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Abstract—TCAM is widely used for flow table lookup in
Software-Defined Networking (SDN) switches for datacenter and
enterprise networks. While its lookup throughput is unparalleled,
TCAM updating, particularly for new rule insertions, can impair
the overall system performance. A rule insertion entails two steps:
1) Computing the rule moving operations; and 2) Interrupting
the TCAM lookups to apply the operations. In previous work,
the performance gain on one step is always at the expense of
the performance loss on the other. However, update throughput
and latency depend on both. In this paper, we present a faster
and more balanced TCAM update scheme, which not only
achieves the shortest interrupt time so far but also significantly
reduces the computation time. By using a novel sequential stack,
FastUp reduces the time and space complexity of the state-
of-the-art schemes from O(m2) and O(m) to O(m log h) and
O(h), respectively, where h<<m. Evaluations show that FastUp
shortens the computation time and the interrupt time by 100×
and 1.6×, respectively, which is equivalent to 15× update delay
reduction and 10× update throughput gain against the state-
of-the-art schemes. Moreover, we debunk a common mistake
and show the dynamic programming based algorithm cannot
be used to solve the reorder problem, and instead we use a
bidirectional rule moving method to address the problem. In
addition, we propose a practical method to find the theoretical
lower bound of interrupt time in relatively large TCAM, which
can be used to evaluate the optimality degree of TCAM update
schemes. Evaluations show that FastUp achieves 90% optimality.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] allows application

policies to be enforced, revoked, or modified quickly at

runtime and provides a high level of operational flexibility.

This is made possible by manipulating (i.e., adding, deleting,

or modifying) flow table rules in SDN switches. Today, using

Ternary Content Addressable Memory (TCAM) [2] for flow

tables becomes the de facto industry standard in SDN switches

of datacenter and enterprise networks for two reasons: (1)

TCAM allows a search key extracted from an incoming packet

to compare with all the stored rules in parallel, thus ensuring

line-speed forwarding; (2) TCAM rules support a wide range of

patterns, including exact matching, Longest Prefix Matching
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Fig. 1. Measurement results on a Tofino Switch with a 4K-entry TCAM.

(LPM), and range matching, which are flexible enough for

policy representation.

However, the application of TCAM is plagued by its limited

capacity and high update cost [3]–[6]. Although many solu-

tions are proposed to solve the problem of limit capacity by

using TCAM as a cache [5], [7]–[15], they mainly focus on how

to improve the TCAM hit-rate, but ignore the accompanying

TCAM refreshing problem. The frequent cache refreshing

further aggravates the severity of the TCAM update problem.

To better understand the TCAM update problem, we measure

the update performance of a high-end switch EdgeCore Wedge

100BF-65X [16]. As shown in Fig. 1, for an idle 4K-entry

TCAM-based rule table, the time to insert a rule becomes

longer as the TCAM fill-rate increases, reaching up to 11ms

when the TCAM is 90% full. The result is consistent with

previous reports on other SDN switches (e.g., NoviSwitch

1132, Pica8 P-3290, Dell 8132F, and HP 5406zl), supporting

less than 50 rule insertions per second [17]. The poor update

performance is attributed to the need for maintaining the

order of the rules based on their priority. It fails to meet the

requirement of update throughput in networks where policies

churn fast [18]–[27], as well as the requirement of update delay

imposed by applications [12], [17], [28]–[36]. For example,

fast failure recovery leaves no more than 10ms for a routing

table update [37]; traffic engineering in datacenters grants only

a 20ms budget to activate a new rule [38].

No wonder the TCAM update problem was and remains a

hot research topic. Most schemes [4], [39]–[45] are designed to

optimize the TCAM update process by reducing the number of

rule moves per update. Although the state-of-the-art schemes

(Γbh [42] and RuleTris [4]) achieve excellent performance in

reducing the rule moves per insertion by using Dynamic Pro-

gramming Algorithm (DPA), their practicability is impaired
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by the excessive computation time. Evaluations show that

their average computation time is on the order of hundreds of

milliseconds for a 4K-entry TCAM, falling short of the above-

mentioned update requirements.
Some other schemes (Γdown [42] and FastRule [43], [44])

focus on shortening the computation time of Γbh and RuleTris
at the cost of increased rule moves. Such an approach is

undesirable for two reasons. First, since TCAM lookups and

updates share the same interface, the excessive rule moves

interfere with the packet forwarding. A study shows that the

lookup interrupt caused by moving 16 rules in TCAM leads

to 18 packet drops on an OC-192 interface [40]. Second,

the throughput of high-end switches has already reached the

level of 12.8Tbps per chip [46] and the increasing trend does

not seem to recede, whereas TCAM bandwidth has not been

scaled up as fast, which means the bandwidth share allotted

to updates shrinks [47]. Therefore, reducing the rule moves is

still the paramount task.
Two types of time determine the overall TCAM rule-

insertion performance: computation time (Tc) and interrupt

time (Ti). Tc is the time for computing a rule moving sequence

for inserting a rule and Ti is proportional to the number of

rule moves, measuring the lookup interrupt time per update.

It is easy to see the rule-insertion delay is at best Tc + Ti,

and the throughput is at most 1/max{Tc, Ti}, overlooking

the communication delay and overhead.
It is clear that a better scheme should make both Tc and

Ti small, without being biased towards one and neglecting the

other. In this paper, we put forward a new scheme, FastUp,

which presents the following advantages over the state-of-the-

art schemes:

• FastUp reduces the time and space complexity from

O(m2) and O(m) to O(m log h) and O(h), respectively,

by using a Sequential Stack-based Algorithm (SSA) in

place of the predominant DPA in the state-of-the-art

schemes, where h, the diameter of the rule graph (Sec-

tion II-B), is much smaller than m, the number of TCAM

entries. Experiments show that FastUp shortens Tc by

100×, resulting in a 15× reduction in update delay and

a 10× increase in update throughput.

• Differing from the existing schemes with the requisite

on the location of empty entries (e.g., bottom), FastUp
allows rules to move in both directions, so the empty

entries at any location can be utilized, which not only

makes FastUp achieve 100% TCAM utilization, but also

helps to shorten the interrupt time. Experiments show that

FastUp shortens the average and maximal Ti by 1.3× and

1.6×, respectively.

• Some earlier schemes ignore the reorder problem. Some

other schemes realize it but mistakenly assume it can

be resolved by the same DPA-based algorithm. We show

that DPA-based algorithm can induce infinite-loop if used

for reorder resolution (Section IV-B2), so FastUp uses

a dedicated Rule Chain-based Algorithm (RCA) for it

instead. RCA exhibits better performance than the other

solutions by allowing bi-directional moves.

Furthermore, some works [4], [42], [48] claim they realize

the Optimal TCAM Update (OTU), i.e., achieving the the-

oretically shortest Ti. We refute the assertion by a simple

counterexample and then explain the essential reason. For the

first time, we propose a practical Branch-and-Bound Algo-

rithm (BBA) to acquire OTU for a relatively large TCAM,

which can be used to evaluate the degree of optimality for any

fast TCAM update scheme. Our evaluations show that FastUp
achieves 90% optimality.

The rest of the paper is organized as follows. Section II

provides the background. Section III summarizes the related

work. Section IV discusses two key algorithms SSA and RCA
of FastUp. Section V gives the theoretical analysis of OTU

problem and proposes BBA. Section VI reports the perfor-

mance evaluation results. Section VII concludes the paper.

II. BACKGROUND

A. Flow Table and TCAM

A rule r = (pri,match, action) in a flow table R comprises

three parts. r.pri is an integer representing r’s priority where

a larger value means a higher priority. r.match defines a set

of packet header prefixes or ranges for matching. r.action
indicates the action on packets that match r.match. Rules in

a flow table may overlap (i.e., ri.match∩ rj .match �=∅), so

a packet may match multiple rules. Such cases are resolved

by taking the matched rule with the highest priority.

Fig. 2(a) shows a flow table with 6 rules {r0∼r5}, and r6
is a new rule to be inserted. Their overlapping relationship is

shown in Fig. 2(b). The packet p with the field values {0111,

1011} matches r2, r4, and r5 but r2 is taken as the best.

As shown in Fig. 2(c), {r0∼r5} are “programmed” in a

match table in TCAM and an associated action table in SRAM.

When multiple rules are matched simultaneously by a packet,

TCAM can only return the action associated with the matched

rule at the lowest memory address. Hence, overlapping rules

must be placed in TCAM in descending priority order.

B. Rule Graph and Reorder Problem

The naive way for flow table placement in TCAM is to store

all rules in strict priority order, as shown in Fig. 2(c). Thus,

the Naive Moving Strategy (NMS) for inserting r6 to TCAM

requires moving downward all the rules {r1∼r5} with a lower

priority than r6 by one entry.

Differently, inserting r6 to the second entry and moving r1
downward to the seventh entry also guarantees the correctness

of packet matching, but with only one rule move. Because

r1 does not overlap with {r2∼r5}, the relative position be-

tween r1 and {r2∼r5} is insignificant. In other words, non-

overlapping rules are not required to be kept in strict priority

order. It is sufficient to maintain the correct relative position

between only overlapping rules [42], which can be formulated

by the following Condition I.

∀ ri, rj ∈ R, if ri � rj , ri.addr < rj .addr (1)

r.addr indicates the position of r in TCAM, e.g., r0.addr=0

in Fig. 2(c). ri�rj (rj≺ri) means ri.match∩ rj .match �=∅
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Rule Pri Match Action

7 11** 00** Fwd 1

6 011* ****
r3 5 11** 11**
r4 2 01** 1***

8r6 0*** 010*

r5 1 0*** 101*

 r0 9 001* 0*** Fwd 0

Fwd 2
Fwd 3
Fwd 4
Fwd 5

Fwd 6

F1 F2

r1
r2

(a) Flow table.

F1

F2
r3

r2

r5

r4

r0

r6

P:  (0111, 1011)

r1

(b) Rule overlapping.

F1 F2
Packet (0111, 1011)

Fwd 0
Fwd 1
Fwd 2
Fwd 3
Fwd 4
Fwd 5

SRAMTCAM
Action

2

0

0

1

001*
11**
011*
11**
01**
0***

0***
00**
****
11**
1***
101*

0
1
2
3
4
5

Addr

m-1 0

Matched
index

0
1
2
3
4
5

Addr

m-1
0

 

Priority
encoder

(c) Implementation of the flow table in TCAM and SRAM.

r0

r1

r3

r4

r5

r2

r6

(d) DAG.

Fig. 2. An example of flow table with 6 rules {r0∼r5} and a new rule r6 to be inserted.

and ri.pri> rj .pri. ri is called an ascendant of rj , and rj a

descendant of ri. Condition I dictates that each rule must be

placed above all its descendants and below all its ascendants.

Based on this, rule graph [41] is widely used to guide the

TCAM flow table updates, where each node represents a rule

and each directed edge represents the overlapping relationship

of two rules. An edge is directed from an ascendant node to

a descendant node, which makes the rule graph a Directed

Acyclic Graph (DAG). The rule graph for Fig. 2(a) is shown

in Fig. 2(d). Condition I can be expressed equivalently as that

any rule placement scheme according to the topological order

of the rule graph is feasible and vice versa.

In Fig. 2(d), before r6 is inserted, r0 and r2 are non-

overlapping. It is fine to place r0 below r2 in TCAM without

violating Condition I. However, if r6 is to be inserted, which

happens to be a descendant of r0 and an ascendant of r2, r0
must be moved above r2 to maintain the proper topological

order. Such a reorder problem, which is specific to the rule

graph-based schemes, must be detected and resolved first.

III. RELATED WORKS

Due to its high hardware cost and power consumption [49],

TCAM’s capacity is limited and it may fail to accommodate

a large-scale rule table. Some researchers tackle this issue by

compacting the rule tables [50], [51]. Others use TCAM as

a cache instead [5], [7]–[14]. However, these works [5], [7],

[8], [10], [52] focus on the selection of caching contents but

overlook the potential performance impact of TCAM updates

due to cache refreshment. Ding et al. take the number of rule

replacements into consideration when selecting rules to cache,

but the measures negatively affect the TCAM hit-rate [11].

Li et al. avoid the TCAM update problem when refreshing

TCAM. The consequence is that it requires every packet to

be processed by software regardless of the matching status

in TCAM, nullifying the purpose of the cache [13]. Since

using TCAM as a cache requires frequent cache refreshment in

order to maintain the high TCAM hit-rate, a fast TCAM update

scheme is crucial.

Some works optimize the update process by reducing the

redundant updates at the controller level [53]–[56]; most

schemes are designed for individual updates [4], [39], [41]–

[44]. The existing TCAM update schemes can be classified

based on their technical features.

Among these schemes, the earlier works adopt the priority

grouping method featuring a small Tc. PLO [41] groups LPM

rules based on the prefix length. FFU [39] groups general rules

based on their topology order. The worst-case Ti for these

schemes subjects to the number of groups, which is usually

between tens and hundreds.

To shorten the Ti, later schemes start to use each rule’s

priority value and its position in the rule graph in lieu of the

priority grouping. A clear trade-off on selecting the candidate

rules to move distinguishes these schemes. Given the update

rule r, Cao [41] and Γdown only consider a single candidate

(i.e., r’s closest ascendant or descendant) in each recursive

step. On the other extreme, Γbh and RuleTris evaluate all the

feasible candidates (i.e., the rules between r and r’s closest

ascendant or descendant) at each step, which leads to a near-

optimal Ti at a high Tc. FastRule gives up some Ti gain

in exchange of a smaller Tc. Only for the new rule, are

all the candidates considered for FastRule; in each recursive

step, FastRule regresses to the single candidate approach as in

Γdown and Cao.

Cao, Γdown, and Γbh assume that all the empty entries are at

bottom, so the middle empty entries caused by rule deletions

cannot be used and the expensive and limited TCAM resource

cannot be utilized fully. FastRule solves this problem but is at

the cost of rule moves when deleting rules. Cao, RuleTris, and

FastRule ignore the reorder problem. Γdown and Γbh notice

the reordering problem, however, their reorder resolution not

only requires excessive rule moves, but in some cases does

not work (Section IV-B).

A few works tackle the batch TCAM update problem.

CoPTUA [40] focuses on maintaining table consistency and

lookup throughput during batch updates. The method actually

increases the Ti. The complex table management and batch

processing also increase the update latency. Hermes [20] uses

a small logical shadow table to process batches of updates

and migrates the changes to TCAM periodically. As a system

architecture, Hermes lacks an underlying batch update scheme.

COLA [45] relies on the individual update schemes mentioned

above to calculate the moving sequence for each rule in a batch

first and then jointly considers the final TCAM placement.

While its Ti is improved, its Tc is still additive and subjects

to the poor Tc of the individual updates. COLA adopts Γdown

as its reorder solution and solves the inefficiency of Γdown

in terms of TCAM utilization at the cost of extra rule moves.
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TABLE I
PARAMETER DEFINITION.

Symbol Description
m, n The number of TCAM entries and flow table rules

T[i], 0≤i<m The i-th TCAM entry. T[0] is the TCAM top

R={ri|0≤i<n} The flow table composed of n rules r0, r1,...,rn−1

ri � rj , rj ≺ ri ri is the ascendant of rj , rj is the descendant of ri
G = (V,E) ∀ r ∈ R, r ∈ V ; ∀ ri � rj , (ri, rj ) ∈ E

h the diameter of the rule graph G = (V,E)
Des(i), Asc(i) The descendants and ascendants of the rule in T[i]

ru The new rule to be inserted

Des(ru),Asc(ru) The set of descendants and ascendants of ru
r.addr The address of the entry in which r is placed

succ(i),
succ(ru)

The successor of the rule in T[i], and ru.
Among all the rules in Des(i), and Des(ru),
the uppermost one is the successor.

pred(i),
pred(ru)

The predecessor of the rule in T[i], and ru.
Among all the rules in Asc(i), and Asc(ru),
the lowermost one is the predecessor.

S
A stack implemented with continuous memory and
containing entry addresses. S[0] is the bottom item.

Therefore, an efficient individual TCAM update scheme is still

the prerequisite for those batch TCAM update schemes.

IV. DESIGN AND ANALYSIS OF FastUp

The high-level workflow of FastUp is shown in Fig. 3.

When a new rule needs to be inserted, if it causes the

reorder problem, FastUp first applies RCA to resolve it. Then,

FastUp applies SSA to compute a rule moving and insertion

sequence. At last, it interrupts the TCAM lookup and applies

the sequence.

A. Algorithm SSA

1) Formulation of Moving Cost: Table I lists some no-

tations we use for the algorithm description. For ease of

description, we assume that rules are populated at the top

of TCAM and empty entries are at the bottom, as shown

in Fig. 4(a). So the direction of rule moving is downward

only. Note that FastUp also works when empty bubbles exist

between occupied entries, which in fact lead to faster solutions.

Without loss of generality, this paper considers the more

difficult case where no bubble exists between occupied entries.

To insert a new rule ru to TCAM, Condition I implies that

ru can be placed in any entry that is below ru’s predecessor

(i.e., the ascendant with the highest address) and above ru’s

successor (i.e., the descendant with the lowest address). Entries

in this range (including ru’s successor) are considered as

candidate locations for placing ru. For example, r6 in Fig. 4(a)

has two candidate locations: T[1] and T[2]. Placing a rule in

an occupied location causes a chain effect. The original rule in

the entry has to be kicked out and relocated in another entry

with a higher address, which may in turn kick out another rule.

According to [4], inserting r6 to a non-candidate location will

cause more rule moves. Therefore, we only need to evaluate

A
new
rule Algorithm RCA

(reorder case)
Algorithm SSA
(normal case)

Rule moving

Rule moving
plus an insertion

TCAM
Entry 0x00

Entry m-1

Entry 0x01

Fig. 3. The workflow of FastUp.

Rule
0
1
2

4
5

3

6

r6

r5

r4

r3

r2

r1

r0

T[#]

(a) DAG.

1
2

2
1

1

0

C

6
3

5
6

6

null

D

(b) DPA.

PushPush

6

Push

6

Push

5
6
5
4

Found element Popped element         Pushed element

Push

6
5
4
3 Pop

6
3
2

Push

6
3
2
1 Pop

Sequential stack

6
1

Initial
state

Final
stateOperate the sequential stack based on each entry from bottom to top

(c) SSA.

Fig. 4. Comparison between two cost-based approaches to insert a new rule.

the minimum moving cost C[i] (i.e., the number of rule moves)

for each candidate location of T[i] for inserting ru. Clearly,

the T[i] with the smallest C[i] should be taken as the target

of ru.
To relocate the rule in T[i], according to Condition I,

any entry within the available range (i, succ(i).addr] can be

considered as a candidate location. For example, in Fig. 4(a),

since succ(2) = r4, T[3] and T[4] are candidates for the

rule in T[2]. According to C[i]’s definition, C[i] equals the

smallest moving cost among all its candidates plus 1, e.g.,

C[2]=min{C[3],C[4]}+1. The idea is formulated in Equation 2.

C[i] = min
j∈(i, succ(i).addr]

{C[j]}+ 1 (2)

Meanwhile, we introduce an assistant array D[·] for moving

sequence inference. D[i] = j′ records the best-candidate T[j′]
that contributes to the smallest C[i]. After the computation,

we can access this array recursively to assemble the moving

sequence for placing ru in T[i].
It is easy to see from Equation 2 that the cost evaluation is a

typical dynamic programming process. An entry’s moving cost

is determined by the moving cost of each entry in its available

range. For example, C[2] can be calculated after C[3] and C[4]

are given. The cost calculation can be tackled by using DPA
as shown in Fig. 4(b). To calculate C[1] and C[2] for the

insertion of r6, DPA starts to compute C[6] from the bottom

entry of TCAM, and proceeds upward until C[1] and C[2] are

calculated. After that, DPA chooses the entry in r6’s available

range with the smallest moving cost. Since C[1]<C[2], T[1]

is chosen as the best-candidate to place r6. The final moving

sequence, r6 →T[1]→T[6], as shown by the dotted line in

Fig. 4(b), can be inferred from D[·].
DPA needs to process up to m entries. For each entry,

finding its best-candidate needs O(m) comparisons. Therefore,

the time complexity of DPA is O(m2). Due to the introduction

of C[·] and D[·], DPA consumes O(m) memory.
2) SSA Basis: The high time complexity of DPA makes the

schemes based on it, such as RuleTris and Γbh, less suitable

for practical applications. The following Theorem 1 provides

us an opportunity to optimize the algorithm.
Theorem 1. During the moving cost calculation from the

bottom upward for all entries according to Equation 2, after

C[i] and C[j] are calculated, if j > i and C[j]≥C[i], T[j] can

be safely excluded from the set of the best-candidates in the

subsequent calculation process.
Proof. Suppose C[j] and C[i] have been calculated and C[x]

is now being calculated. We need to find the best-candidate
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for the rule in T[x]. If T[j] is not a candidate for the rule in

T[x] at all, we can simply ignore it. Otherwise, since i< j,

T[i] must be a candidate for the rule in T[x] as well. Since

C[j]≥C[i], according to Equation 2, ignoring T[j] has no

effect on C[x]. Hence, Theorem 1 is proved. �
On the surface it appears that, even if the useless candidates

are ignored, the time and space complexities for calculating

the moving cost on m entries are still O(m2) and O(m). In

terms of the time complexity, even if we search only among

the entries that are potentially to be the best-candidates for any

T[i], it still takes O(m) comparisons. Meanwhile, after C[i]
has been calculated, according to Theorem 1, some entries

are no longer needed to be taken into consideration in the

subsequent computation process and should be ignored, which

also takes O(m) time to identify and remove such entries. In

terms of the space complexity, in addition to C[·] and D[·],
recording such entries consumes O(m) extra space.

Fortunately, SSA adopts a sequential stack to record those

entries that have the potential to be chosen as the best-

candidate in the subsequent calculation process, which leads

to a much lower time and space complexity than DPA. A

sequential stack S is a stack implemented with continuous

memory (e.g., array). S[0] indicates the bottom item.

When processing T[i], SSA searches for its best-candidate

in S with which C[i] can be calculated. After that SSA pops

some entries from S according to Theorem 1 and then pushes

i into S. Proposition 1 states three elegant properties of S.

Proposition 1. S has the following three elegant properties:

I. S[p]> S[p+1]; II. C[S[p]] = p; and III. Sizeof(S)≤h+1.

Proof. Any address i can only be pushed into S once, so each

element of S is unique. i is pushed into S only after all the

higher addresses have been processed. Popping addresses from

S does not change the order of the remaining elements. Hence,

the elements in S are strictly increasing from top to bottom,

and Property I is proved.

Property II can be proved by mathematical induction. Ini-

tially, S is empty and the calculation starts from the empty

entry T[m-1] at the bottom of TCAM. Clearly, C[m-1] = 0 and

D[m-1] = null. After pushing m-1 to S, we get S[0] =m-1 and

C[S[0]] = 0, which proves the base case. Suppose Property II

holds until calculating C[i] and T[S[q]] is found to be the

best-candidate for the rule in T[i]. We have,

C[i] = C[S[q]]+1 = q+1, D[i] = S[q]

According to Theorem 1, before i is pushed into S, some

elements S[p] that meet the following inequality should be

removed,

C[S[p]] ≥ C[i]

From this inequality, it is easy to deduce that p≥ q+1, which

means all of the elements above the one we just found should

be popped. Since the elements above S[q] are popped before

i is pushed, i is placed at S[q+1]. It follows that,

C[S[q+1]] = q+1

Hence, Property II is proved.

According to the definition of C[i] and h, C[i] is at most

h for any i. Property II ensures that the index of the top item

in S is at most h, so the size of S is at most h+ 1. Hence,

Property III is proved. �
Since T[i]’s candidates are sequentially stored in S, and the

one closest to the bottom of S is exactly T[i]’s best-candidate,

a binary search in S, which takes O(log h) time, is sufficient to

find it. After finding the best-candidate, all the elements above

it are popped from S. These operations can be done by simply

resetting the size of S, which takes O(1) time. In summary,

SSA takes only O(m log h) time to calculate the moving cost

for m entries.

The usage of S is more than reducing the computation time.

Due to the following propositions, S eliminates the need of

both C[·] and D[·], so the space complexity is also reduced.

Proposition 2. For any address i in S, S records a moving

sequence to relocate the rule in T[i], which is identical to the

one that can be derived from D[i]. Specifically, if i is placed

at S[x], the corresponding moving sequence is,

T[S[x]]→T[S[x-1]]→ ...→T[S[0]]

Proof. This can be proved by mathematical induction. After

the bottom empty entry T[m-1] is processed, S[0]=m-1, which

sets up the base case. Suppose Proposition 2 holds before

calculating C[i], and T[S[q]] is found to be the best-candidate

for the rule in T[i]. According to Property II, the elements

above S[q] are popped from S and i is placed at S[q+1]. Now,

the best-candidate for the rule in T[S[q+1]] is exactly T[S[q]].

This effectively adds one more step to the moving sequence

in S[0:q], and our hypothesis holds for the induction as well.

Hence, Proposition 2 is proved. �
Based on Proposition 2, D[·] is not needed if the best-

candidate for the new rule is guaranteed to be in S after the

calculation of C[·]. Proposition 3 shows this is indeed the case.

Proposition 3. On completion of moving cost calculation for

all the candidates of the new rule ru, the address of best-

candidate of ru must stay in S. When multiple candidates

of ru have the same smallest moving cost, without loss of

generality, the uppermost one in TCAM is the best-candidate.

Proof. This can be proved by contradiction. If T[i] is the

best-candidate for ru, according to Proposition 1, i should

be placed at S[C[i]]. Suppose at some point i is popped from

S due to the insertion of the address j. It is easy to see j < i
and T[j] is also a candidate for ru. Moreover, j cannot be

placed above S[C[i]], so C[j]≤C[i] must be true according

to Proposition 1, which contradicts our assumption. Hence,

Proposition 3 is proved. �
According to Property II, C[·] is also no longer needed. The

information of it is fully embedded in S. Hence, the space

complexity of SSA is O(h).
3) Example of SSA: Fig. 4(c) shows how SSA inserts r6

to TCAM. The corresponding pseudo-code is Line 14∼21 in

Algorithm 1.

Similar to DPA, SSA starts from the bottom empty entry

(i.e., T[6]) and ends at r6’s successor, succ(r6) (i.e., T[0]). In

the beginning, S is cleared (Line 15). Since T[6] is an empty
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entry, SSA directly pushes “6” into S (Line 15). Then SSA
processes the next entry T[5]. SSA finds the first element not

greater than succ(5).addr in S (Line 17∼18). Since Des(5) is

∅, succ(5).addr can be viewed as ∞ and S[0] is found. Then,

SSA pops out all the elements above S[0]. After that, SSA
pushes “5” into S. T[4] to T[1] are processed similarly.

Finally, SSA finds the first element not greater than

succ(r6).addr in S (Line 20), which is S[1]. The moving

sequence to insert r6 is given by S[0:1] (Line 21). That

is, r6 →T[S[1]]→T[S[0]], which is identical to the solution

calculated by DPA.

4) Optimization of SSA: The above example only describes

how SSA moves existing rules downward to insert a new

rule, based on the assumption that the empty entries are

concentrated at the bottom of TCAM. However, in addition

to rule insertion, flow table updates also include rule deletion

and modification. A rule modification can be decomposed as

a rule deletion plus a rule insertion, so here we only need

to consider the rule deletion. By nullifying an entry, a rule

deletion effectively generates an empty entry.

Since empty entries can spread everywhere, SSA uses the

method in Algorithm 1 to avoid wasting any empty entry and

further reduce the required rule moves. For a new rule, if

there exists any empty entry within its candidate locations,

SSA simply inserts it there (Line 3∼5). If all empty entries

are below the candidate locations, SSA calls the function

DownCostSeq() to find a feasible solution (Line 6∼8). If all

empty entries are above the candidate locations, SSA calls the

function UpCostSeq() (Line 9∼11). UpCostSeq() is almost

identical to DownCostSeq(), except that it reverses the search

direction. If empty entries exist in both directions, SSA calls

both functions and picks a better solution (Line 12).

B. Algorithm RCA

1) Example of Reorder Case: SSA assumes that a new

rule ru can always find one or more candidate locations. If

succ(ru).addr< pred(ru).addr, the reorder problem happens.

FastUp must first relocate succ(ru) or pred(ru) in order to

create some candidate locations, which is a prerequisite for

SSA. Fig. 5 (a) shows an example. The initial layout of the

rules {r0 ∼ r5} is feasible according to Condition I. However,

the new rule r6 causes a reorder problem, because r6 � r0
and r6 ≺ r3. To resolve it, FastUp needs to either move r0
downward or r3 upward until r0.addr>r3.addr.

2) Why Not DPA: Intuitively we can resolve the reorder

problem by computing the lowest-cost move sequence for

those out-of-order rules using the similar dynamic program-

ming approach as discussed above. Γbh claims that the DPA-

based method is not attractive because of the excessively long

computation time. Although SSA has significantly reduced the

computation time, we find such a method is unusable at all,

because it can lead to an infinite loop in some cases.

For example, in Fig. 5 (a), the only empty entry is at

the bottom, so r0 should be moved downward. If the DPA-

based method is used, the resulting moving sequence is

T[0]→T[3]→T[6]. The TCAM table layout after the moving

Algorithm 1: SSA for Rule Insertion in FastUp
Input: G=(V, E), the rule graph of those existing rules;

ru, the new rule needed to be inserted
Output: S,sequential stack recording the moving sequence

1 Identify Des(ru) and Asc(ru) by traversing G=(V, E)
2 a = pred(ru).addr, b = succ(ru).addr
3 if any empty entry is within the range (a, b) then
4 T[start]: any empty within the available range
5 S.push(start)

6 else if all empty entries are below the range (a, b) then
7 T[start]: the first empty entry below T[b]
8 S = DownCostSeq(start, a, b)

9 else if all empty entries are above the range (a, b) then
10 T[start]: the first empty entry above T[a]
11 S = UpCostSeq(start, b, a)

12 else S ← the shorter one between above two stacks
13 return S // ru→T[S[end]]→T[S[end-1]]→ ...→T[S[0]]
14 Function DownCostSeq(start, end, mid)
15 S.clear(), S.push(start)
16 for (i = start−1 ; i > end ; i = i−1) do
17 key = succ(i).addr
18 S[q]: the first element not greater than key
19 S.size = q+1, S.push(i)

20 S[q]: the first element not greater than mid
21 return S[0:q]

22 Function UpCostSeq(start, end, mid)
23 S.clear(), S.push(start)
24 for (i = start+1 ; i < end ; i = i+1) do
25 key = pred(i).addr
26 S[q]: the first element not less than key
27 S.size = q+1, S.push(i)

28 S[q]: the first element not less than mid
29 return S[0:q]

is shown in Fig. 5(b). Surprisingly, the reorder problem is

not eliminated because r3 is also pushed downward and it

is still below r0. Now the only empty entry is at the top,

so we can try to move r3 upward in the hope of solving the

problem. As shown in Fig. 5(b), the resulting moving sequence

is T[6]→T[3]→T[0]. The final layout shown in Fig. 5(c) is

the same as before. This example is sufficient to show that the

DPA-based method may fail to resolve the reorder problem.

3) Example of RCA: FastUp adopts RCA described in

Algorithm 2 to resolve the reorder problem. It moves either

succ(ru) downward or pred(ru) upward, while keeping the

other one in place, depending on the position of empty TCAM

entries. RCA ensures the resolution of the reorder problem

with randomly distributed empty entries.

As shown in Fig. 5(c), the only empty entry T[6] is below

r0, RCA adopts SuccChain(0, 6) to move r0 downward. Since

no empty entry is above the successor of r0, r0 is moved to

its successor’s entry. In the following steps, each kicked-out

rule is moved to its successor’s entry until a kicked-out rule is

settled in an empty entry. The corresponding moving sequence

T[0]→T[4]→T[5]→T[6] is shown in Fig. 5(c). Now, r3 is

above r0, and the reorder problem is resolved.

If the only empty entry T[0] is above r3, as shown in

Fig. 5(d), RCA adopts PredChain(4, 0) to move r3 upward to its
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Fig. 5. Using RCA as reorder resolution to avoid infinite loop.

Algorithm 2: RCA for Reorder Resolution in FastUp
1 while succ(ru).addr < pred(ru).addr do
2 if empty entries below T[succ(ru).addr] then
3 T[end]: the first empty entry below T[succ(ru).addr]
4 Seq = SuccChain(succ(ru).addr, end)

5 else
6 T[end]: the first empty entry above T[pred(ru).addr]
7 Seq = PredChain(pred(ru).addr, end)

8 Moving by T[Seq[0]]→T[Seq[1]]→ ...→T[Seq[end]]

9 Function SuccChain(start, end)
10 Seq.push(start)
11 while succ(start).addr ≤ end do
12 start = succ(start).addr
13 Seq.push(start)

14 Seq.push(end)
15 Return Seq

16 Function PredChain(start, end)
17 Seq.push(start)
18 while pred(start).addr ≥ end do
19 start = pred(start).addr
20 Seq.push(start)

21 Seq.push(end)
22 Return Seq

predecessor’s entry and so forth. The corresponding moving

sequence T[4]→T[3]→T[2]→T[0] is shown in Fig. 5(d).

However, after the move, r3 is still below r0. They become

closer but the reorder problem persists. In such a case, RCA
repeats the procedure of moving r0 downward or r3 upward

until the problem is resolved. Since the only empty entry T[4]

is below r0, RCA calls SuccChain(1, 4) to move r0 downward

to T[4]. The reorder problem is resolved.

4) Analysis of RCA: When moving succ(ru) downward

according to RCA, it is impossible to kick out pred(ru),

because pred(ru) is not on the chain of the successor starting

from succ(ru). Similarly, when pred(ru) is moved upward,

succ(ru) is kept in place. Since RCA always moves one rule

(succ(ru) or pred(ru)) while keeping the other in place, in one

round, if the reorder is not resolved, the gap between the rules

is reduced. By repeating the recursive procedure, the reorder

is guaranteed to be resolved.

V. OPTIMALITY ANALYSIS OF TCAM UPDATE

Some previous DPA-based schemes claim they achieve

OTU [4], [42], [48]. We can easily come up with a counterex-

ample to show that the dynamic programming fails to find
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Fig. 6. Comparison between DPA and BBA to insert a new rule.

the optimal solution. For the rule update shown in Fig. 6(a),

the result of DPA is shown in Fig. 6(b), which requires three

rule moves. However, as shown in Fig. 6(c), the OTU solution

requires only two rule moves, by allowing rules to move in

both directions.

A. Analysis of OTU

Condition I establishes that any topological order of the rule

graph is a feasible TCAM placement scheme and vice versa.

If n rules are inserted into m TCAM entries (m ≥ n), the

number of feasible TCAM layouts NL is:

NL = Nπ ∗ (n
m

)
= Nπ ∗ m!

n!(m− n)!
(3)

where Nπ is the number of topological orders of the n rules.

For any feasible TCAM layout L, the number of required

TCAM operations CL equals to the number of TCAM entries

that change their content (i.e., the rule in an entry is cleared

or changed to another one, or an empty entry is filled with a

rule). Hence, OTU can be formulated as follows.

Formulation of OTU: To insert a new rule to TCAM, among

all the NL feasible TCAM layouts, find the one requiring the

minimum number of TCAM entry changes. �
It is infeasible to conduct brute-force search in such a

large space. In fact, just finding the number of all topological

orders Nπ has been proven to be NP-hard. To the best of our

knowledge, no existing scheme can solve the OTU problem.

B. Algorithm BBA for Small Scale OTU

It is interesting to understand how close a practical scheme

such as FastUp is to the optimality. The degree of optimality,

λ, for a Design Under Test (DUT) is defined as,

λDUT =
NOTU

NDUT

× 100% (4)

NDUT and NOTU are the number of TCAM operations for

the DUT and OTU to insert a rule. λ can be used to guide

further algorithm optimizations.

The naive brute-force search for OTU can take hours for

even n=m=20, as the complexity is O(m!/(m−n)!). Instead,

we propose BBA, which is capable of searching for OTU in

just tens of minutes when n≤m=1000.

An example is illustrated in Fig. 6(d). BBA processes each

entry from top to bottom. During the process, for any entry

T[i], Ra records any rule r if it has not been placed yet

but the rules in Asc(r) have been placed in entries above
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Algorithm 3: BBA for Finding OTU

Input: G=(V, E), the rule graph of those existing rules;
ru, the new rule needed to be inserted

Output: opt, the number of rule moves for OTU
1 construct G′ = (V ′, E′) by adding ru to G = (V,E)
2 Ra=∅, opt=∞, cur=0, addr=0 // initialization
3 for each r ∈ V ′ do
4 if Asc(r)==∅ then
5 Ra = Ra + r

6 PerEntryProcess(Ra, cur, addr)
7 return opt
8 Function PerEntryProcess(Ra, cur, addr)
9 if addr == m and cur < opt and Ra==∅ then

10 opt = cur

11 else if cur ≥ opt or addr ≥ m then
12 return
13 else //R[addr]: the rule originally placed in T[addr]
14 if R[addr] ∈ Ra then
15 //{r′}: available rules after R[addr] is settled
16 PerEntryProcess(Ra-R[addr]+{r′},cur,addr+1)

17 for each r ∈ Ra and r �= R[addr] do
18 //{r′}:newly available rules after r is settled
19 PerEntryProcess(Ra−r+{r′},cur+1,addr+1)

20 if T[addr] is originally empty then inc=0 else inc=1
21 PerEntryProcess(Ra, cur+inc, addr+1)

T[i]. According to Condition I, these rules are all eligible

candidates to be placed in T[i] (e.g., Ra={r0, r1} for T[0]).

So BBA tries to place each rule of Ra in T[i] (Line 14∼19),

or leave T[i] empty (Line 20∼21). cur and opt represent the

cumulative rule moves for the currently searching process and

the rule moves for currently found optimal solution, which

are initialized to 0 and ∞, respectively (Line 2). Since r1
is not originally in T[0], cur should be increased by one.

Meanwhile, r1 is temporarily settled so it is removed from

Ra. The settlement of r1 makes r2 and r5 available for the

entries below T[0], so they are added into Ra (Line 18∼19).

Each of the following entries is processed sequentially. Dur-

ing the searching process, only if cur is less than opt, will the

process continue (Line 11∼12), so BBA can avoid searching in

the space where OTU cannot exist, which significantly speeds

up the searching process. If all empties are processed and a

better solution is found, opt is updated (Line 9∼10). When

trying to place each rule of Ra in T[i], BBA gives priority

to the rule originally placed in T[i], which helps to find

the smallest opt faster (Line 14∼16). The result of BBA in

Fig. 6(d) is the same as OTU shown in Fig. 6(c).

VI. IMPLEMENTATION AND EVALUATION

A. Experimental Setup

We compare FastUp with RuleTris and Γbh, because these

schemes achieve the shortest Ti so far. We also compare with

Γdown, because it notices the reorder problem and represents

the works that are in favor of shortening Tc at the cost of

longer Ti. We implement them in C++ and extend the firmware

on ONetSwitch [57], a programmable OpenFlow switch with

TABLE II
AN INSIGHT INTO FLOW TABLE AND THE CORRESPONDING RULE GRAPH.

Type ACL
S1(k) 1.0 1.8 2.8 3.6 4.5 5.5 6.5 7.5 8.5 9.5
S2(k) 2.0 3.4 5.6 7.4 9.5 11.4 13.1 15.4 17.3 18.6
h 53 75 93 106 119 125 129 134 140 146

Type FW
S1(k) 0.8 1.7 2.7 3.7 4.7 5.7 6.6 7.5 8.4 9.4
S2(k) 3 6 9 13 16 19 22 24 27 33
h 33 35 45 48 54 59 61 65 71 78

an 800Mhz Cortex-A9 CPU and 512MB DDR3 RAM. To

ensure fair comparison, different schemes use the same rule

graph implementation. We use the SDNet Development Envi-

ronment [58] to configure the TCAM flow tables. ONetSwitch’s

TCAM supports at most 4,096 entries, but its firmware can

support software-based flow tables with arbitrary size.

To test different schemes on large flow tables, we first run

them on the ONetSwitch’s CPU to calculate the number of

rule moves, p, for an insertion update. Both rule move and

insertion use the same API function provided by SDNet to

access TCAM, which takes about 0.6ms. We execute it p times

to get an accurate measurement of Ti. Each experiment is

repeated 10 times and the average is taken.

B. Update Mode and TCAM Table Layout

For fair comparisons, given a flow table, we randomly

choose a subset of rules as base rules to be pre-installed

in TCAM and then take the remaining rules as updates.

We evaluate two update modes: Virtual Insertion (VI) and

Continuous Insertion (CI). VI runs the schemes and evaluates

the TCAM operation times for each update, but it does not

actually insert the rule into TCAM. Since different schemes

may produce different moving sequences for a new rule and

result in different TCAM table layouts, VI guarantees an

identical comparison basis for each scheme for each update. In

contrast, CI runs the schemes and conducts the actual TCAM

operations, which can reflect the accumulative result.

Due to the limitations of some previous schemes, we need

to consider the initial TCAM table layout. Γdown and Γbh can

only use the empty entries below the candidate locations of

a new rule, so the initial layout keeps the empty entries at

the bottom. RuleTris cannot handle the reorder problem, so

the base rules are arranged in strict priority order to avoid it.

The subsequent updates in CI mode may introduce the reorder

problem at some point, causing the failure of RuleTris.

C. Dataset

It is difficult to acquire large-scale real-world rule sets due to

privacy concerns. Alternatively, synthetic rule sets bearing the

characteristics of the real-world rule sets are widely adopted

for scheme evaluation [59]. We use two representative types

of flow tables, Access Control List (ACL) and Firewall (FW),

generated by ClassBench [59]. Each rule contains five IP

header matching fields. The rules that cannot be directly stored

in TCAM due to the range-based matching fields(e.g., source
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(a) ACL (b) FW

Fig. 7. Time consumption in the worst case.

Type S2 h lavg lmax

ACL 18k 146 6.2 29

FW 33k 78 8.2 14

Fig. 8. Statistical characteristics of S’s length when S1 is 10k.

and destination ports) are converted by ClassBench-ng [60]

into a set of prefix-based rules first.

The characteristics of the flow tables are summarized in

Table II. S1 and S2 are the sizes of the original and the

converted rule tables, respectively. The diameter of the rule

graph, h, largely determines the performance of FastUp. h is

roughly two orders of magnitude smaller than S2. For example,

the values of h are only 146 and 78 when S2 is 18.6k and 33k
for ACL and FW, respectively. While h represents the upper

bound of the size of S, experiments show that the actual size

of S is much smaller than h.

D. Experimental Results

1) The Advantage of S: To emulate a worst-case scenario,

we place all flow table rules in TCAM as base rules in priority

order and leave empty entries only at the bottom of TCAM.

Fig. 7 shows the time taken by each scheme to calculate the

moving cost for all entries, which represents the worst-case Tc.

FastUp is about 40× to 100× better than RuleTris and Γbh.

The Tc performance gain becomes greater as S2 increases.

The reasons for the gain can be explained by Fig. 8. For

up to 80% of cases for ACL and 95% for FW, S’s length is

below 10. The average length of S is only 6.2 and 8.2 for

ACL and FW, respectively. The worst-case length of S is 29,

which requires only �log2 29�=5 comparisons for FastUp to

calculate an entry’s moving cost. In contrast, RuleTris or Γbh

takes 7.7k and 12k comparisons for ACL and FW when S2 is

18k and 33k, respectively.

2) TCAM Utilization: We first pre-install 10% rules to the

top of TCAM in priority order, and then continually insert (in

CI mode) the remaining rules to TCAM as updates until the

scheme cannot find a solution any more. At this point, we

consider the fill ratio of the TCAM as its utilization ratio. We

exclude RuleTris because it cannot handle the reorder problem.

In this experiment we only conduct rule insertions. Although

the empty entries concentrate at the bottom in the beginning,

they may be distributed anywhere after reorder resolution. The

TABLE III
INTERRUPT TIME, RANDOMLY DISTRIBUTED EMPTY ENTRIES, ACL.

S2(k) #Updates Average time (ms) Maximal time (ms)
FastUp Γbh Γdown FastUp Γbh Γdown

3.4 340 0.62 0.65 2.31 1.2 1.8 6.6
7.4 740 0.64 0.78 3.16 2.4 3.6 10.8

11.4 1140 0.65 0.85 4.23 2.4 4.2 10.8
15.4 1540 0.70 0.86 4.57 3 4.8 11.4
18.6 1860 0.72 0.95 4.78 3.6 6 18

experiments show that Γbh achieves at most 95% utilization

ratio while FastUp can always make full use of TCAM. Note

that rule deletions will also generate random empty entries in

TCAM, which can worsen the utilization ratio of Γbh.
3) Computation and Interrupt Time: Unless otherwise

specified, the initial TCAM table layout follows the strict

priority order. We conduct the experiments in VI mode so

RuleTris and Γbh are immune to the reorder problem. We

increase the proportion of the base rules to 90% to measure

the scheme performance under severe conditions.

Fig. 9 (a) and (e) show the Tc for per rule insertion. While

Tc grows with the increase of S2, FastUp remains about two

orders of magnitude better than RuleTris and Γbh. When S2

is 33k, FastUp takes only 2ms to process a new rule while

RuleTris and Γbh take more than 200ms.

To illustrate the benefit of the cost-based schemes on Ti,

we compare these schemes with NMS. As shown in Fig. 9 (b)

and (f), the cost-based schemes shorten the Ti of NMS by up

to 1000× and need less than 5ms for a new rule insertion. For

these schemes, Ti is insensitive to the table sizes.

We relax the initial rule layout by allowing random distri-

bution of empty entries in TCAM to show the advantage of

FastUp over the other schemes in terms of Ti. Due to limited

space, we only show the results on ACL in Table III. We draw

three conclusions. First, FastUp and Γbh are much better than

Γdown. The Ti of Γdown can be 18ms, which may degrade

the packet forwarding performance. Since Tc is usually much

shorter than Ti for FastUp, it makes little sense to optimize Tc

at the cost of Ti like Γdown. Second, the difference between

the results in Fig. 9 (b) and Table III shows that the randomly

distributed empty entries help to shorten Ti. Third, for large

tables, FastUp is 1.3× and 1.6× better than Γbh for the average

and maximal Ti, respectively. This is because FastUp can

utilize any empty entry while Γbh can only use the empty

entries in or below the candidate locations of the new rules.
4) Update Delay and Throughput: In Fig. 9 (c) and (g),

the shaded portion of the bar represents Tc and the remaining

portion represents Ti. The update delay of RuleTris and Γbh

increases significantly with the increase of S2, which is largely

due to the increase of Tc. In contrast, FastUp has a small

update delay regardless of S2. Its Ti is the dominant factor

and remains relatively stable. The update delay of FastUp is

15× shorter than that of RuleTris and Γbh when S2 is 33k.

Fig. 9 (d) and (h) compare the update throughput. When we

pipeline the computation and interrupt processes, the update

throughput is determined by the process that takes a longer

time. When S2 is small, Ti is dominant, so they all exhibit

similar throughput performance. With the increase of S2, the
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(a) ACL, computation time (b) ACL, interrupt time (c) ACL, update delay (d) ACL, update throughput

(e) FW, computation time (f) FW, interrupt time (g) FW, update delay (h) FW, update throughput

Fig. 9. Experimental results on VI mode.

TABLE IV
REORDER EFFICIENCY, RANDOMLY DISTRIBUTED EMPTY ENTRIES, ACL.

S2(k) #Updates #Reorder #Resolved Average time(ms)
FastUp Γdown, Γbh FastUp Γdown, Γbh

3.4 340 1 1 1 13.10 16.20
7.4 740 5 5 5 19.72 21.96
11.4 1140 9 9 8 20.52 23.79
15.4 1540 14 14 13 20.70 24.17
18.6 1860 18 18 16 21.34 25.47

TABLE V
COMPARISON OF THE INTERRUPT TIME BETWEEN FastUp AND BBA.

Case Probability
Interrupt time (ms)

FastUp BBA λFastUp
Avg Max Avg Max Avg Max

Normal 97.23% 1.29 4.2 1.24 3.0 96% 71%
Reorder 2.77% 5.20 12.6 2.30 3.0 44% 23%
Mixed 100% 1.40 12.6 1.27 3.0 90% 23%

Tc of RuleTris and Γbh becomes dominant, but the Tc of

FastUp remains short. Therefore, FastUp eventually shows a

10× higher throughput than RuleTris and Γbh for a large S2.

The update delay and throughput truly reflect a scheme’s

performance, which rely on both Tc and Ti. Unlike the

previous schemes, FastUp strives to excel at both. As a result,

FastUp achieves the shortest Ti among all the schemes while
keeping Tc shorter than Ti.

5) Reorder Resolution: The pre-installed rules are placed

in topological order and empty entries are randomly distributed

in TCAM. We examine the new rules that incur the reorder

problem and show the efficiency of different schemes in

resolving the problem. Due to limited space, we only show

the results on ACL in Table IV. We draw two conclusions.

First, the probability of reorder occurrence is small. Second,

FastUp outperforms Γdown and Γbh in resolving the reorder

problem. FastUp guarantees to resolve the reorder problem as

long as TCAM is not completely full.

6) Degree of Optimality: We evaluate how close FastUp is

to the optimal bound calculated by BBA using FW with S2 of

1000 in VI mode. The result shown in Table V is the average

TABLE VI
PERFORMANCE UNDER DIFFERENT RULE OVERLAPPING LEVELS.

Type ACL1 ACL2

S1(k) 2.0 4.0 6.0 8.0 2.0 4.0 6.0 8.0
S2(k) 2.8 5.4 8.1 10.0 5.0 10.0 14.7 19.6
eavg 1.4 2.0 3.0 3.3 8.0 12.0 14.6 18.7
Ti(ms) 0.88 0.95 1.05 1.06 1.40 3.21 4.35 5.02

Tc

(ms)

FastUp 0.03 0.11 0.19 0.31 0.21 0.59 1.11 1.58
RuleTris 6.60 14.48 36.91 67.36 13.6 49.93 102.16 198.68
Γbh 5.87 12.19 31.22 56.25 11.13 42.17 86.43 167.67

of ten simulation runs with different initial table layouts. While

handling the normal cases well, FastUp performs worse than

BBA for reorder resolution. However, the probability of reorder

occurrence is only 2.77% for all the cases, so FastUp’s overall

performance is still within 90% of BBA.

7) Influence of Rule Overlapping Level: To evaluate the

influence of rule overlapping level on scheme performance, we

use ClassBench to generate ACL1 and ACL2 with the lowest

and highest level of rule overlapping configuration, and run the

experiments again. The results are summarized in Table VI.

eavg is the average number of overlapping rules per rule. We

draw two conclusions. First, a larger eavg means longer Tc and

Ti, because eavg is directly related to the number of candidates

to consider and the size of the converted table S2. Second, the

Tc of FastUp is much better than that of RuleTris and Γbh,

although a larger eavg tends to reduce the improvement.

VII. CONCLUSION

FastUp strives to optimize both computation time and

interrupt time for new rule insertions. The use of the sequential

stack is more efficient than the conventional dynamic pro-

gramming in both time and space complexity. The freedom

on search directions further reduces the update cost, which

makes FastUp achieve the best interrupt time among the state-

of-the-art schemes. Moreover, FastUp identifies and resolves

the reorder problem, and ensures full utilization of the TCAM

capacity. We are the first to provide a practical method to

evaluate a TCAM update scheme’s degree of optimality, and

confirm that FastUp is close to the optimal.
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surement and analysis of flow table update characteristics in hardware
openflow switches,” Comput. Netw., vol. 136, pp. 22–36, 2018.

[18] H. Xu, Z. Yu, X.-Y. Li, L. Huang, C. Qian, and T. Jung, “Joint
route selection and update scheduling for low-latency update in SDNs,”
IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 3073–3087, 2017.

[19] G. Li, Y. Qian, C. Zhao, Y. R. Yang, and T. Yang, “DDP: distributed
network updates in SDN,” in Proc. IEEE ICDCS, 2018, pp. 1468–1473.

[20] H. Chen et al., “Hermes: providing tight control over high-performance
SDN switches,” in Proc. ACM CoNEXT, 2017, pp. 283–295.

[21] G. Li, Y. R. Yang, F. Le, Y.-s. Lim, and J. Wang, “Update algebra: toward
continuous, non-blocking composition of network updates in SDN,” in
Proc. IEEE INFOCOM, 2019, pp. 1081–1089.

[22] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh et al.,
“B4: experience with a globally-deployed software defined WAN,” ACM
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14, 2013.

[23] C.-Y. Hong, S. Kandula et al., “Achieving high utilization with software-
driven WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15–26.

[24] J. Zheng, H. Xu, and H. Dai, “Minimizing transient congestion during
network update in data centers,” in Proc. IEEE ICNP, 2015, pp. 1–10.

[25] W. Zhang, G. Liu, A. Mohammadkhan, J. Hwang et al., “SDNFV:
flexible and dynamic software defined control of an application-and
flow-aware data plane,” in Proc. ACM Middleware, 2016, pp. 1–12.

[26] K.-T. Foerster, S. Schmid, and S. Vissicchio, “Survey of consis-
tent software-defined network updates,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 2, pp. 1435–1461, 2018.

[27] X. Jin, J. Gossels et al., “Covisor: a compositional hypervisor for
software-defined networks,” in Proc. USENIX NSDI, 2015, pp. 87–101.

[28] S. G. Kulkarni, G. Liu, K. Ramakrishnan, M. Arumaithurai et al.,
“Reinforce: achieving efficient failure resiliency for network function
virtualization based services,” in Proc. ACM CoNEXT, 2018, pp. 41–53.

[29] J. Zheng et al., “Sentinel: failure recovery in centralized traffic engi-
neering,” IEEE/ACM Trans. Netw., vol. 27, no. 5, pp. 1859–1872, 2019.

[30] J. Zheng, B. Li, C. Tian, K.-T. Foerster, S. Schmid, G. Chen, J. Wu,
and R. Li, “Congestion-free rerouting of multiple flows in timed SDNs,”
IEEE J. Sel. Areas Commun., vol. 37, no. 5, pp. 968–981, 2019.

[31] H. Xu et al., “Real-time update with joint optimization of route selection
and update scheduling for SDNs,” in Proc. IEEE ICNP, 2016, pp. 1–10.

[32] X. Jin, Y. Li, D. Wei et al., “Optimizing bulk transfers with software-
defined optical WAN,” in Proc. ACM SIGCOMM, 2016, pp. 87–100.

[33] Z. Yu et al., “Netlock: fast, centralized lock management using pro-
grammable switches,” in Proc. ACM SIGCOMM, 2020, pp. 126–138.

[34] S. Pontarelli, R. Bifulco, M. Bonola et al., “Flowblaze: stateful packet
processing in hardware,” in Proc. USENIX NSDI, 2019, pp. 531–548.

[35] A. Mohammadkhan, G. Liu, W. Zhang, K. Ramakrishnan, and T. Woodv,
“Protocols to support autonomy and control for NFV in software defined
networks,” in Proc. IEEE NFV-SDN, 2015, pp. 163–169.

[36] M. N. Hall, G. Liu et al., “Fighting fire with light: tackling extreme
terabit DDoS using programmable optics,” in Proc. Workshop on Secure
Programmable Network Infrastructure, 2020, pp. 42–48.

[37] B. Niven-Jenkins et al., “Requirements of an MPLS transport profile,”
2009. [Online], Available: http://tools.ietf.org/html/rfc5654.

[38] M. Al-Fares, S. Radhakrishnan et al., “Hedera: dynamic flow scheduling
for data center networks,” in Proc. USENIX NSDI, 2010, pp. 89–92.

[39] H. Song and J. Turner, “Nxg05-2: fast filter updates for packet classifi-
cation using TCAM,” in Proc. IEEE GlOBECOM, 2006, pp. 1–6.

[40] Z. Wang, H. Che, M. Kumar, and S. K. Das, “CoPTUA: consistent
policy table update algorithm for TCAM without locking,” IEEE Trans.
Comput., vol. 53, no. 12, pp. 1602–1614, 2004.

[41] D. Shah and P. Gupta, “Fast incremental updates on ternary-CAMs for
routing lookups and packet classification,” in Proc. Hot Interconnects 8,
2000, pp. 145–153.

[42] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial order
theory for fast TCAM updates,” IEEE Trans. Netw., vol. 26, no. 1, pp.
217–230, 2017.

[43] K. Qiu, J. Yuan, J. Zhao, X. Wang, S. Secci, and X. Fu, “Fast lookup is
not enough: towards efficient and scalable flow entry updates for TCAM-
based openflow switches,” in Proc. IEEE ICDCS, 2018, pp. 918–928.

[44] ——, “FastRule: efficient flow entry updates for TCAM-based openflow
switches,” IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 484–498,
2019.

[45] B. Zhao, R. Li, J. Zhao, and T. Wolf, “Efficient and consistent TCAM
updates,” in Proc. IEEE INFOCOM, 2020, pp. 1241–1250.

[46] Broadcom, “12.8 Tb/s strataXGS tomahawk 3 ethernet
switch series,” Accessed: Mar. 31, 2021. [Online],
Available: https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56980-series.

[47] M. Malboubi, L. Wang, C.-N. Chuah, and P. Sharma, “Intelligent SDN
based traffic (de) aggregation and measurement paradigm (iSTAMP),”
in Proc. IEEE INFOCOM, 2014, pp. 934–942.

[48] X. Wen et al., “RuleTris back-end update scheduler optimality proof,”
Accessed: Mar. 31, 2021. [Online], Available: http://bit.ly/1IFnxjj.

[49] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal, “Wire speed packet
classification without tcams: a few more registers (and a bit of logic)
are enough,” in Proc. ACM SIGMETRICS, 2007, pp. 253–264.

[50] K. Kannan and S. Banerjee, “Compact TCAM: flow entry compaction
in TCAM for power aware SDN,” in Proc. Int. Conf. Distrib. Comput.
Netw., 2013, pp. 439–444.

[51] H. Liu, “Routing table compaction in ternary CAM,” IEEE Micro,
vol. 22, no. 1, pp. 58–64, 2002.

[52] X. Jin et al., “Netcache: balancing key-value stores with fast in-network
caching,” in Proc. ACM SOSP, 2017, pp. 121–136.

[53] C. Monsanto, J. Reich, N. Foster, J. Rexford et al., “Composing software
defined networks,” in Proc. USENIX NSDI, 2013, pp. 1–13.

[54] C. J. Anderson et al., “NetKAT: semantic foundations for networks,”
ACM SIGPLAN Notices, vol. 49, no. 1, pp. 113–126, 2014.

[55] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” ACM SIGPLAN
Notices, vol. 47, no. 1, pp. 217–230, 2012.

[56] N. Foster et al., “Frenetic: a network programming language,” ACM
SIGPLAN Notices, vol. 46, no. 9, pp. 279–291, 2011.

[57] C. Hu et al., “Design of all programable innovation platform for software
defined networking,” in Proc. Open Networking Summit, 2014.

[58] L. Wirbel, “Xilinx SDNet: a new way to specify network hardware,”
The Linley Group, White Paper, 2014.

[59] D. E. Taylor and J. S. Turner, “Classbench: a packet classification
benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511, 2007.
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