as it is the most common loss-
sensitive CC algorithm. The congestion window (denoted by
w(t)) of CUBIC is determined by the following function [28]:

w(t) = C(t−K)3 + wmax (7)

where C is a scaling factor, t is the time elapsed from the
last window reduction, wmax is the window size just before
the last reduction, and K = 3

√
wmaxβ/C. The parameter β

is the window reduction factor. The average sending rate of
the CUBIC flow can be given by w(t)/D, where D is the
round-trip time.

Fig. 8 shows the steady-state evolution of the congestion
window for a CUBIC flow, which can be divided into two
phases. In Phase 1 (i.e., [0, τ)), the sending rate of the flow is
lower than the throttling rate. Thus, the policer is accumulating
tokens in the bucket. In Phase 2 (i.e., (τ,K]), the sending rate
of the flow is higher than the throttling rate. Thus, the flow is
consuming tokens in the bucket until the bucket is empty.

To ensure that a flow can achieve a rate of R, all generated
tokens during [0,K] should be consumed by the flow. In
other words, the bucket should not be overflowed in Phase
1. Formally, we should have

Rτ −
∫ τ

0

[
C(t−K)3 + wmax

D

]
dt 6 B (8)

To solve the above inequality, we need to determine wmax and
τ . As the bucket is empty at time K, we have∫ K

0

[
C(t−K)3 + wmax

D

]
dt = R ·K (9)

Time

Cwnd

Token Exhausted
R ·D

τ0 K

Phase 1:
Accumulating

Tokens

Phase 2:
Consuming

Tokens

Fig. 8: Window evolution of CUBIC in the steady state

Solving for wmax from (9), we have

wmax =
4

4− β
RD (10)

On the other hand, at time t = τ , the sending rate of CUBIC
flow is equal to the throttling rate, namely, w(τ) = RD.
Solving for τ from it, we have

τ =

[
3

√
4β

C(4− β)
− 3

√
β

C(4− β)

]
3
√
RD (11)

Plugging (10) and (11) into (8), we get

B >
G

D
· (RD)

4
3 (12)

where

(13)G =
3

4
3
√
C

(
β

4− β

) 4
3

Now we consider a more complicated scenario where n
active flows are competing for bandwidth in FairPolicer. In this
case, we should replace R with R/n and B with B/(n + 1)
in inequality (12), which yields

B >

(
1

n
1
3

+
1

n
4
3

)
G

D
(RD)

4
3 (14)

Note that the right part of (14) reaches its maximum at n = 1.
Thus, we have

B >
2G

D
(RD)

4
3 (15)

According to the RFC [38], the parameters of CUBIC should
be set as β = 0.3 and C = 0.4. Thus, we have G = 0.036.
Substituting it into (15) yields B > 0.072

D (RD)
4
3 .

On the other hand, the bucket capacity should be as small
as possible to reduce the traffic burstiness. Thus, we should
set the bucket capacity as

B =
0.072

D
(RD)

4
3 (16)

Finally, to determine B in above equation, we need to set D
(i.e., RTT). There are two considerations. First, obtaining RTT
on the fly is not easy; we need to measure RTT and set the
parameter offline. Second, various flows tend to have different
RTTs. To ensure that all flows can achieve the fair share rate,
we should set D as the maximum RTT of all flows in the
network. For networks whose RTT distribution is extremely
long-tailed, we can choose a RTT (e.g., 99th percentile) such
that the majority flows can achieve fair share rate while the
bucket size is not too high.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 08:00:30 UTC from IEEE Xplore. Restrictions apply.

V. EVALUATION

In this section, we use testbed experiments and ns-3 simu-
lations to answer the following three key questions:

• Can FairPolicer ensure fair bandwidth allocation? In
§V-B, we show that FairPolicer can fairly allocate band-
width to contending flows with various CCs, including
CUBIC, BBR, Copa, PCC Vivace, and aggressive UDP.

• Does FairPolicer achieve low latency for short flows?
In §V-C, we show that FairPolicer can reduce the average
web page load latency by up to 5.1× and the tail web
page load latency by up to 15.1×.

• Can FairPolicer scale to a large number of flows? In
§V-D, we show that FairPolicer can achieve a misesti-
mation fraction of 0.001 using only 32KB memory with
1K-2K concurrent flows.

A. Implementation and Testbed Setup

We implement a prototype of FairPolicer as a new queueing
discipline (qdisc) in the Linux kernel, which lies between
the IP layer and the network interface driver layer. A qdisc
contains a packet queue and uses an enqueue callback and a
dequeue callback to perform the enqueue and dequeue opera-
tions, respectively. We implement all FairPolicer functions in
the enqueue function and manually set the maximum queue
size to one packet to emulate a bufferless policer.

We build a testbed with 4 servers connected by another
server emulating a switch. Each server is a Dell PowerEdge
R730 server with a 16-core Intel Xeon E5-2620 2.10GHz
CPU, 16GB memory, a 1TB hard disk, and two Broadcom
NetXtreme BCM5720 Gigabit Ethernet NICs. The server-
emulated switch has four Intel 82580 Gigabit Ethernet NICs
connecting to four servers. All servers run Ubuntu 18.04 with
Linux kernel 4.15.0. We use tc-netem to enlarge the RTT to
10ms.

In the server-emulated switch, we consider three kinds
of rate-limiters: FairPolicer, token bucket policer (TBP), and
traffic shaper. These rate-limiters are configured on the net-
work interface connecting to the receiver. For FairPolicer, the
Count-Min Sketch has a default size of 4×1024 counters. The
bucket size is set to 180KB according to Eq. (16)3. We use
tc-tbf to emulate TBP and traffic shaper. For TBP, we set the
queue size to 1600B to emulate a bufferless TBP. We set the
bucket size to 90KB according to Eq. (12). For traffic shaper,
we set both the bucket size and the queue size to 50KB. The
throttling rate of all rate-limiters is 10Mbps.

In the end hosts, we consider two kinds of CCs: loss-
sensitive CC and loss-resilient CC. For loss-sensitive CC,
we consider CUBIC as it is the default CC in mainstream
operating systems and thus is typical. For loss-resilient CC,
we consider BBR, Copa, and PCC Vivace. CUBIC and BBR
are officially supported by Linux 4.15.0. We use iperf3 to
generate CUBIC and BBR traffic. We use the user-space
implementation of Copa [39] and PCC Vivace [40] to generate

3Note that in Eq. (16) the unit of D is seconds and the unit of R is MSS
(Maximum Segment Size) per second.

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

2

4

6

8

10

G
oo

dp
ut

(M
bp

s)

CUBIC

BBR

Copa

PCC Vivace

UDP

(a) Goodput Evolution

4 8 16 32 64 128 256 512 1024
Number of Flows

0.0

0.2

0.4

0.6

0.8

Ja
in

’s
U

nf
ai

rn
es

s
In

de
x

FairPolicer (4x1024)

FairPolicer (4x4096)

TBP

Shaper

(b) Unfairness Index

Fig. 9: Fairness among loss-sensitive flows and loss-resilient
flows

their traffic. CUBIC traffic and other traffic are generated in
separate senders so as not to affect each other before arriving
at the rate-limiter.

B. Fairness

Temporal Fairness: First, we evaluate the fairness of band-
width allocation among CUBIC, BBR, Copa, PCC Vivace,
and an aggressive UDP flow. The UDP flow sends traffic at
line rate (i.e., nearly 1Gbps) at the sender and is completely
unaware of packet loss. In this experiment, we start a flow
every 10 seconds for the first 50 seconds and terminate a
flow every 10 seconds for the next 50 seconds. Fig. 9a shows
the goodput of each flow. FairPolicer can guarantee a fair
allocation of bandwidth among different kinds of CCs.
Fairness Index: Next, we use Jain’s fairness index [41] to
quantitatively evaluate the goodput fairness of FairPolicer,
TBP, and traffic shaper. Jain’s fairness index is given by
(
∑
i xi)

2/(n ·
∑
i x

2
i), where xi denotes the throughput of the

i-th flow. The fairness index ranges from 1/n (worst case) to
1 (best case), where n is the number of flows.

In this experiment, we start the same number of CUBIC,
BBR, Copa, and PCC Vivace flows simultaneously. Fig. 9b
shows the Jain’s unfairness index (1 - Jain’s fairness index)
with different kinds of rate-limiters. FairPolicer can achieve
significantly better fairness than TBP and traffic shaper.
Specifically, the unfairness index is within 0.004 when the
number of concurrent flows is within the sketch size. In
comparison, the unfairness indexes of TBP and traffic shaper
are 0.74-0.82 and 0.48-0.70, respectively.

When the number of concurrent flows exceeds the sketch
size, the Count-Min Sketch may overestimate the number of
occupied tokens, resulting in goodput unfairness. Thus, the
sketch size of FairPolicer should be appropriately configured.
Nevertheless, as is analyzed, the Count-Min Sketch of FairPo-
licer does not consume much memory. Specifically, with only
32KB memory (4× 4096 × 2B), FairPolicer can achieve fair
bandwidth allocation among 1,000 flows.

C. Latency

We now demonstrate how FairPolicer achieves low latency
for short data transmission. In this experiment, we generate
two kinds of traffic: HTTP traffic and background traffic. Both
kinds of traffic use CUBIC as their CC algorithm. We set up an
NGINX web server at a sender and let a receiver periodically

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 08:00:30 UTC from IEEE Xplore. Restrictions apply.

0.01 0.1 1.0
Page Load Time (s)

0.01

0.1

0.5

0.9

0.99

0.999
C

D
F

FairPolicer

TBP

Shaper

(a) Light-load background
traffic (Pareto scale = 0.1)

0.01 0.1 1.0
Page Load Time (s)

0.01

0.1

0.5

0.9

0.99

0.999

C
D

F

FairPolicer

TBP

Shaper

(b) Heavy-load background
traffic (Pareto scale = 0.01)

Fig. 10: Distributions of web page load time

requests a 10KB web page. The requests follow a Poisson
process with an average rate of 1 request per second. We
use D-ITG [42] to generate the background traffic. The inter-
arrival time of packets follows a Pareto distribution with shape
parameter 0.9 [43]. We vary the scale parameter to change the
traffic load. The experiment lasts for 1,000 web requests.

Fig. 10 shows the CDF of page load time with different
kinds of rate-limiters. Among the three rate-limiters, FairPo-
licer can achieve the shortest page load time. Specifically,
with light-load background traffic (Fig. 10a), over 90% of
the web requests can be finished within 22ms for all kinds
of rate-limiters. However, TBP and traffic shaper has a much
longer tail page load time than FairPolicer. Specifically, for
traffic shaper, the 99th-percentile page load time is 92.9ms,
which is over 4.4× longer than that of FairPolicer. This is
because the background traffic can cause queue build-up in the
traffic shaper and web requests may experience some queueing
latency. In comparison, FairPolicer does not contain a queue
and thus can achieve low latency. For TBP, the 99th percentile
is 281ms, which is 13.2× longer than that of FairPolicer.
This is because the background traffic can exhaust the tokens
and TBP may drop the packets of web requests. As a result,
the web requests may experience retransmission timeouts,
significantly extending the page load latency. In comparison,
FairPolicer does not allow the background traffic to use up all
tokens, effectively avoiding packet droppings of web request
flows.

With heavy-load background traffic (Fig. 10b), FairPolicer
achieves much shorter page load time than traffic shaper and
TBP. Specifically, FairPolicer can achieve 5.1× and 3.4×
shorter average page load time than traffic shaper and TBP,
respectively. And FairPolicer can achieve 14.0× and 15.1×
shorter 99th-percentile page load time than TBP and traffic
shaper, respectively. This is because traffic shaper and TBP
can drop some packets of web requests due to the lack
of buffer space and tokens, respectively, resulting in packet
retransmissions and retransmission timeouts. In comparison,
FairPolicer can isolate the web request traffic and background
traffic, effectively avoiding packet droppings of web request
flows.

D. Accuracy of Count-Min Sketch

In this part, we use ns-3 simulations [44] to evaluate the
accuracy of the Count-Min Sketch with a large number of

0 400 800 1200 1600 2000
Number of Flows

0

10−3

10−2

10−1

100

101

M
ea

n
E

rr
or

(B
)

4x1024

4x2048

4x4096

4x8192

(a) Mean error

0 400 800 1200 1600 2000
Number of Flows

0

10−6

10−5

10−4

10−3

10−2

F
ra

ct
io

n
of

M
is

es
ti

m
at

ed
P

ac
ke

ts

(b) Fraction of misestimation

Fig. 11: Accuracy of Count-Min Sketch

concurrent flows. We use a dumbbell topology with 100
senders and 100 receivers. The traffic rate of the bottleneck
link is throttled to 80Mbps. The traffic is generated based on
a Poisson process. The overall packet arrival rate is equal to
the throttling rate.

Fig. 11a shows the mean estimation error of occupied
tokens with different sketch sizes. FairPolicer can achieve
high estimation accuracy with a small memory footprint.
Specifically, the mean error is within 0.01B with a sketch
size of 4× 4096. Fig. 11b shows the fraction of misestimated
packets. The misestimation fraction is within 0.01% with a
sketch size of 4×4096. Note that such a sketch size only needs
32KB memory, which can be easily achieved as the memory
size of modern high-speed switches is usually in the order
of 10MB [45]. Besides, owing to the low estimation error,
FairPolicer can fairly allocate the bandwidth among all flows.
Specifically, among all simulations, the network utilization is
always higher than 99.5% and the unfairness index is always
lower than 0.002 (results not shown due to space limitations).

VI. CONCLUSION

In this paper, we find that flows using the recently proposed
CCs can occupy the majority of bandwidth when contending
with traditional loss-based TCP flows in a token bucket policer.
We reveal this problem with various experiments. Through
analysis, we find that this problem is caused by the different
sensitivity of new CCs and traditional CCs to the packet loss.
To tackle this problem, we propose FairPolicer — a low-
latency traffic policer that can fairly allocate bandwidth among
contending flows regardless of CC algorithms. Our testbed ex-
periments show that FairPolicer can guarantee fairness among
various kinds of flows.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
comments. Danfeng Shan would like to thank Yifan Liu
for the proofreading. This work is supported by the Na-
tional Natural Science Foundation of China (No. 61902307,
61772412, 61972421, 61702407, 61872208, U19B2025), the
Innovation-Driven Project of Central South University (No.
2020CX033), the Fundamental Research Funds for the Central
Universities (No. xzy012020014, xjj2018013), and the Natural
Science Basic Research Plan in Shaanxi Province of China
(No. 2018JM6109).

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 08:00:30 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. M. Kakhki, F. Li, D. Choffnes, E. Katz-Bassett, and A. Mislove,
“BingeOn Under the Microscope: Understanding T-Mobiles Zero-
Rating Implementation,” in ACM Internet-QoE, 2016.

[2] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng, T. Karim, E.
Katz-Bassett, and R. Govindan, “An Internet-Wide Analysis of Traffic
Policing,” in ACM SIGCOMM, 2016.

[3] T. Flach, L. Pedrosa, E. Katz-Bassett, and R. Govindan, “A Longitu-
dinal Analysis of Traffic Policing Across the Web,” USC Computer
Science, Tech. Rep. 15-961, 2015.

[4] F. Li, A. A. Niaki, D. Choffnes, P. Gill, and A. Mislove, “A Large-
Scale Analysis of Deployed Traffic Differentiation Practices,” in ACM
SIGCOMM, 2019.

[5] H. Guo and J. Heidemann, “Detecting ICMP Rate Limiting in the
Internet,” in PAM, 2018.

[6] Cisco, “Comparing Traffic Policing and Traffic Shaping for Bandwidth
Limiting,” Tech. Rep., May 2014. [Online]. Available: https://www.
cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/
19645-policevsshape.html.

[7] Wu-Chang Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “Under-
standing TCP Dynamics in an Integrated Services Internet,” in IEEE
NOSSDAV, 1997.

[8] W.-C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “Understanding
and Improving TCP Performance over Networks with Minimum Rate
Guarantees,” IEEE/ACM Transactions on Networking, vol. 7, no. 2,
pp. 173–187, Apr. 1999.

[9] H. Su and M. Atiquzzaman, “Performance Modeling of Differentiated
Service Network with a Token Bucket Marker,” in IEEE LANMAN,
2001.

[10] S. Sahu, P. Nain, C. Diot, V. Firoiu, and D. Towsley, “On Achievable
Service Differentiation with Token Bucket Marking for TCP,” in ACM
SIGMETRICS, 2000.

[11] R. van Haalen and R. Malhotra, “Improving TCP Performance with
Bufferless Token Bucket Policing: A TCP Friendly Policer,” in IEEE
LANMAN, 2007.

[12] W. M. Zuberek and D. Strzeciwilk, “Modeling Traffic Shaping and
Traffic Policing in Packet-Switched Networks,” Journal of Computer
Sciences and Applications, vol. 6, no. 2, pp. 75–81, Oct. 2018.

[13] K. Winstein and H. Balakrishnan, “TCP Ex Machina: Computer-
generated Congestion Control,” in ACM SIGCOMM, 2013.

[14] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC:
Re-architecting Congestion Control for Consistent High Performance,”
in USENIX NSDI, 2015.

[15] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis
and Design of the Google Congestion Control for Web Real-time
Communication (WebRTC),” in ACM MMSys, 2016.

[16] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” ACM Queue, vol. 14,
September-October, pp. 20–53, 2016.

[17] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “PCC Vivace: Online-Learning Congestion Control,” in
USENIX NSDI, 2018.

[18] V. Arun and H. Balakrishnan, “Copa: Practical Delay-Based Conges-
tion Control for the Internet,” in USENIX NSDI, 2018.

[19] S. Abbasloo, Y. Xu, and H. J. Chao, “C2TCP: A Flexible Cellular TCP
to Meet Stringent Delay Requirements,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 4, pp. 918–932, Apr. 2019.

[20] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A Deep
Reinforcement Learning Perspective on Internet Congestion Control,”
in ICML, 2019.

[21] T. Meng, N. R. Schiff, P. B. Godfrey, and M. Schapira, “PCC Proteus:
Scavenger Transport And Beyond,” in ACM SIGCOMM, 2020.

[22] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic Meets Modern:
A Pragmatic Learning-Based Congestion Control for the Internet,” in
ACM SIGCOMM, 2020.

[23] N. Garg. “Evaluating Copa Congestion Control for Improved Video
Performance,” Facebook. (Nov. 17, 2019), [Online]. Available: https:
//engineering.fb.com/video-engineering/copa/.

[24] A. Ivanov. “Evaluating BBRv2 on the Dropbox Edge Network,”
Dropbox. (Dec. 17, 2019), [Online]. Available: https://dropbox.tech/
infrastructure/evaluating-bbrv2-on-the-dropbox-edge-network.

[25] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is More: Trading a Little Bandwidth for Ultra-low
Latency in the Data Center,” in USENIX NSDI, 2012.

[26] M. Handley, “Delay is Not an Option: Low Latency Routing in Space,”
in ACM HotNets, 2018.

[27] G. Cormode and S. Muthukrishnan, “An Improved Data Stream
Summary: The Count-Min Sketch and its Applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[28] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-friendly High-speed
TCP Variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, Jul.
2008.

[29] Microsoft, Updates on Windows TCP, https : / / datatracker . ietf . org /
meeting /100 /materials / slides - 100- tcpm- updates - on- windows- tcp,
Nov. 2017.

[30] Full Proof of Theorems of PCC Vivace, http://ttmeng.net/pubs/vivace_
proof.pdf.

[31] M. Hock, R. Bless, and M. Zitterbart, “Experimental Evaluation of
BBR Congestion Control,” in IEEE ICNP, 2017.

[32] S. Claypool, “Sharing but not Caring - Performance of TCP BBR
and TCP CUBIC at the Network Bottleneck,” Worcester Polytechnic
Institute, Tech. Rep., Mar. 2019.

[33] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts, “Evaluating
the Number of Active Flows in a Scheduler Realizing Fair Statistical
Bandwidth Sharing,” in ACM SIGMETRICS, 2005.

[34] C. Hu, Y. Tang, X. Chen, and B. Liu, “Per-Flow Queueing by Dynamic
Queue Sharing,” in IEEE INFOCOM, 2007.

[35] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approxi-
mating Fair Queueing on Reconfigurable Switches,” in USENIX NSDI,
2018.

[36] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nel-
son, and S. Peter, “Evaluating the Power of Flexible Packet Processing
for Network Resource Allocation,” in USENIX NSDI, 2017.

[37] A. K. Choudhury and E. L. Hahne, “Dynamic Queue Length Thresh-
olds For Shared-memory Packet Switches,” IEEE/ACM Transactions
on Networking, vol. 6, no. 2, pp. 130–140, 1998.

[38] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Schef-
fenegger, CUBIC for Fast Long-Distance Networks, RFC 8312, Feb.
2018.

[39] Copa code, https://github.com/venkatarun95/genericCC.
[40] PCC Vivace code, https://github.com/PCCproject/PCC-Uspace.
[41] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A Quantitative Measure

of Fairness and Discrimination,” Tech. Rep. DEC Research Report
TR-301, Sep. 1984.

[42] A. B. and Alberto Dainotti and A. Pescapè, “A Tool for the Generation
of Realistic Network Workload for Emerging Networking Scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[43] V. Paxson and S. Floyd, “Wide Area Traffic: the Failure of Poisson
Modeling,” IEEE/ACM Transactions on Networking, vol. 3, no. 3,
pp. 226–244, Jun. 1995.

[44] ns-3, https://www.nsnam.org/.
[45] Broadcom Tomahawk, https://people.ucsc.edu/ warner/Bufs/tomahawk.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 08:00:30 UTC from IEEE Xplore. Restrictions apply.

		2021-07-21T03:50:36-0400
	Preflight Ticket Signature

