IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 10, OCTOBER 2014

1881

MP-ROOM: Optimal Matching on Multiple PDUs
for Fine-Grained Traffic Identification

Hao Li, Student Member, IEEE, and Chengchen Hu, Member, IEEE

Abstract—This paper studies the fine-grained traffic identifi-
cation (FGTI) for better understanding and managing networks.
Instead of only indicating which application/protocol that a packet
is related to, FGTI maps the traffic packet to a meaningful user
behavior or application context. In this paper, we first propose
rule organized optimal matching (ROOM), which splits the iden-
tification rules into several fields and elaborately organizes the
matching order of the fields. As a result, ROOM can only activate
the matching operations on a (small) part of the rules that could be
possibly hit. We formulate the optimal rule organization problem
of ROOM mathematically and demonstrate it to be NP-hard, and
then we propose a heuristic algorithm to solve the problem with
the time complexity of O(IN2) (N is the number of fields in the
rule set). Based on ROOM, we further propose MP-ROOM, which
is extended to well support the rules cross multiple protocol data
units (PDUs) for traffic identification. In addition, we implement
a prototype system including MP-ROOM and related work for
evaluations. The evaluations show very promising results: 1.5 ~
71.3 times throughput improvement is obtained by MP-ROOM in
the real system with less than 300-MB memory consumption. With
multiple-thread parallel programming, we successfully achieve the
throughput over 40 Gb/s for real traces.

Index Terms—Deep packet inspection, semantic-based rules,
traffic identification.

I. INTRODUCTION

HE emerging cloud computing and mobile Internet are

quite successful in business, which have generated huge
amount of network traffic from hundreds of thousands of new
applications [1]. As a result, fine-grained traffic identification
becomes critical for service providers and network operators
to measure and monitor the network in a deeper level and
empowers them to better manage and control the cloud and
mobile services [2].

Generally speaking, four kinds of identification solutions
have been proposed in the literature to detect the specific ap-
plications or protocols, i.e., header/port based method, content
based method, machine learning method, and Deep Packet
Inspection (DPI) based method [3]-[8]. The traditional traffic
identification reports at the protocol or application granularity,

Manuscript received December 31, 2013; revised May 12, 2014; accepted
June 3, 2014. Date of publication September 18, 2014; date of current version
November 26, 2014. This work was supported in part by the 863 Plan under
Grant 2013AA013501, by the National Science and Technology Major Project
under Grant 2013ZX03002003-004, by the NSFC under Grants 61272459,
61221063, and 61170245, by the Research Plan in Shaanxi Province of China
under Grant 2013K06-38, and by the Program for New Century Excellent
Talents in University.

The authors are with MOE KLINNS Lab and the Department of Computer
Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
(e-mail: huc@ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2014.2358835

which can only tell what application generates the certain
packet, e.g., QQ or Skype. We call such identification as
Coarse-Grained Traffic Identification (CGTI), which fails to
provide sufficient information for nowadays’ complicated use.
The following scenarios have motivated us in this paper to
investigate Fine-Grained Traffic Identification (FGTI).

» Profile users’ preference [9]. It is of great interest for
advertising and competition analysis if users’ preferences
can be sketched. However, the native applications become
more and more comprehensive, that one application often
provides several functions for users. For example, a user
who likes tweeting and another one who likes reading
others’ tweets should belong to different user groups,
though both of these two functions are provided by Twitter.
We should tag the first one as an “active user” and a
“passive user” for the later one, instead of both “twitter
user.” CGTI only reports at the application granularity and
cannot provide such kind of ability.

e Charge on contents rather than bits. It has been ad-
vocated for years to charge differentially according to
contents, which will better motivate the service provider
to sharp the Service Level Agreements (SLAs) and bet-
ter balance the benefit/profit among end users, service
providers and content providers [10]. A premise for sharp-
ing the SLA is to differential the content from the traffic
and makes an authoritative report, which CGTI cannot
provide.

e Finer network measurement [11]. Quality of Experience
(QoE) is a measure on user’s experiences with a function
of the application service. It is worth noting that the objec-
tive measure of QoE must bind with a specific function of
an application. The traffic awareness therefore becomes an
important component for QoE. However, different types of
content can be transferred over same application, such as
text messaging and file transferring by QQ, or plain text
and video over HTTP protocol. CGTI cannot differentiate
the traffic from others precisely.

FGTI provides finer identification ability than CGTI [12],
which tells not only what application generates the certain
packet, but also what user behavior/semantic the packet per-
forms, such as “tweeting using Twitter application with an
iPhone” and “transferring files using QQ in a PC.” FGTI
therefore leads to a better understanding of the network as
well as the user. An intuitive stab of FGTI is using transitional
DPI-based method to match the packet header as well as the
packet payload with the pre-defined rules with simple strings
or regular expressions (regex). However, string or regex cannot
accurately describe the finer-grained behavior of applications,

0733-8716 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

1882

and as a result, FGTI has to evolve the rules into a semantic-
based form, which describes the signatures in layer-7 after
parsing the protocol. The size and the matching complexity of
the semantic-based rule set have been significantly increased,
which pose great challenges to the FGTI system design. The
necessity and the challenges of semantic-based rules will be
discussed in Section II. This paper studies efficient method
to support semantic rules for FGTI so as to provide high
identification throughput with controlled memory consumption.

We observe and leverage the feature that segments (a.k.a.,

fields) in different matching rules of FGTI would share the same
signature. Based on this, in the preliminary version of this paper
[12], we proposed the idea of Rule Organized Optimal Match-
ing (ROOM) to eliminate the matching on redundant fields.
ROOM splits the rules into fields, determines the matching or-
der of each field, and selects only a (small) part of the rules that
could be possibly hit to activate the matching process. In some
cases, the identification rules needs to check multiple Protocol
Data Units (PDUs),! which is not well supported by the original
ROOM since it does not organize multiple matching structures
and its straightforward extension may lower the efficiency of
throughput and memory. In this paper, we further propose
MP-ROOM to enhance ROOM, which supports FGTI over
multiple PDUs with high efficiency. Additionally, we have
performed more experiments to demonstrate the accuracy, the
optimality and the performance of the proposed method in this
paper. Specifically, we evaluate the accuracy by sampling real
traces with ground truth, compare the propose heuristic algo-
rithm with the brute-force method to demonstrate the optimality,
and compare MP-ROOM with a famous open-source approach
in the system level.

In this paper, we make the following contributions.

1) We first propose ROOM to construct hierarchical Layered
Matching Tree (LMT), which reduces the space com-
plexity and improves throughput for matching and we
further propose MP-ROOM to support the identification
over multiple PDUs based on ROOM.

2) We have formally defined the problem of constructing
an optimal LMT and demonstrated it to be NP-hard. We
have further proposed a heuristic algorithm to solve the
problem.

3) We have implemented a real system of MP-ROOM
and have made comprehensive comparisons with related
works. Compared with previous work, MP-ROOM im-
proves the performance-cost ratio by 1.6 ~ 63 times.
Further with parallel acceleration, MP-ROOM achieves
over 40 Gb/s throughput with 8 cores on the real trace.

The remainder of the paper is organized as follows: Section II

indicates the technical challenges of FGTI and our basic idea
to solve the bottlenecks for FGTI. Section III describes the
detailed design and the comprehensive analysis of constructing
the optimal layered matching tree for ROOM. Section IV
proposes MP-ROOM to support multiple PDUs matching
and presents the matching processing after the construction.
Section V introduces the implementation of MP-ROOM with

IPDU, in this paper, is the atomic data unit that are sent between two
application endpoints.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 10, OCTOBER 2014

parallel acceleration. Section VI conducts extensive exper-
iments with a prototype of MP-ROOM under real traces.
Section VII reviews the previous work and discusses some re-
lated issues. Section VIII summarizes the paper.

II. CHALLENGES AND BASIC IDEA
A. Technical Challenges

The wire speed of the Internet keeps increasing towards 40 ~
100 Gb/s in the core. Even we can design a parallel system
and split the traffic into several small FGTI systems, very fast
processing in a single FGTI system is expected. To provide
high throughput, fast memory should be employed, which is
however small in size usually [13], [14]. Although, CGTI or
Intrusion Detection system (IDS) also has similar challenges
on efficient memory usage, there are new challenges for FGTI
to meet the requirements of system throughput and memory
consumption caused by several reasons.

First, FGTI system has to employ semantic-based rules in-
stead of regex-based rules in CGTI. A regex-based rule will
be hit no matter which part of a packet matches with it, while
a semantic-based rule is considered matched only when the
values in all the specified fields of the packet matches with
the rule.? A typical regex-based rule describing a behavior on a
certain HTTP header would be like:

Signature timeline-weibo
http-request-header
/ .#GET.*gettimeline.php HTTP/1.1\r\n
Host: weibo.cn\r\n\r\n/

However, a non-HTTP protocol packet can also carry pay-
loads with such content in either occasional or intentional cases.
A semantic-based rule with same purpose specifies a set of
requirements in “Method” field, “Uniform Resource Identifier”
(“URI”) field, and “Host” field of HTTP protocol, which would
be like this:

Signature timeline-weibo
proto HTTP
Method/GET/
URI/gettimeline.php/
Host/weibo.cn/

Obviously, FGTT has to match such kind of structure instead
of a simple string/regex-based rule, and therefore the whole
processing of FGTI is much more complicated than CGTIL.

Moreover, FGTI employs more rules than CGTI. For exam-
ple, one rule previously in CGTI detecting QQ now evolves
into a number of rules to identify login message of QQ, text
message of QQ, audio conference of QQ, file transfer of QQ,
heartbeat message keeping the connection of QQ, etc. Table I
compares simple rule sets of CGTI and FGTI. More rules
lead to heavier overhead. Even only considering the simpler

2The rule is matched only when all the fields with AND logic among them are
satisfied. Single rule requiring values of fields with OR logic can be rewritten
into separated rules.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

LI AND HU: OPTIMAL MATCHING ON MULTIPLE PDUs FOR FGTI

TABLE 1
DIFFERENCES OF RULE SETS BETWEEN CGTI AND FGTI

of Rules in CGTI | # of Rules in FGTI

App. Catalog

Browser 4 67
QQ 1 41
Online Video 1 18
App Market 3 80
Mail 1 13

Note: Most rules in CGTI are written according to the appli-
cations, which means the number of rules is determined by the
number of applications. On the contrary, the rules in FGTI are
written according to the application behaviors, which leads to a
much larger size of the rule set.

regex-based rules, it is demonstrated that the combination of
a selected rule set with 794 regular expressions consumes
5.29 GB memory statically [15].

IDS is previously used in the cases of traffic identification
in layer-7, which however fails to support FGTI completely
for several reasons. First, traditional IDSes such as Snort [16]
and Bro [17] apply regex-based rules as the identification rules,
which is insufficient for FGTI as discussed above. Second,
the matching targets of IDS and FGTI are very different. IDS
focuses on only few packets related to intrusions, while FGTI
system is interested in almost every packet in the network. In
addition, after identifying a packet, IDS and FGTI process the
following packets with different policies. The following packets
in an IDS can be simply verified and processed (pass or drop)
by the 5-tuple (source and destination IP address, source and
destination port and protocol) in the header, while each packet
needs a full check on the rule set with FGTI even their flow have
already been identified, since they may be mapped to different
behaviors. Therefore, the previous studies cannot directly solve
the problems.

Finally, the rules may cross PDUs. The applications or
protocols of the packets can be identified on a single PDU, but
the user behaviors would be described cross multiple PDUs.
For instance, the behavior of buying an electronic accessory on
Amazon.com cannot be identified by only checking the request
PDU of HTTP protocol, since the catalog of the accessory can
only be found in the reassembled response PDU. To illustrate
such behaviors, the semantics of the rules have to be further
evolved to indicate the precedence and/or cyclic relationship
between PDUs. Such evolution aggravates the challenge of
organizing and processing rules in FGTI system.

B. Basic Idea to Respond to the Challenges

In the literature, there are two ways to match a large number
of semantic-based rules in CGFI and IDS systems [15], [18].
As shown in Fig. 1(a), the first one constructs one matcher for
each rule, by checking each field of the rule sequentially [18].
Matchers are checked one by one as well. The system moves
to the next matcher if no match in current matcher, and stops
when one of the matchers (rule) is hit. Obviously, the matching
speed is the bottleneck since time scales with the number of
rules, matchers and fields in them.

To improve the processing speed, following the idea of regex-
based rules, all the rules can be divided according to their fields,

1883

Rule; ‘
Jr
/ |_field, |
| / rk
|
“ Lﬁe/d, \
—payload—
|
\
\\
\ leld;
Matcher, Matcher, Matcher,
(a)
Rule; Rule, Rule;
Rule, Rule, Rule,
| Rule; Rule; Rule;
Rule; Rule,, Rule,
- @ -
P CE | L
/" Matcher, \ [/ Matcher; /" Matcher,
—payload— ; e : > sssee — :)
_ (Field,) J _(Field) / _ (Field,) /
(b)
Rule Rule
Fie l d{) Sub Set Ve Matihiers Sub Set
Feldy (i)

......

Fig. 1. Indicative comparisons of different matching systems. (a) One matcher
is constructed for each rule. Matchers are checked sequentially as well as the
fields inside them. The system moves to the next matcher if nomatch returns
for any of the fields of current matcher, and stops when one of the matchers
(rule) is hit. The speed is the major concern. (b) All the rules can be divided
to their fields, and RegExs in same field can be merged to construct one DFA-
based matcher. By checking the matcher sequentially, the system stops when
a matcher failed and moves to next matcher if any rule is hit. The memory
explosion is the main constrain. Also, it usually cost extra time and space for
intermediate results. (c) The whole rule set is divided into sub-sets according
to fields. Each matcher is constructed on a rule sub-set. The matching result in
each matcher determines the next matcher. At most m matchers will be activated
to identify a packet, where m is the max. number of fields in the rules.

and regular expressions in the same field can be merged to
construct one DFA-based matcher, as shown in Fig. 1(b). The
system moves to next matcher if any rule is hit [15], and stops
when any of the matchers fails. Although DFA matcher saves
the matching time, there are two main concerns: the combina-
tion of values in rules brings risks of memory explosion, be-
sides, it costs extra space to save the intermediate result of each
matcher, and extra time to merge them to get the final hit rules.
The problem becomes severer with the growing number of both
rules and fields.

We first present our idea as depicted in Fig. 1(c). With ROOM,
the whole rule set is divided into sub-sets according to the
fields, which is similar with the second method, to maintain the
matching speed of DFA-based matcher. The matchers in the lo-
wer layers are constructed with rule sub-sets, which are
the matching results of the parent matchers. Therefore, the
transitions between matchers remove the extra overhead for

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

1884

TABLE II

SIMPLIFIED RULE SET SAMPLE
RuleID Host URI User-Agent
1 weibo.cn gettimeline.php Chrome
2 weibo.cn getnews.php Chrome
3 3g.qq.com * Opera
4 * Jpg IE
5 weibo.cn * *

Note: A set of semantic-based rules can be sort into a
table structure where a column represents a protocol field,
and a row is a matching rule defined on several fields.

+” in the table is a wild card which means the rule does
not depend on that field.

“weibo.cn”
(R1,R,R4Rs)

“3g.qq.com
(R3,Ry)

“gettzmelme php “getnews.phpx “ jpg” * " “ipg”
(R,R (R2R5) (R4, Ri) (Rs) (R3 R4) Ry (Ry)
“Chrome * “Chrome’ * * “IE’“Opera “Opera” ‘I

(R,Rs) (R (RyRs) (Rs) (R4 »)(R:) (Rs) (Ry) Ry (R

é @@ sExaaf i

Fig. 2. Matchers constructed by ROOM on the rule set in Table II. Each
matcher is constructed with a rule sub-set according to the possible matching
results of its parent matcher. When matching, the matchers are activated
according to the matching status one by one in different layers, and the results
can be indicated directly from the rule sub-set of the last activated matchers.

intermediate result in second method, which may lead to a
higher performance. Besides, this kind of construction splits
huge DFAs into several small DFAs, which leads to much lower
risk on memory explosion.

To give an intuitive explanation on how ROOM works, let
us suppose that we have a simple rule set in Table II, where a
column represents a protocol field and a row is a matching rule
defined on several fields. Based on the rules, we can first con-
struct a tree structure called “layered matching tree” (LMT)
with the above idea as shown in Fig. 2 (details of the con-
struction reasoning will be explained later). When a PDU with
“Host==“weibo.cn” &&U RI == “/ttt/gettimeline.php”
&&User — Agent = “GoogleChrome” comes into ROOM
system, in the first step, ROOM searches “Host” field of the
PDU in M and selects the left branch to activate the M, g,
then ROOM matches “URI” field of packet with this matcher
and gets a hit on the left branch which activates M5 . Since
“Chrome” matches with the input payload “Google Chrome,”
we get { Ry, R5} as the final hit rule set.

The matching speed for each packet in each matcher is only
determined by the length of the input packet field, and the total
matching time is determined by the number of matchers to
be performed. Given 869 rules and a real trace, it consumes
1479.0 seconds, 31.5 seconds, 20.7 seconds, for the matching

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 10, OCTOBER 2014

time using the structure in Fig. 1(a)—(c) respectively. And the
memory costs are 121.2 MB, 254.3 MB, 201.8 MB, respec-
tively. If we define normalized matching throughput divided by
memory cost as the performance-to-cost gain, ROOM strikes
the best trade-off between processing speed and memory cost.
The gain becomes larger when the number of rules increases,
which will be shown in our evaluations later.

MP-ROOM is based on ROOM to enhance the matching
ability on multiple PDUs. The basic idea of MP-ROOM is to or-
ganize multiple LMTs by organizing multiple fields in ROOM.
Instead of building LMTs with all the rules cross multiple
PDUs, MP-ROOM builds multiple LMTs according to the
“leaf” matchers of the parent LMT, which indicate the possible
candidate rules for next PDU matching. The large LMTs are
split into smaller ones, and no intermediate results are produced
or processed through matching, which therefore save the mem-
ory and accelerate the matching.

We would like mention that Firewall Decision Diagram
(FDD) [19] designed to check and optimize the firewall rules
is orthogonal with this work in different contexts, although
FDD’s layered structure is similar with LMT in this paper.
There are two major differences between FDD and MP-ROOM.
First, FDD is supposed to be deployed off-line, which targets
on the consistency and completeness of the firewall rules. The
rules would be matched by their original way (sequentially in
firewall devices mostly) after being checked with FDD. On the
other hand, LMT as a matching structure is designed to be
deployed on-line. The rules in FGTI system would be directly
matched on LMT. Thus, LMT optimizes the matching speed,
which FDD actually does not care. Second, FDD provides a
reduction algorithm to simplify the layered structure, which
however focuses on the semantic assurance of the rules to fur-
ther ensure the completeness. For MP-ROOM, we need further
employ optimization method to contract a memory efficient
LMT, which is also not the focus of FDD.

With this idea in mind, the key issues of MP-ROOM are:
1) how to construct the optimal layered matchers (LMT),
2) how to do matching under the constructed matchers, espe-
cially when the matching process may cross multiple PDUs?
These two problems will be articulated in Sections III and I'V.

III. ROOM oON SINGLE PDU

In this section, we first introduce the matcher construction
of ROOM on a single PDU. Next, we propose an optimal con-
struction by properly organizing the rules. Two further optimi-
zations on matcher constructions are also presented.

A. Primary Matcher Construction

The matchers are sorted into an LMT as shown in the
example of Fig. 2. In each layer, the matchers are constructed
according to a field. In 4th field, there can be several matchers
and we use M; j, to denote the kth matcher for the ith field.’ We
define a matcher as a two-tuple (Field, InitRuleSet), where

3The primary method does not rely on specific order of field. The order can
be changed to obtain better performance as discussed later in Section I1I-B

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

LI AND HU: OPTIMAL MATCHING ON MULTIPLE PDUs FOR FGTI

InitRuleSet is the whole rule set for constructing the matcher,
and Field demonstrates which part of the rules should be used
according to the layer-7 protocols. The matcher and its descen-
dants are completely determined by these two arguments. If the
maximum number of the fields are NV, then the maximum depth
of the LMT is also V.

The primary method constructs matchers by recursively se-
lecting one unmatched field. In the initial, the whole rule set is
denoted by Hy o and the first field is selected to construct the
first layer of the LMT. The number of branches equals to the
number of unique values in Hy . The unique values of the first
field in the rule set Hy ¢ form a set {Fy ;},7 =1,2,...,|F],
where |F| is the element number in {F} ;}. The rules whose
values of the first field equals F ; are the possible hitting rules
in M, ;, which is denoted as H ;. If we remove the rules with
a wildcard “+” in the first field (denoted by Oy o), the rest rules
are denoted by Sp . Also, we use V; ; denotes the field value
set that excludes “+” from F ;.

When building matcher M, ;, set Iy ; and V; ; are first out-
lined from Hyo. Then, the rule sub-set H; ; and S; ; are
associated with the matchers. Next, the lower layer matchers
are constructed by its parent layer recursively: H0,0 — {F} j,
Vit — {Hi;, 81 — - = {Hix, Six} — {Fig11,
Vigra} = {Hix1,0, Sig1a} — - -

The matcher is the node of the LMT, and the rule sub-set on
the transition is H for the next matcher. LMT clearly indicates
the status of the matching, which will always active a correct
next matcher according to the current matching result (values
on the transitions). LMT is pre-constructed and keeps steady
if the rule set is fixed. There is an exception if S is an empty
set while O is not. In this case, all rules in this matcher do
not depend on this field. To handle this exception, there should
be a flag to indicate whether S is empty. When it turns true,
ROOM simply jumps to the next matcher with all rules in
current matcher without any construction.

Still take the rule set in Table II as an example to explain the
construction of LMT in Fig. 2. As Hy ¢ is defined as the whole
rule set, My o is the only matcher in the first layer. We use the
“Host” field for the first layer. My o =(“Host,” {R1, Ra, R,
R4, R5}) So,o = {Rl, RQ, f%47 R5}, 0070 = {Rg} For Fl,O =
{“weibo.cn”, “ %7}, V4 g ={‘weibo.cn” }, and H, o ={ R, R,
Rs, Rs}. Next, we can build M o by using H; o. Continue this
process and finally we can recursively build an LMT depicted
in Fig. 2.

B. Optimal Rule Organization

Different field orders in the aforementioned construction
algorithm lead to different LMTs. In the example of Fig. 2,
the construction takes “Host” as the first field, “URI” as the
second and “User-Agent” as the last field. If we change the
order the last two fields, LMT will be the form in Fig. 3, which
has 6 matchers in the third layer. The sum of the states of LMT
matchers in Figs. 2 and 3 are 85 and 68, respectively.

This example brings a question: how to determine the opti-
mal order of the fields used to construct the matching tree? We
define it as a Rule Organization Problem (ROP). Given a rule
set, ROOM determines an optimal field order to construct the

1885
“weibo.cn” 3g qq.com” x
(R1L.RoR3, R5) (R5Ry) (R)
“Chrome” “Opera’\ * “Opera’\ “IE” 0176” a”
(R,R>Rs) (R; R) (Ry ®) Ry
gcmmcllne php”* “getnews. php Ji
R,Ry) (R) (RuR) (R; Ry (Rj) (Rj) (R4) (R;)
Fig. 3. A different LMT with 6 matchers in the third layer consumes less

memory than the LMT in Fig. 2.

LMT, so the memory cost is minimized. Suppose that the field
¢ has a new order ¥(4),7 = 1,2,-- -, N, after the organization,
and the memory consumption of the matchers in field 7 is Dy ;).
So ROP seeks ¥(i),7 = 1,2, -+, N, to minimize the total cost
as shown below.

N
Dw() (1)

mln
7/)€TN

where Ty is the set of all the permutation: ¥ : {1,2,---
{1,2,---,N}.

In fact, ROP can be reduced from Quadratic Assignment
Problem (QAP) [20] in polynomial time, denoted as QAP <,
ROP. QAP considers allocating n facilities to n locations.
There are three costs in the problem: the cost function of dis-
tance between locations, the function of flow between facilities
and the cost placing a facility in a location. The objective of
QAP is to minimize the total cost related to the assignment of
facilities to locations. If we remain the first two costs in QAP
and set the cost of a facility-location placement to be zero, the
problem can be formulated as,

min Do fudswet)

"i=1 j=1

where ¢(i),i =1,2,---,n is the location used to placing fa-
cility 4, fi; and dy(;)¢(;) are the cost function related to flow
between facilities and distance between locations.

To reduce QAP to ROP, we first rewrite the ROP formulation
in (1) as

N} —

N N
i Dij Ly(iyus(s), 3
&ﬁ;; ()¢ (g))
1, ifj=1(i)
LyGiyp) = {0, otherwise. @

If we map the original fields order (of ROP) to facility (of
QAP) and the organized order (of ROP) to the location (of QAP),
(2) can be transferred to (3) by mapping the variables and func-
tions: n - N, f — D,d—1,S, = Txn,¢ — V. Since QAP

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

1886

is known as an NP-hard problem [20], ROP is also NP-hard
with a polynomial reduction from QAP.

It is worthy of noting that the number of fields in a rule can
be as large as tens or even hundreds in FGTI. Even without
considering the payload, OpenFlow 1.4.0 has already advocated
to check 41 fields in protocol headers only [21]. The brute-force
method to calculate the ROP leads to unacceptable calculation
time even if it is pre-computed, while building LMT with
random order of fields (for example, the native order in the
segments) significantly increases the memory consumptions
(experiment results will be shown in Section VI). As a result,
we propose a heuristic algorithm to organize the field order so
as to get the optimal memory consumption.

Notice that the values of rules in a particular field are fixed.
All values have to be constructed into a DFA structure at least
once. Therefore, although not very accurately, the complexity
of the field depends on the number of matcher a lot that more
matchers in this field, more equally values will distribute. And
it is easy to imagine that [V values distributing in N matchers is
much better than in one matcher in space complexity. Further-
more, we can see that the number of matchers in current layer
depends on the number of unique values in the previous layer.
So there is a trend that if we choose a field which brings the
most unique values for higher layers, values in lower layers will
distribute more equally. However, there is a complexity tradeoff
between the lower layer and the current layer, for it is possible
the field bringing more “branches” (unique values) for the next
layer also brings huge overhead in the current layer.

Another factor that should be considered is the redundancy of
LMT. We can see that values of R3, R4, and R5 are constructed
more than once in Fig. 2, which results from the “*” cases in
the given rule set. Since the rules contributing “*” in a certain
layer would be copied to all other branches, the effect of the
redundancy is defined as the product of these two factors: a) the
complexity of the redundant values brought by “x” cases, and
b) the number of branches, to which all “x” rules would be
copied.

In general, we want to choose a field, which brings more
branches for next layer, has low complexity itself and brings
less redundancy to LMT. Here we first define a notation C,
where C'(ValueSet) represents the number of nodes of the
matcher constructed by the values in ValueSet and Clieiq s
represents the number of the nodes in the matchers on ith layer
in total if field is placed in this layer. Now we try to describe
the feature of the field which will affect the choice.

P;

Wriciai = Y (C(Eik) X [Vik]) - (5)
k=1
This notation represents the redundancy effect of this field
where F; j, describes the set of values brought by “x” cases,
and |V; | describes the branches the matcher generated. For
instance, if we choose “Host” as the first field, P; = 1 and Ey
is {“jpg,” “IE”}.
Now, we define a complexity factor for each field when we
need to choose one.

Crietdi X Wield.i
Gield;i = ficld,i Jield,i (6)

[Viietd,il

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 10, OCTOBER 2014

The algorithm simply selects the field holding Gpi,. As it
will be performed every time choosing the next field, the time
complexity is O(N?) where N is the number of the fields.

Still, we take the rules in Table II as the example. For the
firstlayer, we compute C'« g 57 0= C({*weibo.cn” , “weibo.cn”
“3g.qq.com”, “ %7 “weibo.cn” }) =18, Cs«yrr 0=C({“get-
timeline.php”, “getnews.php”, “ 7 *x 7, “.jpg”})=30and
C«yser—Agent,0=15. Moving to the calculation for W,
Wettostro=(C({“.jpg”, “IE"})x3=18, and Weypp o =
(C({{*3g.9q.com”, “Opera”},{ “weibo.cn” } }) x 4=88. We
can get G fieid,o0 as,

C“‘Host” 0 X W“Host” ,0

G“ Yy =
Host”,0 |V‘Host”,0|

18 x 18
-3
=108. (7

We obtain G«yrrr,0 = 616 and G«pser—Agent,0 = 112 by
the same way. For G, is held by the field “Host”, we choose
“Host” for the first layer. Then we choose a field for the next
layer from the rest. The calculation in the second layer depends
on the choice for the first layer. By looping the choosing
process, finally we get the optimal fields order: “Host,” “User-
Agent” and “URIL,” which is the example we depict in Fig. 3.
In this case, the rules are simple and constructing their DFA
does not bring exponential growth of space as the worst case.
Therefore, the positive factor |Vysera | for G ierq,; seems not
very significant here, but it will show its importance with the
growth of rule complexity.

C. Further Optimizations

We present two more optimizations to further save the
memory consumption. First, “x” cases are critical to the space
complexity. We observe that some rules have already been
matched completely in the upper layer, and therefore contribute
“x” to all of the lower layers. For instance, R5 in M; o in
Fig. 3 can be tagged as a matched rule, for it does not depend
on this layer or any of the lower layers. We call such kind
of rules “afore-matched” rules. And we further discover some
matchers and their descendants actually do nothing for the
matching, since all rules in them are afore-matched rules. For
instance, M» 5 in Fig. 3 contains only one rule Rg3, which is
an afore-matched rule. Such matchers are called afore-matched
matchers. The afore-matched rules/matchers don’t contribute
any values to the DFA structures to consume more memory,
but increase the number of matchers and transitions between
them which affect the memory consumption. Based on the
above observations, LMT could be further optimized by cutting
the “x”” cost brought by the afore-matched rules/matchers. The
afore-matched rules would not be involved in the construction
process and the afore-matched matchers would be tagged as a
“leaf” matcher to indicate that the matching process should stop
in these matchers.

On the other hand, a matcher can be defined as a two-
tuple (Field, Init RuleSet) as discussed in Section ITI-A. Two

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

LI AND HU: OPTIMAL MATCHING ON MULTIPLE PDUs FOR FGTI

fu

“weibo.cn” 3g qq.com” %
(R1LRoR3, RJ) (R5,Ry) (R)
“Chrome” “Opera” : \O ora’ “Opera”
(RLR>) (Rj) “IE” P (R3)
i (Ry)
“gettimeline.php” “getnews.php” “ing”
(R) (R (R4 f

©

Fig. 4. Optimal rule set organization. The order of the fields are computed by
the aforementioned heuristic algorithm. The afore-matched rules and matchers
are cut off and the same matchers are merged to further save the memory.

or more matchers with the same Field can share the same
Init RuleSet too, which can be merged for efficient memory.
In the case depicted in Fig. 3, M 3 and My 5 share the two-
tuple (“User-Agent,” { R3}), and can be merged as well as their
descendants.

The final optimal organization for rules in Table II is shown
in Fig. 4. Compared with LMT in Fig. 2, it now contains five
non-leaf matchers while the original contains eleven. Notice
that though the leaf matcher in the right branch of M; o seems
identical with the leaf matcher under M; ; and M 2, these two
leaf matchers cannot be merged, because the first leaf matcher
stores the implicit information of Rs afore-matched in M, .
This information is useful when it comes to multiple PDUs
matching, which will be introduced in the next section.

IV. MP-ROOM oON MULTIPLE PDUS
A. Organize Multiple LMTs

Section III designs the algorithm of ROOM for the single
PDU case, which needs to be enhanced to support the rules
cross multiple PDUs. In straightforward way, assume the max-
imum number of the required PDUs in the rule set are [V, there
would be N LMTs as well. The kth LMT is constructed by the
requirements of the £th PDU in the whole rule set. If the previ-
ous LMT get a hit on some rules requiring more PDUs, it jumps
to the next LMT and starts matching for the following PDUs
until the last LMT get a hit. The intersection of the matched
rules in each LMT is the final matched rule set. The method
suffers from the low efficiency of storing and calculating the
intermediate results. MP-ROOM is proposed to better organize
the multiple LMTs, whose basic idea is to construct LMTs
according to the matching results of the previous LMT instead
of the whole rule set. Since the intermediate costs are removed,
the performance on multiple PDUs could be improved by
MP-ROOM.

Specifically, each “leaf” matcher in an LMT could contain
several rules requiring more PDUs, and a much smaller LMT

1887

,@ Ly
“weibo.cn” 3g qq.com”
(RlvRJ-RLRJ) (R3.Ry) (R)
C(‘zr(;:;e “Opera” . “Opera” 0(1;:7
] / “ (R) Ry
“gettimeline.php” "getnews.php” <ess”
© g \ (RJ)
© Z@
|/

L,

Hn,n= {R5}

L2 L3
Hyp= {R3Rs} Hyo= {R3}
J

Fig. 5. Extended multiple LMTs based on LMT shown in Fig. 4 by assuming
R3 and R5 require second PDUs.

can be constructed according to this sub rule set. Assume that
Rs and Ry in Table II require a second PDU for matching, con-
sider the LMT shown in Fig. 3, every “leaf”” matcher containing
R3 and/or Rs5 could link to another LMT constructed by Rj3
and/or R5. The structure removes the intermediate cost between
multiple LMTs and saves the matching time and memory cost.
However, this basic structure cannot serve the optimal LMT
shown in Fig. 4, since Ry is an afore-matched rule and does
not appear in any of the leaf matchers. Actually, for Ry is
considered matched in M; ¢ and its descendants, all these
matchers should link to an LMT constructed by the rule sub-
set containing Rs at least. For instance, M5 o should link to
an LMT constructed by { Rs}, and the leaf matcher in its right
branch should link to an LMT constructed by { Rs3, R5}. Fig. 5
depicts the final organization of the multiple LMTs.

Please note that the leaf matcher in the right branch of M; o
cannot be merged with the rightmost leaf matcher. The first
leaf matcher stores implicit information of the afore-matched
rule set, {R5} in this case. The rule set should be involved
when descendant matchers need to construct multiple LMTs.
Therefore, the second optimization in Section III-C can be
re-stated as follows: matchers sharing the same 3-tuple (F'ield,
InitRuleSet, AforeMatchedRuleSet) can be merged to
reduce the memory consumption.

B. Matching on MP-ROOM

We first present the matching process on a single constructed
LMT. The matching starts from matcher M . Inside a matcher,
it tries to match the given payload with SRD-DFA structure
[22] to distinguish the result with different rules. The matching
result points to the next matcher on the next field. If no match

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

1888

is hit in any of the matchers, the matching process stops
instantly and reports no rule matches with the given payload.
The matching traced from M o to My 1, and M, is a specific
matcher on Nth (also the last) field. If the next matcher is a
leaf matcher, it means all of the upper matchers in this path are
matched, and rules in Fiy_1; are the final matched rules, which
should be reported. It is possible that the leaf node includes
two or more rules, which usually results from the inclusions
between multiple rules. ROOM/MP-ROOM would not choose
a “proper” rule but just reports the matched rule set, since the
inclusion cases should be considered when providing the rules
beforehand.

When MP-ROOM is triggered for matching multiple PDUs,
each flow maintains a status variable to indicate the activated
LMT, where the matching starts for the current PDU. When the
last LMT is hit by the current PDU, the status variable is reset
to be the first LMT. The complete pseudo-code of matching is
depicted in Algorithm 1.

Algorithm 1 MatchingProcess(PDU)

1: L+ PDU.Flow.L and M <~ L.My o and R<~ NULL
2: while M is not a leaf matcher do

3: forrin M.AforeMatchedRuleSet do
4: if r does not require a next PDU then
5: Add r into R
6: if value of PDU in M.Field is accepted by M then
T M < the next matcher according to the result
8: else
9: if there is a “x” branch then
10: M < the “x” branch
11: else
12: if there is a next LMT then
13: PDU.Flow.L < next LMT
14: Stop and Wait for next PDU

15: for r in M.Init Rules do

16: if r does not require the next PDU then
17: Add r into R

18: if there is a next LMT then

19: PDU.Flow.L < next LMT

20: else

21: PDU.Flow.L < the first LMT

22: return R

V. IMPLEMENTATION

Basic Implementation: A complete FGTI system would con-
tain three major components: a packet capturer, a protocol
identifier/parser, and a matching engine. The packet capturer
is to capture and reassemble packets in lower layers, and
the protocol parser is to resolve packets into structural form
according to the protocol specification. PDU is assembled in the
protocol parser. Finally the PDU is processed in the matching
engine, which reports the final results. In this paper, MP-ROOM
focuses on improving the last and most critical one. We imple-
ment MP-ROOM with about 3,000 lines C/C++ code. We also

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 10, OCTOBER 2014

Protocol @ TaskQueue Puller MP-ROOM
Parser
Hackes PDUQueues Puller MP-ROOM
Capturer

Fig. 6. The high level architecture of the implemented system. PDUs with
same hash values are mapped to the same PDUQueue, and TaskQueue stores
the entries of PDUQueues, which can be pulled by the puller.

implement the packet capturer and the protocol identifier/parser
which are shared by other prototypes for a fair comparison
in the evaluation section. To remove the bottleneck lying in
the network interface and hard disk I/O, the packet capturer
and protocol parser work off-line to pre-load the assembled
PDUs into memory. Note that MP-ROOM is independent from
the protocols of the traffic, since it deals with the (field,value)
pairs instead of the raw payload. These pairs are generated by
various protocol parsers, which is not the focus of this paper. As
illustration, we only implement two protocol parsers for HTTP
and QQ protocol in our prototype. These two protocols hold
63.1% packets and 71.4% volume in our real traces under study.

Parallel Acceleration: We implement the “Last Flow
Bundle” (LFB) model proposed in [23] to balance the load in
processing units. LFB is a flow burst scheduling algorithm de-
signed with the goal of maximizing cache affinity. The idea is to
process all of the PDUs in the system that map to the same flow
on a single thread and not interleave the processing of PDUs
that map to other flows. LFB is composed of two components: a
packet scheduler and a packet puller. The scheduler is deployed
in a single processing unit to dispatch PDUs into the sharing
queues. The puller is to pull PDUs from the sharing queues and
pipeline them to the post stages for reassembling and matching
in application layer.

The high level architecture of the implemented system is
depicted in Fig. 6.

VI. EVALUATION
A. Experimental Settings

In this section, we compare the performance of MP-ROOM
with related work in algorithm level and system level. In
algorithm level, to the best of our knowledge, NetShield [15]
achieves the best performance with semantic-based rules, which
has the similar structure as Fig. 1(b), thus we first involve
it in the comparison. We also implement sequential matching
(SM) method for comparison whose architecture is depicted
in Fig. 1(a) In system level, we choose a widely accepted
open-source approach nDPI, which partially supports FGTI
for a comprehensive comparison with our prototype. All the
evaluations are performed on a platform with Intel Xeon E5606
(8-core, 2.13 Ghz), 32 GB memory and Linux 2.6 kernel.

In the experiment, we involve 869 rules with HTTP and
QQ protocols, which contained 6 independent fields. The rule
set can identify both wired and mobile Internet application
behaviors. The rules for wired Internet traffic are selected
from Snort [16] and are rewritten to be semantic-based rules.
We further investigate the mobile Internet traffic, and give an

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

LI AND HU: OPTIMAL MATCHING ON MULTIPLE PDUs FOR FGTI

1889

TABLE III
APPLICATION AND BEHAVIORS IN THE RULE SET
[App Catalog | Typical Behaviors | # of Rules |
Weibo Login, Logout, Tweeting, Re-tweet, Following, Blocking, efc. 292
SNS Login, Logout, Blogging, Following, Blocking, Avatar, etc. 183
Online Video Searching, Watching, Comment, efc. 18
Browser Page viewing, Downloading, Picture viewing, efc. 67
App Market Searching, Downloading, Rating, Comment, Watching, erc. 80
Online Shopping Searching, Adding Star, Rating, Buying, efc. 150
QQ Login, Logout, Text messaging, Video conference, Status changing, efc. 41
Thunder Login, Logout, Searching, Downloading, P2PDownloading, efc. 25
Mail Sending, Receiving efc. 13

Note: One “App Catalog” in the list may contain multiple applications, such as it contains six popular
browsers’ rules in “Browser” catalog. And many applications’ protocols and behaviors are carried by HTTP
protocol, such as Weibo and Online Video efc. We sort them into different classes for that more and more
applications tend to provide comprehensive functionalities to users based on same protocol.

TABLE IV
SPECIFICATIONS OF THE REAL TRACES USED IN EXPERIMENTS
| | Univ. trace | ISP trace |

Capture time 15/12/2012 | 11/17/2013
Duration 58 min. 70 min.

Trace size 22GB 7.9GB

of packets 27TM 14M

Mean packet length 818B 566B

additional rule set to cover the mobile applications’ behaviors.
Table III illustrates the details of the combined rule set.

Two real traces are used as the experiment input. One real
trace is captured from the gateway of the wired network of
a university in China, named as “Univ. trace.” The other is
collected in Nanjing, Jiangsu province of China, from a radio
network controller of a leading ISP in China, which is denoted
as “ISP trace.” Table 1V illustrates the features of the two traces.
Each experiment is performed 1000 times to avoid randomness.
SM consumes too much time on some conditions, so we just use
the average value over 10 experiments.

Notice that the traces are different from our preliminary
paper [12], which have larger mean packet length. Besides, the
rule set is larger (869 vs. 262) and contains more multiple-
PDU rules. Thus, the throughput and memory cost in this paper
would not be same with them in the original ROOM.

B. Experimental Results in Algorithm Level

During the evaluations in algorithm level, we check four
metrics for the three matching methods: identification through-
put, memory cost and the accuracy of the identification results.
Also, we perform experiments to exam the efficiency of LMT
construction algorithms.

1) Throughput: When testing throughput, MP-ROOM is
firstly evaluated with NetShield and SM on single thread for
the comparison. And the aforementioned parallel optimization
will be further applied on MP-ROOM to tap potentials of the
prototype.

Single Thread: As depicted in Fig. 7(a) MP-ROOM per-
forms 8.49 Gb/s and 4.85 Gb/s on the two real traces, respec-
tively, which is 1.52 ~ 1.56 times faster than NetShield and
19.62 ~ 71.34 times faster than SM. The different throughputs

on the two traces result from the different behaviors’ densities.
Since ISP trace has smaller mean packet length and longer
duration time, it tends to have greater density of behaviors
than Univ. trace. MP-ROOM and NetShield are slowed down
in this case for they have to match with more packets. On the
contrary, SM benefits from the higher behavior density, for a
packet not matching with any rules is the worst case of this
method. Therefore, with the growth of the behaviors’ density,
the throughput of MP-ROOM or NetShield decreases, while
SM’s throughput is increased.

Parallel Acceleration: MP-ROOM can be accelerated by
parallel programming as we have discussed in Section V. It
is shown in Fig. 7(b) that MP-ROOM achieves over 40 Gb/s
throughput on Univ. trace when eight cores are used for match-
ing. Since the bandwidth in the core network has reached over
40/100 Gb/s, it is important for FGTI system to reach the
increasing wire-speed. MP-ROOM shows the potential ability
to meet such requirement.

2) Memory Consumption: We evaluate two kinds of mem-
ory consumption: the static memory usage which is used to
store the pre-constructed matchers, and the dynamic mem-
ory usage which further involves the memory of caching the
intermediate results. Table V shows the memory usage of
the three methods. MP-ROOM costs less static memory than
NetShield, for it optimizes the organization of rule set by
splitting the large matchers into small ones, which lowers
the memory explosion risk. In the dynamic case, MP-ROOM
also performs more efficient memory usage than NetShield,
since it does not produce or save any intermediate results. To
SM which does not organize the rule set, its static memory
is only used for storing the original rule set. In addition, no
intermediate results are produced when matching with SM
either. Therefore, SM costs the least memory in both static and
dynamic cases.

We further introduce the “performance-cost ratio” to measure
the prototypes in both terms of throughput and memory cost for
a comprehensive comparison of the three prototypes, which is
defined as the normalized throughput divided by the normalized
memory cost. The ratios of MP-ROOM, NetShield and SM are
1.26, 0.66, and 0.02 on Univ. trace, respectively. MP-ROOM is
the most cost-effective approach which is 1.9 ~ 63 times better
than NetShield and SM.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

1890

s ' MP-RQOM

2 104: 8489 559 48§§}Sh'eld]

g 10° 7 3
g / 119 / 27

§ 10?— % % 3

wl [HEE TS

ISP Trace

Univ. Trace

(a)

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 10, OCTOBER 2014

40019
40000

30000+

20000+

Throughput (Mbps)

1 2 4 8
of Cores

(b)

Fig. 7. The throughput of MP-ROOM and related work. MP-ROOM performs the best throughput when comparing with NetShield and SM on single thread,
and can achieve over 40 Gb/s with parallel acceleration. (a) Matching throughput for three prototypes on the two real traces with single thread in logarithmic
coordinates. (b) Matching throughput of MPROOM on Univ. trace with parallel acceleration.

TABLE V
MEMORY CONSUMPTION
| | | Univ. trace | ISP trace |

Static 34.25MB 34.25MB

MP-ROOM Dynamic 201.85MB | 243.87MB

. Static 43.28MB 43.28MB
NetShield e [75434MB | 287.09MB
SM Static 11.0MB 11.0MB
Dynamic | 121.24MB | 183.30MB

3) Accuracy: Ithas been already demonstrated that semantic-
based rules are much more accurate than regex-based ap-
proaches [24]-[26]. In this section, we check the correctness
of the semantic-based rules to ensure the right identification
results. To confirm the accuracy, we sample three pieces of the
real traces, and manually check the applications/behaviors in
them. Table VI illustrates the ground truth of the application
distribution of the three samples. These sampled pieces are used
as the input of MP-ROOM to measure the accuracy. The results
show that MP-ROOM accurately detects all the behaviors/
applications in the three pieces by comparing the ground truth
with the matching results. Furthermore, we evaluate a “clean”
trace without any behaviors and MP-ROOM does not generate
any results.

4) Performance of the Heuristic Algorithm for ROP: In this
section, the proposed heuristic algorithm of determining the
optimal order of the fields is evaluated. The experiment uses
the aforementioned real rule set (869 rules, 6 fields) and a set of
artificial rule sets which contain 1000 randomly generated rules
with different number of fields. To demonstrate the efficiency
of the proposed algorithm, we also introduce a brute-force
method, which finds the global optimal order by checking all
the permutations; and a native-order method, which sorts the
fields by the order in the PDU. The consumptions to generate
the rules are averaged by 100 times independent experiments.
Table VII shows the performance gaps between the three
methods. The results demonstrate that the heuristic algorithm
provides near-optimal memory, which is 96.6% to the optimal
value and only 6.6% to the native-order method in average. In
addition, Table VIII shows the cost of the heuristic algorithm
with the same real and generated rule set. We observe that the
calculation time is reduced by 6.7 ~ 310.5 times compared with
the brute-force method. The time cost of brute-force method on
11 fields is unacceptable. Next, we check the effect introduced

TABLE VI
APP. DISTRIBUTIONS OF SAMPLES
| Application | Behavior | P] P] P]
Login 0.35% 0.60% 1.67%
Chatting 18.81% 6.68% 9.87%
ReceiveMsg | 18.99% | 23.35% | 13.08%
WebQQ ExtraReq 539% | 3.12% | 4.63%
GetLevel 1.43% 2.55% 5.15%
Total 44.97% | 36.30% 34.4%
TV 5.47% 8.59% 0.12%
Movie 6.08% 10.34% 0.10%
Youku News 3.67% 0.16% 0.13%
Play 8.29% 17.54% 0.27%
Comment 2.34% 10.45% 0.16%
Total 25.85% | 47.08% 0.78 %
Login 1.41% 0.79% 5.63%
Posting 3.77% 2.13% 12.61%
Reply 11.96% 4.36% 9.20%
Weibo Forward 5.92% 5.90% 21.58%
Star 1.71% 1.12% 6.93%
Search 4.41% 2.32% 8.87%
Total 29.18% | 16.62% | 64.82%
Total 100% 100% 100%

Note: P; and P> are sampled from the Univ. trace, and Pz is
sampled from the ISP trace.

TABLE VII
MEMORY CONSUMPTION OF HEURISTIC ALGORITHM
Real Rules | Gen. Rules | Gen. Rules
869 rules 1000 rules 1000 rules
6 fields 6 fields 11 fields
Brute-Force Method 34MB 187MB 164MB
Native-Order Method 557MB 2861MB 2291MB
Heuristic Algorithm 34MB 199MB 17IMB
TABLE VIII
TIME COST OF HEURISTIC ALGORITHM
Real Rules | Gen. Rules | Gen. Rules
869 rules 1000 rules 1000 rules
6 fields 6 fields 11 fields
Heuristic Algorithm 14.4s 18.9s 80.8s
Brute-Force Method 100.5s 126.6s 25085.2s
Speed Up Ratio 7.0 6.7 310.5

by the number of rules and rule fields under real traces and
generated traces in Fig. 8(a) and (b) depict the relationship. The
number of fields are all six in these two experiments. Both the
brute-force method and heuristic algorithm show a near linear

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

LI AND HU: OPTIMAL MATCHING ON MULTIPLE PDUs FOR FGTI

1891

140 s : —B— Heuristi ' —B— Heuristic Algorithm
——H Algorith | euristic Algorithm g
e Bf;zf;;cj\i:m; L —&— Brute-Force Method 103 4 —#—Brute-Force Method
120 1204
1004 1004
T 40 & s
?;;/ 80 g 80 z
8 60 % 60 8
4 o
E £ £
£ 401 £ 40 =
20 20 J
19.2 125 18.9
018 O 36 65 i
0 200 400 600 800 0 500 1000 1500 2000
of Rules # of Rules # of Fields
(a) (b) (©

Fig. 8.
vs. # of fields (1000 rules).

TABLE IX
MP-ROOM PERFORMANCE IN MULTIPLE PDUS CASES

| | Throughput | Memory (dynamic) |

ROOM 4951Mbps 167MB
MP-ROOM 5632Mbps 134MB
Increase Ratio 1.138 0.802

increase to the time cost, but the line slope of the heuristic
algorithm is much smaller. Fig. 8(c) shows the punishment on
computation time when the rule fields increases. The brute-
force method here shows an exponential increase when the
number of rule fields grows and it costs about 7 hours for
11 fields (for the huge computation time, we did not run the
experiment multiple times for the average consumption), while
the heuristic algorithm remains the small increase trend.

5) Performance of MP-ROOM in Multiple-PDU Cases: We
further evaluate the throughput and memory consumptions of
MP-ROOM and ROOM in the context of multiple-PDU cases to
demonstrate the improvement of MP-ROOM. The experiment
takes an extra rule set containing 153 multiple-PDU rules as
the input. These rules requires at least two PDUs for matching,
and the average length of the required PDU is 3.4. Table IX
shows that MP-ROOM is 14% faster and saves 20% memory
than original ROOM. It mostly results from the organization of
the multiple LMTs as we discussed in Section IV-A.

C. Experimental Results in System Level

nDPI [18] is a superset of the popular OpenDPI [27] library
by extending the original rule set. The rules in nDPI are
written in native code (C language) to enhance the throughput
performance, which partially supports FGTI, e.g., 8 behaviors
in QQ, 3 behaviors in Skype, etc. nDPI now provides more than
300 rules for 125 applications/protocols. We build the lat-
est version of nDPI, and compare it with MP-ROOM from
throughput and memory consumption respectively. The two
aforementioned real traces are used for the comparison, and all
evaluations are performed on the same platform mentioned in
Section VI-A.

Throughput: Fig. 9(a) shows the experimental result for the
throughput comparison. MP-ROOM achieves 8.49 Gb/s on the

Time cost trends with number of real and generated rules and fields. (a) Time cost vs. # of real rules. (b) time cost vs. # of generated rules. (c) time cost

real traces at most with a much larger rule set (869), while
nDPI performs 1.44 Gb/s at most on the same traces with only
about 300 rules. The relative low performance of nDPI mainly
results from the unorganized rule set. For nDPI does not support
standard semantic-based rules as mentioned in Section III it
uses native code to describe the fine-grained behaviors, which
obviously lowers the performance, for each packet has to be
checked bit by bit with each rule. On the other hand, native code
naturally enhances the performance for it can be pre-compiled
and optimized by the compiler. Therefore, nDPI performs better
than sequential matching method but worse than NetShield
and ROOM.

Memory Consumption: For nDPI does not pre-construct
rules, we only evaluate the dynamic memory consumptions.
Fig. 9(b) shows that MP-ROOM and nDPI cost 243.9 MB
and 314.2 MB memory at most with the same two traces
respectively. The major factor of the gap is that nDPI caches
packets to make the complete identification, while MP-ROOM
only tags the identification conditions and abandons the packets
right after a PDU is assembled. Therefore, nDPI requires more
memory with the volume growth of traffic while MP-ROOM
remains low and stable memory cost. Combine throughput and
memory cost, the performance-cost ratio of MP-ROOM and
nDPI are 1.26 and 0.18, respectively.

VII. RELATED WORK AND DISCUSSIONS

There are several Intrusion Detection/Prevention Systems
(IDS/IPS) inspecting the packet payload. Snort [16] uses PCRE
[28] to match regular expressions with a huge number of
reliable regex-based rules. The throughput of Snort is slow
since it matches rules sequentially. Bro [17] is another popular
IDS with good flexibility. Bro partially supports FGTI with an
expressive rule language. Still, the matching speed of Bro is
relatively slow [15].

In the context of traffic identification, previous litera-
tures have explored header/port based method, content based
method, machine learning method, and DPI-based method [3],
[4], [7]. nDPI system [18] and its previous work OpenDPI [27]
have paid a lot of efforts on detecting the applications, which
can recognize over 100 popular applications including IM,

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

1892

10000

‘ I MP-ROOM
8489 [|nDPI

80004 B

6000 b
4845

4000+

Throughput (Mbps)

20004 1442]

L -

Univ. Trace ISP Trace

(a)

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 10, OCTOBER 2014

314.2

m 300
s N
Z 250 2439
2
a
£ 200
%
g 150
&)
>
g 100
g
= 50

0 T T

Univ. Trace ISP Trace
(b)

Fig. 9. Comprehensive comparison between MP-ROOM and nDPI. MPROOM achieves better throughput with lower memory consumptions on the real traces

compared with nDPI. (a) Throughput comparison between MP-ROOM and nDPI.

game, browser, etc. However, the rules of nDPI are not standard
semantic-based, which harms the scalability of rules with the
volume growth of traffic, and the rules are written in native
code so it is hard to update the rule set without interrupting the
system. Additional, the processing speed of nDPI is still slow.

Hierarchy organizations of rules have been studied in previ-
ous work [29], [30]. These techniques use exact string matching
or hash comparing for the input payload instead of constructing
a DFA-like structure. The matching speed of these techniques
is not at the same level with DFA-based approach and the space
complexity is not the focus of them. Thus, these techniques
cannot be leveraged to achieve FGTI. Kruegel uses the hierar-
chy organization of rules to accelerate the matching speed, but
it may suffer from the state space explosion [31]. Tongaonkar
formulates the model of the hierarchy structure by using condi-
tion factorization and demonstrates the proposed automaton to
be polynomial-size with optimizations [32]. [31], [32] focus on
the hierarchy structure itself, since they assume that the width
of the structure determines the space complexity. And MP-
ROOM employs DFA to accelerate the matching speed inside
matchers, so the number of matchers and the size of matchers
both impact the memory consumption. Therefore, the heuristic
algorithm of searching the optimal order in MP-ROOM not
only considers the size of LMT, but also involves the size of
the matchers, while it is not the focus in [32]. FDD is proposed
to translate the firewall policies into a layered diagram, which is
easier to analyze and optimize [19]. MP-ROOM translates the
semantic-based rules into LMT in a similar way. However, they
are designed for different purposes and completely orthogonal
in different contexts as we mentioned in Section I.

DFA is usually used for matching [33]-[35] and an extend
DFA structure to distinguish matching result is proposed in
[22]. But these works focus on improving plain DFA structure
and cannot handle the fine-grained rules directly. NetShield [15]
which is involved in our comparisons makes a good start of
organizing semantic-based rules, but MP-ROOM gains more
from the optimal rule organization.

Discussion: Since MP-ROOM checks the payload of the
packet in layer-7, privacy is the major concern of this kind of
system. The end users worry that the Network Service Providers
(NSPs) would snoop their private data through DPI technology.
However, we argue that, MP-ROOM only focuses on the behav-
iors of users, not the detailed contents. For instance, NSPs can
adjust the bandwidth according to the results of MP-ROOM/

(b) Memory comparison between MP-ROOM and nDPI.

FGTI to achieve better voice chatting quality of an IM applica-
tion. But the conversation is still private between end users for
NSPs is not inspecting any of detailed contents. Technically,
content providers often expose the controlling information of
the application for easier decoding in server side, and encrypt
the detailed contents in the payload of layer-7, which protects
the privacy of users in another aspect.

The accuracy and coverage of the fine-grained rules deter-
mine the accuracy of the FGTI systems, since it performs pre-
cisely according to the rule set. There have been some previous
work on generating the string/regex rules from training traffic
automatically [36]. Although these works do not support FGTI
rules directly, it can be a start point. We generate rules with the
help of such tools and manual efforts in our experiments and
will further look into this question in future work.

It is important to design a fast FGTI system to meet the
increasing wire-speed in the core network, which has reached
40/100 Gb/s and even higher. There are two ways to improve
the performance. First, some hardware-based approaches could
achieve over 100 Gb/s throughput with FPGA or TCAM, but
they could not support complex semantic-based rules. If we
employ the ideas of MP-ROOM and other components into
their hardware platforms, it is no doubt that the combined
system can get a much higher performance. Second, some many
core platforms such as Tilera TILE-Gx [37] have dozens of
processing units, which make it possible to achieve 100 Gb/s
in a single unit case. Also, the distributed systems with well-
designed load balancing technique would accelerate the whole
system indeed.

VIII. CONCLUSION

In this paper, we have proposed MP-ROOM, which con-
structs layered matching trees for semantic-based rules on
multiple PDUs to accelerate the matching speed and to save
the memory consumption. The optimal construction of LMT
is demonstrated to be NP-hard, and therefore, a heuristic algo-
rithm is developed. We also design and implement prototype
systems for MP-ROOM and related works. The experiments
under real traces and synthetic traces demonstrate that the
performance-cost ratio of MP-ROOM is increased to 1.6 times
of NetShield and 63 times of sequential method. Besides, a
comprehensive evaluation shows that MP-ROOM prototype
achieves 6.5 times higher throughput with only 80% memory
cost compared with nDPIL.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

LI AND HU: OPTIMAL MATCHING ON MULTIPLE PDUs FOR FGTI

REFERENCES

[1] R. P. Mahowald and C. G. Sullivan, “Worldwide SaaS and cloud soft-
ware 2012-2016 forecast and 2011 vendor shares,” IDC Corporate USA,
Framingham, MA, USA, 2011.

[2] T. Qiu et al., “Packet doppler: Network monitoring using packet shift
detection,” in Proc. ACM CoNEXT, 2008, pp. 3:1-3:12.

[3] A. W.Moore and K. Papagiannaki, “Toward the accurate identification of
network applications,” in Proc. 6th Int. Workshop PAM Netw., Mar. 2005,
pp. 41-54.

[4] T. Nguyen and G. Armitage, “A survey of techniques for internet traffic
classification using machine learning,” IEEE Commun. Surveys Tuts.,
vol. 10, no. 4, pp. 56-76, 2008.

[5] L. Peng et al., “Traffic identification using flexible neural trees,” in Proc.
IEEE IWQoS, Jun. 2010, pp. 1-5.

[6] S.-H. Yoon, J.-S. Park, and M.-S. Kim, “Signature maintenance for in-
ternet application traffic identification using header signatures,” in Proc.
IEEE NOMS, Apr. 2012, pp. 1151-1158.

[7] Y. Choi, J. Y. Chung, B. Park, and J. Hong, “Automated classifier gen-
eration for application-level mobile traffic identification,” in Proc. IEEE
NOMS, Apr. 2012, pp. 1075-1081.

[8] J. Li, S. Zhang, Y. Lu, and J. Yan, “Real-time p2p traffic identification,”
in Proc. IEEE GLOBECOM, Dec. 2008, pp. 1-5.

[9] D. Sproul, NSP Success Hinges on Monetizing Pipe, 2012. [Online].
Available: http://mobiledevdesign.com/learning-resources/nsp-success-
hinges-monetizing-data-pipe

[10] Z. Su, P. Ren, and Y. Chen, “Consistency control to manage dy-
namic contents over vehicular communication networks,” in Proc. IEEE
GLOBECOM, Dec. 2011, pp. 1-5.

[11] C. Hu et al., “ANLS: Adaptive non-linear sampling method for accurate
flow size measurement,” IEEE Trans. Commun., vol. 60, no. 3, pp. 789—
798, Mar. 2012.

[12] H. Li and C. Hu, “ROOM: Rule organized optimal matching for fine-
grained traffic identification,” in Proc. IEEE INFOCOM Mini-Conf.,
Turin, Italy, Apr. 2013, pp. 65-69.

[13] C. Hu et al., “Disco: Memory efficient and accurate flow statistics for
network measurement,” in Proc. IEEE ICDCS, Jun. 2010, pp. 665-674.

[14] C. Hu et al., “Accurate and efficient traffic monitoring using adaptive
non-linear sampling method,” in Proc. IEEE INFOCOM, Apr. 2008,
pp. 26-30.

[15] Z. Li et al., “Netshield: Massive semantics-based vulnerability signature
matching for high-speed networks,” in Proc. ACM SIGCOMM, 2010,
pp. 279-290.

[16] Snort, Sourcefire 2013. [Online]. Available: http://snort.org

[17] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
in Proc. USENIX Security Symp., Berkeley, CA, USA, 1998, pp. 1-22.

[18] ntop, ndpi 2013. [Online]. Available: http://www.ntop.org/products/ndpi/

[19] M. G. Gouda and A. X. Liu, “Firewall design: Consistency, complete-
ness and compactness,” in Proc. ICDCS, Tokyo, Japan, Mar. 2004,
pp. 320-327.

[20] S. Sahni and T. Gonzalez, “P-complete approximation problems,”
J. Assoc. Comput. Mach., vol. 23, no. 3, pp. 555-565, Jul. 1976.

[21] Open Networking Foundation (ONF), Openflow Switch Specification
Version 1.4.0 2013.

[22] G. Xia, X. Wang, and B. Liu, “SRD-DFA: Achieving sub-rule distin-
guishing with extended DFA structure,” in Proc. 8th IEEE Int. Conf.,
Dependable, Auton. Secure Comput., Dec. 2009, pp. 723-728.

[23] T. Nelms and M. Ahamad, “Packet scheduling for deep packet inspection
on multi-core architectures,” in Proc. ACM/IEEE Symp. ANCS, Oct. 2010,
pp. 1-11.

[24] N. Schear, D. R. Albrecht, and N. Borisov, “High-speed matching of
vulnerability signatures,” in Proc. 11th Int. Symp. Recent Adv. Intrusion
Detection, 2008, pp. 155-174.

1893

[25] N. Borisov, D. J. Brumley, and H. J. Wang, “A generic application-level
protocol analyzer and its language,” in Proc. 14th Annu. Netw. Distrib.
Syst. Security Symp., 2007, pp. 216-231.

[26] W. Cui, M. Peinado, H. J. Wang, and M. E. Locasto, “Shieldgen: Auto-
matic data patch generation for unknown vulnerabilities with informed
probing,” in Proc. IEEE Symp. Security Privacy, 2007, pp. 252-266.

[27] TPOQUE, Opendpi 2013. [Online]. Available: http://www.opendpi.org

[28] P. Hazel, PCRE Library 2012. [Online]. Available: http://www.pcre.org

[29] J.-H. Choi and M.-S. Kim, “Improved processing speed of traffic classi-
fication based on payload signature hierarchy,” in Proc. APNOMS, 2013,
pp- 1-3.

[30] S. Kawano, T. Okugawa, T. Yamamoto, T. Motono, and Y. Takagi, “High-
speed DPI method using multi-stage packet flow analyses,” in Proc. 9th
APSITT, 2012, pp. 1-6.

[31] C. Kruegel and T. Toth, “Using decision trees to improve signature-based
intrusion detection,” in Recent Advances in Intrusion Detection. Berlin,
Germany: Springer-Verlag, 2003, pp. 173-191.

[32] A. Tongaonkar, R. Sekar, and S. Vasudevan, “Fast packet classification
using condition factorization,” in Applied Cryptography and Network
Security. Berlin, Germany: Springer-Verlag, 2009, pp. 417-436.

[33] R. Smith, C. Estan, and S. Jha, “XFA: Faster signature matching with
extended automata,” in Proc. IEEE Symp. Security Privacy, May 2008,
pp. 187-201.

[34] Y. Xu, L. Ma, Z. Liu, and H. J. Chao, “A multi-dimensional progressive
perfect hashing for high-speed string matching,” in Proc. ACM/IEEE
ANCS, 2011, pp. 167-177.

[35] K. Huang, D. Zhang, and Z. Qin, “Accelerating the bit-split string match-
ing algorithm using bloom filters,” Comput. Commun., vol. 33, no. 15,
pp. 1785-1794, Sep. 2010.

[36] Y. Wang et al., “A semantics aware approach to automated reverse en-
gineering unknown protocols,” in Proc. IEEE ICNP, Austin, TX, USA,
2012, pp. 1-10.

[37] Tilera, Tilera Tile-gx 2013. [Online]. Available: http://www.tilera.com

Hao Li (S'13) received the B.S. degree in com-
puter science from Xi’an Jiaotong University, Xi’an,
China, in 2010. He is currently working toward the
Ph.D. degree at the Department of Computer Sci-
ence and Technology, Xi’an Jiaotong University. His
research interests include network measurement and
monitoring.

Chengchen Hu (S°04-M’09) received the B.S. de-
gree from Northwestern Polytechnical University,
Xi’an, China, and the Ph.D. degree from Tsinghua
University, Beijing, China, in 2003 and 2008, re-
spectively. From June 2008 to December 2010, he
worked as an Assistant Research Professor with
Tsinghua University. He is currently an Associate
Professor with the Department of Computer Science
and Technology, Xi’an Jiaotong University, Xi’an,
China. His main research interests include computer
networking systems, and network measurement and
monitoring. He severed in the organization committee and technical program
committee of several conferences, e.g., IWQoS 2010, INFOCOM 2012/2013,
GLOBECOM 2010-2012, ICC 2011-2013, etc.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:27:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

