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Abstract— Information-Centric Networking (ICN) provides
scalable and efficient content distribution at the Internet scale
due to in-network caching and native multicast. To support
these features, a content router needs high performance at its
data plane, which consists of three forwarding steps: checking
the Content Store (CS), then the Pending Interest Table (PIT),
and finally the Forwarding Information Base (FIB). In this
work, we build an analytical model of the router and identify
that CS is the actual bottleneck. Then, we propose a novel
mechanism called “NB-Cache” to address CS’s performance issue
from a network-wide point of view. In NB-Cache, when packets
arrive at a router whose CS is fully loaded, instead of being
blocked and waiting for the CS, these packets are forwarded to
the next-hop router, whose CS may not be fully loaded. This
approach essentially utilizes Content Stores of all the routers
along the forwarding path in parallel rather than checking each
CS sequentially. NB-Cache follows a design pattern of on-demand
load balancing and can be formulated into a non-trivial N-queue
bypass model. We use the Markov chain to establish its theoretical
base and find an algorithm for automated transition rate matrix
generation. Experiments show significant improvement of data
plane performance: 70% reduction in round-trip time (RTT)
and 130% increase in throughput. NB-Cache decouples the fast
packet forwarding from the slower content retrieval thus sub-
stantially reducing CS’s heavy dependency on fast but expensive
memory.

Index Terms— ICN, content router, bottleneck bypassing,
non-blocking I/O, Bloom filter, N-queue bypass model.
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I. INTRODUCTION

THE Internet has witnessed explosive growth of content
distribution, from web pages, files, to videos and gaming.

This drives the underlying network architecture to evolve from
the traditional host-to-host communication towards large-scale
content dissemination and retrieval. This evolution includes
Content Distribution Networks (CDN) as well as more recently
proposed Named Data Networking (NDN) [1] or Information-
Centric Networking (ICN) in general. The common theme
in these recent architectures is that they make content name
explicit in each packet, and the content routers forward packets
based on names instead of addresses, and store returned copies
of content objects to facilitate in-network caching and native
multicast. In this way, content objects can be cached at and
retrieved from any place, thus reducing network congestion
and content retrieval delay. Although this architectural innova-
tion gains advantages of optimized data delivery, it also adds
extra states into the network intermediary nodes and makes
ICN packet forwarding more sophisticated compared with the
stateless IP [2]. As a result, promoting data plane performance
becomes a prerequisite to large-scale ICN deployment.

A content router owns a three-stage processing pipeline: the
Content Store (CS), the Pending Interest Table (PIT), and the
Forwarding Information Base (FIB). The CS caches content
objects, the PIT records Interests (i.e., requests for data) that
have already been forwarded, and the FIB is a routing table
indexed by content name prefixes. An Interest packet goes
through these three steps in the order of CS, PIT and FIB: if
it finds the requested content in CS, it will return the content;
if it finds the same Interest in the PIT, it will be recorded but
not forwarded; otherwise, it will be forwarded to a next hop
based on FIB lookup. Generally, a pipeline runs only as fast
as its slowest stage and the overall data plane performance
is determined by the bottleneck of these three steps. Prior
works, however, focus only on improving an individual step,
mostly on FIB or PIT [3]–[5]. It is unclear where the exact
bottleneck is in the content router pipeline and how to address
the bottleneck to improve the overall data plane performance.

In this work, we develop a model to analyze the data plane
performance of content routers. With this model, we are able
to quantitatively identify that CS is the bottleneck of the router.
While it makes sense intuitively since all incoming traffic will
first check CS at the first pipeline stage, the parameterized
model further allows us to quantify the traffic load distribution
at each pipeline stage, helping the design and evaluation of any
future solution on content router architectural innovation.

Next, we investigate solutions to address the CS bottleneck
problem. The straightforward approach would be to improve
CS performance by techniques such as designing elegant
data structures, optimizing implementations, leveraging latest
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hardware, and so on. Though we can certainly include these
techniques in the solution, they are not likely to be able to
mitigate CS as the bottleneck. Compared with PIT and FIB,
CS has some intrinsic properties that make it slower: larger
size of data chunks to read/write, more entries in the table to
store and lookup, and caching policies add constraints to data
structure design. Besides, a generic algorithm or hardware-
based solution often can be applied to CS as well as PIT/FIB,
making all faster but CS still remains the system bottleneck.

We propose “NB-Cache”, a novel solution addressing the
performance issue from a global view instead of individual
router’s. In current ICN, when packets arrive at a router whose
CS is fully loaded, these packets have to be queued in the
front of CS to wait for the next processing cycles. Thus many
packets are blocked at the first overloaded router, but the
routers after that one may not have any CS queue. Instead of
queuing these packets at the first router, NB-Cache forwards
them directly to the next-hop router, bypassing the overloaded
local CS. At the next router, the packets will probably have CS
cycles to process them. If later the next router also becomes
overloaded, packets will again bypass it and go to the router
further upstream. Eventually, given enough workload, all the
routers along the forwarding path will have their CS working
fully loaded to process the traffic. From network’s point of
view, NB-Cache turns a sequential access of many router’s
CS into a parallel access of these CS at nearly the same
time. Although some packets need to travel a longer distance,
they may end up with retrieving data in an even shorter
time because the queuing is reduced. This network-wide load
balancing leads to more efficient use of network resources,
less congestion at routers, shorter RTT and higher throughput.

The major contributions can be summarized as follows:
• We build a queuing network-based model for ICN data

plane and quantitatively identify CS as the bottleneck.
The timely result will potentially shift research interests
from previous FIB and PIT to CS, preventing “blind
optimization” or “over-optimization” (§II).

• We propose NB-Cache to relieve the local CS conges-
tion via network-wide load balancing. It includes four
techniques: Bloom filter as the first-stage bypass; active
queue management as the second-stage bypass; non-
blocking I/O for immediate control return; router-assisted
congestion control with lazy congestion notification
(i.e., NB-CC). NB-Cache does not change router’s inter-
faces to the outside, thus it is compatible with existing
content routers. Besides, when CS is not congested,
NB-Cache’s traffic bypass mechanism will not be trig-
gered to disturb the nearest content fetch by default (§III).

• Theoretically, NB-Cache can be formulated into a novel
N-queue bypass model which considers a unique queu-
ing behavior that the traffic will migrate from the first
pipeline stage to the next one if the first waiting line
reaches a certain upper limit. We adopt the Markov
chain to thoroughly analyze the problem and successfully
find an algorithm to automatically generate its Markov
transition rate matrix at any scale. The theoretical results
are helpful for predicting NB-Cache performance when
the number of content routers becomes large (§IV).

• We implement an NB-Cache-enabled router prototype
with 3124 lines of C++ code (§V). All source code
is available at out git repository [6]. In our experiment,
NB-Cache can reduce RTT by 70% and improve through-
put by 130% compared with the current ICN data plane

Fig. 1. Modeling a content router via queuing networks.

under a network emulation testbed with four NB-Cache-
enabled routers and synthetic content requests (§VI).

• NB-Cache decouples fast packet forwarding from slower
content retrieval thus substantially reducing CS’s rigid
dependency on fast but expensive memory. This makes
ICN economically feasible, since vendors can manufac-
ture content routers with either high-end fast memo-
ries or low-end disk storages, tagged with different prices,
but all can be deployed together. In NB-Cache, the packet
forwarding performance can be increased linearly with
the number of CPU cores or forwarding engines, while
the content retrieval performance will improve with mem-
ory/storage technology promotion, today or in the future.
They’ll no longer be intertwined with each other.

II. WHERE IS THE BOTTLENECK?

A. Bottleneck Identification via Modeling

Observing content router’s packet forwarding, we can fig-
ure out the following characteristics. The forwarding process
can be divided into the ingress and the egress. In each part,
packets are processed through multiple pipelined components.
All the functional components are connected by directed line
segments denoting the packet flow. Incoming packets can be
blocked or even dropped due to component overloading.

1) Assumptions: Assuming (i) in each direction, a compo-
nent can be abstracted as a unit consisting of a FIFO queue for
buffering and a server for processing, (ii) packets arrive at each
queue follow the Poisson process, (iii) the packet service time
at each server follows the negative exponential distribution,
(iv) each component in either upstream or downstream direc-
tion can be regarded as an M/M/1 queuing subsystem, and
(v) the packet transfer rate between any two components is
steady, we can leverage the open queuing network (i.e., the
Jackson network) [7] to model the ICN forwarding process
(as shown in Fig. 1). Table I lists the notations in our model.

2) Analyzing the Packet Queuing System: According to the
Jackson network, for each queue, the average packet arrival
rate should be equal to the average packet departure rate when
the system is in a steady state. Assuming the average packet
arrival rate from the outside is λ, then for the ingress we have⎧⎪⎨

⎪⎩
T1 = λ
T3 = (1 − α)T1
T5 = (1 − β)T3

τ = θT5

(1)

Similarly, for the egress we have{
T4 = λ′
T2 = τ ′ = ϕT4

(2)

Without considering packet losses, one Data packet always
corresponds to one Interest packet. Hence, in the long run,
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TABLE I

NOTATIONS IN THE MODEL

the ingress packet departure rate should roughly be equal to
the egress packet arrival rate as

τ ≈ λ′ (3)

Based on Eq. (1), Eq. (2) and Eq. (3), we can calculate the
expected throughput (i.e., the average packet arrival rate) of
each queue when the system is in a steady state as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T1 = λ

T2 = ϕθ(1 − β)(1 − α)λ
T3 = (1 − α)λ
T4 = θ(1 − β)(1 − α)λ
T5 = (1 − β)(1 − α)λ

(4)

3) Identifying the Performance Bottleneck: According to the
queuing theory, each server’s utilization can be derived as

ρi =
Ti

μi
≤ 1 (5)

Notice that the expected throughput and the service rate are
different. The expected throughput is the average packet arrival
rate from the outside while the service rate shows server’s
inherent processing capability. Apparently, for each queue in
the steady state, the packet arrival rate should be no larger
than the service rate to prevent the overflow of that queue,
i.e., each server’s utilization should be no larger than 1.

Next, by plugging Eq. (4) into Eq. (5), we have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ ≤ μ1

λ ≤ μ2
ϕθ(1−β)(1−α)

λ ≤ μ3
1−α

λ ≤ μ4
θ(1−β)(1−α)

λ ≤ μ5
(1−β)(1−α)

(6)

Here, we can figure out that content router’s maximum
throughput (i.e., the packet arrival rate of q1) is constrained by
the service rate at each queue (i.e., μi) plus the traffic transfer
probabilities between these servers (i.e., α, β, θ and ϕ) as

max(T1) = max(λ) = min{μ1,
μ2

ϕθ(1 − β)(1 − α)
,

× μ3

1 − α
,

μ4

θ(1 − β)(1 − α)
,

μ5

(1 − β)(1 − α)
} (7)

Obviously, given the traffic transfer probabilities are no
larger than 1 and thus the denominators of the components
containing μ2, μ3, . . . , μ5 are no larger than 1, the component
containing μ1 is most likely to become the minimum. That
is to say, the ingress part of CS will become the potential
bottleneck of the router, except that its service rate μ1 becomes

much higher than that of the other queuing subsystems.
In other words, if μ1 is not large enough, the ingress of CS
will be overloaded while the other queuing subsystems may
still be idle, which makes the packet pipeline full of bubbles
and inefficient. To squeeze pipeline bubbles, the service rate of
each queuing subsystem (μi) should be budgeted ahead of time
to let all the equality in Eq. (6) roughly hold simultaneously.

But if it is possible that the ingress speed of CS (μ1)
will go beyond that of PIT and FIB (μ3 and μ5) due to
technical progress someday? Generally, CS has a much larger
memory footprint than that of PIT and FIB.1 According
to the memory hierarchy principle in computer architecture
design, the larger-capacity memory usually exhibits lower
performance. This can also be validated in §VII that in recent
research articles, the reported performance of FIB and PIT
have already gone beyond 100Gbps [3]–[5] while that of CS
is only around 10Gbps [8], [9]. Regardless of cost, we can put
all hardware resources into the speedup of CS to achieve an
ultimate CS implementation. But under a rigid budget (e.g.,
with commercial off-the-shelf hardware), speeding up CS is
not straightforward. Besides, a generic algorithm or hardware-
based solution often can be applied to CS as well as PIT and
FIB, making all of them faster but CS still remains the system
bottleneck.

B. Bottleneck Identification via Prototyping

To validate the above model, we develop a multithread-
based content router prototype with three pipeline stages.
In the prototype, each component resides at one of the pipeline
stages and is implemented by a thread. Each component also
has a queue (with a fixed capacity of 2000 packets) at the front
for buffering the burst requests and the inter-component queue
is implemented by a ring buffer. We fully implement CS using
the data structures and the mechanisms described in §V. For
simplicity, here, we do not implement a real PIT and FIB.
Instead, we put the two threads into sleep occasionally to
simulate PIT and FIB’s packet processing throughput of 4kpps.
The measurement is conducted on both SSD and HDD as the
CS storage medium. The CS hit rate is fixed to 25, 50 and
75%, respectively, for conducting sensitivity analysis.

Fig. 2 shows the queue length of CS, PIT and FIB under
15.94kpps stress test. We can find that even the speed of CS
(4.7kpps) is slightly faster than that of PIT and FIB (4kpps)
in the SSD scenario, in most of the time, CS is still the
performance bottleneck as the queue in the front of CS is
accumulating much faster than that of PIT and FIB (Fig. 2(a)).
Only at 25% CS hit rate, the PIT becomes the new bottleneck
as most packets bypass CS processing and pour into PIT. In the
HDD scenario (Fig. 2(b)), the situation becomes even worse as
the queue in the front of CS gets overflowed quickly (with CS
speed drops to 414pps) while PIT and FIB are still in a nearly
idle state. Generally, promoting CS hit rate will flood more
traffic into CS to increase its queue length. The experimental
results are remarkable especially in the SSD scenario.

The prototype also convinces us that CS tends to become
the choke point in the content router packet pipeline.

1Notice that the entire CS typically consists of a content index and massive
content segments. Although the content index can be small enough to store
in the fast memory while searched/updated by an O(1) hashing scheme,
the content segments have much larger memory footprints (e.g., ∼GB) and
relatively longer per-segment access latency (generally fetched from the
external storage or the off-chip DRAM). The queue between the content index
and the content segments is prone to get congested.
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Fig. 2. CS, PIT and FIB’s queue length under 15.94kpps stress test (FIB and
PIT’s speed are fixed to 4kpps and CS hit rate is 25, 50, 75%, respectively).

III. NON-BLOCKING IN-NETWORK CACHING

A. Design Space Analysis

According to Eq. (7), the CS performance is mainly
impacted by two factors. The first is the inherent processing
capability of CS (i.e., μ1), which can further be improved by
leveraging better data structures or faster hardware. The second
is the traffic transfer probabilities (i.e., α, β, θ and ϕ), which
depict the inner packet flow and are entirely decided by the
router architecture. Since both of the CS and the PIT contain
the exact match rules and require to handle the coexisted
frequent lookups and updates, it is not that easy to develop
faster data structures for CS than those for PIT. As for the
latest hardware, since CS has a much larger capacity than PIT,
CS’s storage medium can be no faster compared with PIT’s
according to the memory hierarchy principle. Indeed, by modi-
fying the value of the traffic transfer probabilities, for example,
deliberately reducing the CS hit rate, we can balance the traffic
load in the three pipeline stages. However, such a brute-force
approach will violate ICN’s initial design intent. Now that
simply changing the value of the parameters in Eq. (7) does
no good to the performance bottleneck elimination, we decide
to rearchitect the content router to entirely change Eq. (7)
itself. Of course, the architecture refinement should not modify
router’s interfaces to the outside to guarantee the compatibility,
such that content routers with the improved architecture can
be deployed incrementally with the classic content routers.

Before diving into the new design, we first consider how
an Internet router handles the performance bottleneck issue.
Actually, the answer is quite pessimistic. Since there is only
one main pipeline stage (i.e., FIB) in the Internet router
which dominates the packet forwarding decisions. If FIB is
congested, the router has to drop packets. Analogously, in a
content router, whether or not CS has to drop packets to
passively handle the congestion? In fact, the answer is not
necessarily so. Actually, there are three pipeline stages in a
content router and according to Fig. 2(a) and Fig. 2(b), PIT
and FIB are usually not as busy as CS when CS is congested.
Obviously, it is a radical yet reasonable idea to migrate the
traffic from the overloaded CS to the upstream routers through
the local unoccupied PIT and FIB. But if such a design will
break the compatibility? The answer is also no. Since CS does
not decide routing, packets can still be correctly forwarded to
the upstream, where the upstream router will process those
packets in a normal way as if they miss the CS lookup in
the downstream. Since in our proposal, packets will bypass
the overloaded CS to access content cache in a best-effort
manner, we call this mechanism “non-blocking in-network
caching (NB-Cache)”. Fig. 3 shows the design of NB-Cache.
It includes four techniques: (i) using Bloom filter for CS

Fig. 3. A content router with non-blocking in-network caching capability.

bypass (first-stage bypass), (ii) enabling active queue man-
agement for I/O congestion avoidance (second-stage bypass),
(iii) conducting non-blocking I/O for immediate control return,
(iv) adding a router-assisted congestion control mechanism
called “NB-CC”, featuring lazy congestion notification and
greedy network bandwidth utilization.

B. Bloom Filter for Content Store Bypass (First-Stage
Bypass)

A Bloom filter [10] is a probabilistic data structure used
to test whether an element is a member of a set. Its data
structure is very compact and can be stored in the fast on-
chip memory as a summary of the large-capacity item set
in the slow off-chip memory. If a piece of content requested
by an Interest packet does not exist in CS, by searching the
Bloom filter for set testing with O(1) complexity, we can
bypass the unnecessary slow CS access. The side effect of false
positives is trivial since the narrowly escaped requests will be
further examined in CS finally. Since we also need to delete
an element from the Bloom filter when the corresponding
piece of content is removed from CS, to be more specific,
we use counting Bloom filter [11], a variant of Bloom filter,
to construct the updatable CS bypass prefilter. Compared
with the counting Bloom filter, other in-memory index data
structures, such as hash table or binary tree, have either larger
memory footprints or higher search complexity to cope with
line-rate packet processing.

C. AQM for I/O Congestion Avoidance (Second-Stage
Bypass)

In Internet routers, active queue management (AQM), such
as random early detection (RED) [12], is the intelligent drop
of network packets inside a buffer when that buffer gets close
to becoming full. As mentioned earlier, in a content router,
CS has more options than just dropping packets when conges-
tion occurs. Here, we propose the active queue management
for I/O congestion avoidance in a content router simply by for-
warding the Interest packets to the upstream routers from the
local overloaded CS, although these Interests should have suc-
cessfully hit entries in the local CS because they have already
passed the examination of the counting Bloom filter as the
first-stage CS bypass prefilter. These Interests will predictably
fall into the CS of the light-loaded routers along the routing
path in a best-effort manner. In essence, the idea is to load bal-
ance the CS lookups over the network to lessen the load on the
local congested CS in order to minimize the overall end-to-end
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Fig. 4. Blocking I/O function calls do not return until the I/O is complete;
non-blocking I/O calls return immediately, and the process can do something
else and will be notified later when the I/O is complete.

packet latency. In the worst case, if the CS of all the down-
stream routers are heavily loaded, content sources are prone
to get flooded under high Interest rate. In this case, we have
to resort to a flow/congestion control mechanism for content
consumer rate adaptation (detailed in §III-E).

D. Non-Blocking I/O for Fast Control Return

Since the Internet content to be cached is typically of bulky
size and we have to use large-capacity, (relatively) slow storage
medium to hold a usable CS, the I/O efficiency becomes
vital to CS design. Most I/O requests are considered as
blocking requests, meaning that control does not return to the
application until the I/O is complete, and the I/O access latency
can be quite long. In an interactive computing environment,
the I/O wait is not really a problem. However, in cases
such as high-speed network traffic processing, the blocking
approach is of low efficiency which increases the average
packet queuing latency. Here, we propose the non-blocking I/O
for immediate control return dedicated to the content router.
In our design, when the main thread issues an I/O command,
the command can be further handled by a newly spawned
thread and the main thread can return immediately (to handle
the next request). Fig. 4 shows the comparison of blocking I/O
and non-blocking I/O. By appropriately adjusting the number
of spawned worker threads, the excessive multithreading can
maximally drain I/O bandwidth thus improve the overall CS
throughput. Although in some proposals, CS is implemented
within DRAM [13], however, compared with the high-speed
on-chip ASIC logic, the off-chip DRAM can still be consid-
ered as a slow I/O device relatively, and our design philosophy
can still well apply. We disclose the detailed non-blocking I/O
implementation of the content router in §V and illustrate the
extensive experimental results in §VI.

E. Congestion Control for NB-Cache (NB-CC)

Although NB-Cache attempts to balance the traffic load
across the network, content sources are prone to get flooded
under high Interest packet rate if all the downstream routers
are heavily loaded and forward the traffic upstream. Gen-
erally, the flow/congestion control is always considered
as the duty of the transport layer, and here we propose
NB-CC (congestion control for non-blocking content caching)
as NB-Cache’s transport-layer companion. Instead of trying to
infer congestion at the consumer by monitoring packet losses,
NB-CC detects congestion by monitoring the incoming
CS queue of each router. If the CS queue occupation reaches
some threshold and there is no further traffic bypass pos-
sibility, the router will assist explicit congestion notification
by marking ECN-like bits on the locally echoed back Data
packets, which will be sent to the consumer for AIMD-like
rate adjustment (Fig. 5). The traffic bypass possibility

Fig. 5. Lazy (delayed) congestion notification in NB-CC.

(i.e., availability) of router’s outgoing interface can be labeled
by the upstream router via periodic hop-by-hop announcement.
Notice that NB-CC differs significantly from the previous
ECN-based approaches [14]. While the previous approaches
detect congestion based on the local queue occupation only,
NB-CC requires further knowledge about the traffic bypass
possibility. If the queue occupation reaches the threshold while
there is still a bypass possibility, NB-CC just delays congestion
notification and forwards the traffic through the available
outgoing interface(s). Due to the lazy congestion notification,
NB-CC is expected to achieve higher throughput at the cost
of potentially longer packet latency.

The design of NB-CC is described in detail as follows.
1) Nack Flooding for Hop-by-Hop Congestion Notification:

In NB-CC, a router’s outgoing interface will be labeled as
unavailable if its upstream router (more close to content
sources) suffers traffic congestion. When an upstream router’s
CS queue goes beyond the bypass threshold, it will period-
ically flood the Nackα packets to the downstream adjacent
router(s). Otherwise, when the CS queue goes below the
threshold, it will flood the Nackβ packets to reset the label(s).

2) Outgoing Interface Unavailability Labeling: On receiv-
ing the Nackα packet, the downstream router will update the
adjacency table and label the unavailability of the outgoing
interface(s) where the Nackα comes in. On receiving the
Nackβ packet, the corresponding outgoing interface(s) will be
labeled as available.

3) ECN Marking for End-Host Congestion Notification: If
the CS bypass threshold has not been reached, the Interest
will be responded with a normal return Data. Otherwise,
the Interest will bypass the overloaded CS given there is still a
bypass possibility. The ECN marking on Data packets will be
delayed until the CS bypass threshold has been reached and
there is no available outgoing interface.

4) AIMD-Like End-Host Rate Adjustment: The consumer
will keep sending Interests unless unacked (the number of
unacknowledged packets) exceeds cwnd (the congestion win-
dow size). On sending an Interest, unacked = unacked + 1;
on receiving a Data, unacked = unacked−1. On receiving a
Data without ECN marking, cwnd = cwnd + 1; on receiving
a Data with ECN marking, cwnd = cwnd/2.

IV. THEORETICAL ANALYSIS OF NB-CACHE

In this section, we formulate NB-Cache as an N-queue
bypass model and adopt the Markov chain to find its theoret-
ical base. Specifically, we find an algorithm to automatically
generate the Markov transition rate matrix at any scale, which
could help us estimate NB-Cache performance approximately
when the number of content routers becomes very large.

A. The N-Queue Bypass Model

In order to find the theoretical base of NB-Cache, we make
the following assumptions considering the major factors of

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 02:53:21 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. Modeling conventional IP routers using a variant of the M/M/1 queue
with a packet dropping threshold.

Fig. 7. Modeling NB-Cache using the proposed N-queue bypass model with
packet bypass and migration.

the queuing behavior: (i) the packet arrival follows the Pois-
son process with the average arrival rate λ, (ii) the packet
service time at each router follows the negative exponential
distribution with the average service rate μ, (iii) we ignore the
packet processing latency of PIT and FIB as the minor factors
(compared with that of CS), (iv) the CS hit rate of each router
is assumed to be 100% for mathematical simplicity.

We build the N-queue bypass model step by step, starting
from a variant of the M/M/1 queue with a packet drop-
ping threshold (as shown in Fig. 6). In fact, the queuing
model in Fig. 6 can apply to either the conventional IP
router or the classic content router since when the queue
length of the bottleneck component reaches a pre-defined
upper limit, the follow-up incoming packets will be discarded.
Such a queuing behavior is slightly different from the classic
M/M/1 queue model whose queue buffer is of infinite size.

In NB-Cache, if the queue length of the bottleneck com-
ponent reaches a pre-defined upper limit, traffic will bypass
the bottleneck and migrate from the local router to the
next one. Such a unique queuing behavior can be depicted
using multiple prioritized queues with traffic bypass threshold
(Fig. 7). Given there are N queues ranked from the highest
priority to the lowest priority (i.e., queuei is with a higher
priority than queuei+1), different from the single-queue packet
dropping model in Fig. 6, in NB-Cache, packets will arrive
at queue0 and continue to bypass the local overloaded queue
(queuei) and migrate to the next queue (queuei+1) until all the
N queues are heavily loaded. When all the queues are
beyond the bypass threshold, the follow-up packets have to
be dropped.

Let’s first consider a simple case of the N-queue bypass
model. Assuming that there are two queues (priority: queue0

> queue1) and each has a bypass threshold of x packets.
We define system state Sij as the condition that there are
i packets in queue0 and j packets in queue1. If x = 1,
the state space can be represented as {S00, S10, S01, S11}. For
each state Sij , we define pij as the steady state probability

of Sij and we have
x∑

i=0

x∑
j=0

pij = 1. Then, we can derive

the theoretical values of several queuing system performance
metrics.

Fig. 8. The Markov state transition diagrams of the N-queue bypass model.

1) The Number of Packets in the Queuing System: When
the system is in state Sij with probability pij , there will be
i + j packets in the queuing system. Hence, the expectation
of the number of packets in the queuing system can be

y =
x∑

i=0

x∑
j=0

(i + j)pij (8)

2) Server Utilization: For a single queue, if the queue
is empty, the server utilization is 0; otherwise, the server
utilization is 1. Hence, the server utilization in state Sij is

lij =

⎧⎨
⎩

1 i > 0, j > 0
1/2 i = 0, j > 0 ∪ i > 0, j = 0
0 i = 0, j = 0

(9)

Thereby, the expectation of the server utilization of the
entire queuing system can be derived as

l =
x∑

i=0

x∑
j=0

lijpij (10)

3) Packet Loss Rate: When all the queues reach the bypass
threshold, the follow-up packets have to be dropped. There-
fore, the packet loss rate of the two-queue bypass model is pxx

(i.e., the steady state probability of system state Sxx), where
x is the bypass threshold.

4) Extending the Model to Higher Dimension: For the
three-queue bypass model, we can use Sijk to represent the
system state and pijk for the steady state probability. For an
N-queue bypass model, there will be (x + 1)N individual
system states. If we could solve the steady state probability
of each individual state, we can derive a large number of
queuing system performance metrics even the system becomes
complicated.

B. Continuous-Time Markov Chain and Transition Diagram

But how to calculate the steady state probability of each
individual state? Actually, like the classic M/M/1 queue model,
the N-queue bypass model can also be considered as a
continuous-time Markov chain. Therefore, we can establish
the balance equations of the specific markov chain for solving
its steady state probabilities. Let’s consider a simple example
of the N-queue bypass model with two queues and a bypass
threshold of only one packet (we name it “the 2*2 model”
since there are two queues and each queue has two states
specifying either 0 or 1 packet in the queue).

Fig. 8(a) shows the Markov state transition diagram of the
2*2 model. In the diagram, each state has both outgoing (out)

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 02:53:21 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PAN et al.: NB-CACHE: NON-BLOCKING IN-NETWORK CACHING 7

and incoming (in) transitions. For example, S10 has one out
transition to S00 with the transition rate of μ and another out
transition to S11 with the transition rate of λ; S10 also has one
in transition from S00 with the transition rate of λ and another
in transition from S11 with the transition rate of μ. Notice that
there is no transition from S00 to S01 since queue0 has a higher
priority than queue1. When the queuing system is in a steady
state, for each state Sij , the total in transition rate should
be equal to the total out transition rate for establishing the
balance equations. For the 2*2 model, we have the following
established balance equations.

⎧⎪⎪⎨
⎪⎪⎩

λp00 = μ(p10 + p01)
(λ + μ)p01 = μp11

(μ + λ)p10 = λp00 + μp11

2μp11 = λ(p10 + p01)

(11)

On the other hand, the sum of the probability of all the
system states should be 1 as

p00 + p10 + p01 + p11 = 1 (12)

Finally, the steady state probability of each state in the
2*2 model can be solved with Eq. (11) and Eq. (12). Fig. 8(b)
shows the Markov state transition diagram of the 2*3 model.
And with the identical procedure, we can easily solve its state
probability distribution.

C. Automated Markov Transition Rate Matrix Generation

From §IV-B we can figure out that if we can correctly
draw the state transition diagram, we can always successfully
solve the steady state probability distribution. However, when
the number of system states explodes along with the content
router number as well as the queue depth, one can hardly
conceive the correct transition diagram at any scale all from the
scratch. Here, we rely on a proposed algorithm for automated
transition diagram construction at any scale which equally
means automated Markov transition rate matrix generation.

1) Definitions: For the n*m model (with n queues and
m − 1 queue bypass threshold), there are mn states in total
(we use nid to represent mn for short). Each state can
be represented as a string of integers as {a1, a2, . . . , an}
(e.g., we use {0,1,2,0,0} to denote state S01200). The string
length n represents n queues and each integer ai in the
string represents the number of packets in the ith queue.
To solve the probability of the nid states, we need to establish
nid balance equations like Eq. (11) to quantify the equality
between incoming and outgoing transitions. Actually, for each
state, all the transitions can be divided into four categories:
λ-out, μ-out, μ-in and λ-in. Among them, λ-out is the out
transition due to packet arrival, μ-out is the out transition due
to packet dequeue, μ-in includes in transitions due to packet
dequeue, and λ-in includes in transitions due to packet arrival.
Taking S10 in Fig. 8(a) as an example, S10 to S11, S10 to S00,
S11 to S10 and S00 to S10 belong to λ-out, μ-out, μ-in and λ-in
transitions, respectively. For a particular state, if we could
calculate the exact number of the four types of transitions,
the balance equation for that state can be well established. The
exact number of the four types of transitions are calculated as
follows.

2) λ-Out: For a given state, since queuei has a higher
priority than queuei+1, the newly arrived packet will be served
in a deterministic queue, unless all the queues are beyond the
threshold. We use aoutw to indicate whether or not state w can
transfer to the adjacent state in the state transition diagram by
receiving a new packet. In most time, aoutw = 1 (state transfer
happens mostly). If and only if all the queues are beyond the
threshold (i.e., w = {m − 1, m − 1, . . . , m − 1}), aoutw = 0.

3) μ-Out: We use nusew to represent the number of non-
empty queues in state w. Obviously, for state w, the number
of μ-out transitions is equal to nusew . For example, state {1,
1, 2, 0} has 3 μ-out transitions to {0, 1, 2, 0}, {1, 0, 2, 0}
and {1, 1, 1, 0} due to packet dequeue.

4) μ-in: For incoming transitions, we need to consider the
relationship between the current state and the other states from
which the transitions come. We use w = {a1, a2, . . . , an} and
temp = {b1, b2, . . . , bn} to represent the current state and the
other states, respectively. Obviously, state temp can transfer
to state w due to packet dequeue if and only if one packet
is dequeued from one of the queues in state temp. That is to
say, there should be exactly one −1 in vector {a1 − b1, a2 −
b2, . . . , an−bn} and the other integers in the vector should be
all 0s. We use flag ninw&temp

to indicate whether the above
condition for the μ-in transition between temp and w can
hold. ninw&temp

= 1 if and only if temp can transfer to w via
the μ-in transition. This can be calculated by checking vector
{a1 − b1, a2 − b2, . . . , an − bn} based on the above rule.

5) λ-in: Similarly, if state temp can transfer to w via
the λ-in transition, there must be exactly one +1 in vector
{a1 − b1, a2 − b2, . . . , an − bn} and the other integers in the
vector should be all 0s (cond1). However, cond1 is necessary
but not sufficient. Since in the N-queue bypass model, queuei

has a higher priority than queuei+1, if temp can transfer to
w due to packet arrival at queuej, then, queue0 to queuej−1

must have already reached the threshold (cond2). Taking the
5*3 model as an example: w = {2, 2, 1, 1, 0}, temp1 =
{2, 1, 2, 1, 2}, temp2 = {2, 2, 0, 1, 0}, temp3 = {2, 2, 1, 0, 0}.
It can be observed that temp1 does not satisfy cond1, temp3

satisfies cond1 but does not satisfy cond2, only temp2 satisfies
both cond1 and cond2 thus can transfer to w via the λ-in
transition. We use flag ainw&temp

to indicate whether the above
cond1 and cond2 can hold at the same time for temp and w.

6) Balance Equations and Transition Rate Matrix: Now we
can establish nid balance equations for each individual state
w (with steady state probability pw) as

(aoutw ∗ λ + nusew ∗ μ)pw

=
∑

tempi �=w

(ainw&tempi
∗ λ + ninw&tempi

∗ μ)ptempi (13)

By plugging a = λ
μ into Eq. (13) and moving all variables

to the left side, we have

(aoutw ∗ a + nusew )pw

−
∑

tempi �=w

(ainw&tempi
∗ a + ninw&tempi

)ptempi = 0 (14)

If we use s1, s2, . . . , snid
to represent each state and orga-

nize the state probabilities into a solution vector as x =
{ps1 , ps2 , . . . , psnid

}, we can turn Eq. (14) into the Ax = b
format as (15), as shown at the bottom of the next page.

Actually, A is the Markov transition rate matrix of the
N-queue bypass model. And from Eq. (15), we can always
solve the steady state probability distribution at any scale.
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Fig. 9. Comparison between the N-queue bypass model and the variant of
M/M/1 queue with dropping threshold.

Run-Time Complexity: Given n queues and m − 1 queue
bypass threshold, there are mn states in the state transition
diagram. It equally means there are m2n elements in the
corresponding Markov transition rate matrix. For each element
in the matrix, we need to calculate its λ-out, μ-out, μ-in and
λ-in transitions, which have the complexity of O(n) due to the
queue-by-queue comparison. Hence, the overall complexity of
automated Markov transition matrix generation is O(nm2n).

D. Numerical Results

We adopt Matlab’s simplify() to obtain the algebraic simpli-
fication of the analytic solution.

Fig. 9 shows the performance comparison between the
N-queue bypass model and the variant of M/M/1 queue
with dropping threshold (as shown in Fig. 7 and Fig. 6,
respectively). Among the test cases, mm1-drop-x is the single-
queue dropping model with the threshold of x packets and
bypass-n*m is the N-queue bypass model with n queues and
the threshold of m-1 packets for each queue.

Fig. 9(a) and Fig. 9(b) show the number of packets in
the system/queue, respectively. Although mm1-drop-10 and
bypass-5*3 consume the same queue buffer (for fair compari-
son), bypass-5*3 has less packets in the system/queue, which
also means a lower queuing latency. The reduced latency can
be ascribed to the load balancing among multiple servers.

Fig. 9(c) shows the packet drop rate of the four test cases.
We can observe that the N-queue bypass model has a lower
packet drop rate than the single-queue dropping model. For
the bypass model, a system with more queues means higher
bypass possibility and lower packet drop rate.

Fig. 9(d) shows the server utilization (which has been
defined in Eq. (10)) of the four test cases. The bypass model

Fig. 10. Multithread-based implementation of the content router with non-
blocking in-networking caching capability.

has a lower server utilization than the single-queue dropping
model due to a larger queue number.

V. SYSTEM IMPLEMENTATION

A. System Overview

Fig. 10 illustrates a multithread-based implementation of
the content router with the non-blocking in-network caching
capability. The prototype can further break up into several
components including a packet parser, a counting Bloom
filter, a ring buffer, PIT/FIB, a content index (hash table),
content files, a request queue (req_queue), a response queue
(res_queue), a worker thread pool and a polling module
(eio_poll). On receiving an Interest packet, the router will
first parse the packet header to obtain the requested content
name. Then, the counting Bloom filter, the request queue
length and the outgoing interface availability will be queried to
determine whether the packet should bypass CS. If the queue
length is beyond the threshold and there is a bypass possibility,
the packet will bypass CS and be forwarded to the upstream
routers. If the packet should be processed by the local CS
(i.e., the CS bypass threshold has not been reached or there
is no bypass possibility), the main thread will issue an I/O
command and return immediately (to fetch the next packet).
The main thread will be asynchronously notified later when
the I/O command is finished. If there is no bypass possibility,
the locally echoed back Data packet will be marked according
to the NB-CC algorithm. For an incoming Data packet, it will
be forwarded downstream and selectively written into CS.
We use one process to implement a router and multiple threads
to implement router’s components. Among them, one thread
is for CS (the content object files) and its wrapper logic such
as the packet parser, the counting Bloom filter and the content
index; another thread is for PIT/FIB (we fit them into a single
thread); a ring buffer is used to connect the two threads; a
third thread is invoked to handle the Data packets from the
upstream routers. We use libeio [15] under Linux to implement

⎛
⎜⎝

aouts1
∗ a + nuses1

· · · −(ains1&snid
∗ a + nins1&snid

)
...

. . .
...

−(ainsnid
&s1

∗ a + ninsnid
&s1

) · · · aoutsnid
∗ a + nusesnid

⎞
⎟⎠ x =

⎛
⎜⎝

0
...
0

⎞
⎟⎠ (15)
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the non-blocking I/O. libeio manages a pool of OS threads and
conducts the polling operation during I/O access.

B. Key Data Structures

1) Packet Parser: The packet parser is fairly simple.
It receives a string with a format like “[url]/[id]”, parses that
string and produces a C structure of url and id.

2) Bloom Filter: We use open Bloom filter, an open source
library to implement the counting Bloom filter. The library
will select the optimal parameters according to the expected
false positive rate and the number of inserted elements.

3) Content Store: Content objects are organized into files
in the disk. The content objects under the same name prefix
(i.e., the url) will be stored into the same file with the offsets
decided by the segment IDs. In the memory, we build a content
index to map the urls to the file names (using C++ Map).
The urls and the segment IDs are parsed by the packet
parser module mentioned earlier. CS is also responsible
for ECN marking according to the NB-CC algorithm.

4) FIB and PIT: FIB and PIT are implemented into
a single thread. We do not implement the real PIT/FIB.
Instead, we configure static routes for the minimal forwarding
capability.

C. Main Control Logic

1) Non-Blocking I/O and Active Queue Management: The
steps that NB-Cache follows to invoke non-blocking I/O access
and active queue management are shown in Procedure 1.
At first, we obtain the number of the queuing requests in
req_queue to decide whether or not to let the current request
bypass CS. If the queue length has reached a pre-defined
threshold, the main thread will forward the request directly to
PIT/FIB (for Interest) or forward the request downstream (for
Data) and return immediately. Otherwise, the request should be
processed locally and will be pushed into req_queue. At the
same time, a new thread will be started in the worker thread
pool, responsible for handling the I/O access of the requests
in req_queue. At this time, the main thread will return and
do something else (e.g., to handle the next request). Then,
the newly started thread obtains a request from req_queue
and issues the I/O access command. Here, the read/write
contention issue is resolved via the readers-writer lock. When
I/O access is finished, the worker thread will put the I/O result
into res_queue and asynchronously notify the main thread to
fetch the I/O response from res_queue. The I/O response will
be further processed in a user-defined callback function.

2) Interest/Data Resource Contention: Since content
objects are stored in files, resource contention will occur
if multiple read requests (from the Interest) and write
requests (from the Data) access the same file. Fig. 11 shows
how to resolve such problem via the readers-writer
lock. When we get an I/O access request from
req_queue, we try to acquire a readers-writer lock via
pthread_rwlock_rdlock() or pthread_rwlock_wrlock().
read() or write() is issued only after we obtain the lock.
If we fail to obtain the lock, we have to be blocked until the
lock becomes available. When I/O is complete, an unlock
operation via pthread_rwlock_unlock() is performed.
Currently, we lock in the granularity of files. If two requests
fall into two files, no lock operation is needed.

Procedure 1 Steps That NB-Cache Follows to Invoke
Non-Blocking I/O Access and Active Queue Management
Using libeio

1: The main thread calls eio_nready() to obtain the number
of pending requests in the I/O queue req_queue; if the
queue length has reached a pre-defined threshold, the main
thread will forward the request req directly to PIT/FIB (for
Interest) or forward req downstream (for Data) and return
immediately (i.e., CS bypass).

2: If the queue length is lower than the threshold, the main
thread will invoke eio_read() or eio_write() for I/O
access.

3: eio_read() or eio_write() calls reqq_push(&req_
queue, req) inside eio_submit() to put a request req
into I/O queue req_queue; eio_submit() also invokes
etp_start_thread() to start a thread in the worker thread
pool to handle the I/O request; at this time, the main
thread will return and do something else.

4: The started thread from the worker thread pool invokes
reqq_shift(&req_queue) to get a request req from
req_queue.

5: The worker thread tries to acquire the readers-writer
lock via pthread_rwlock_rdlock() or pthread_rwlock
_wrlock() according to the request types (i.e.,
read or write).

6: If a lock is successfully acquired, the worker thread starts
to perform I/O access via read() or write(); otherwise,
it will be blocked until the lock becomes available again.

7: When the I/O access is finished, the worker thread
invokes pthread_rwlock_unlock() to release the lock;
then, it puts the I/O response req′ into res_queue via
reqq_push(&res_queue, req′) and asynchronously noti-
fies the main thread via want_poll() that there is a
response; finally, the worker thread calls etp_worker
_clear(self) to free itself.

8: Once the main thread gets notified, in eio_poll(),
it will obtain the I/O response from res_queue via
reqq_shift(&res_queue) and call user-defined callback
function to handle the response.

Fig. 11. Resolving interest/data contention via the readers-writer lock.

3) Inter-Component Communication: Fig. 12 shows
the inter-component communication implemented via the
producer-consumer lock mechanism on a ring buffer.
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Fig. 12. Inter-component communication via the producer-consumer lock
mechanism with a ring buffer.

When adding a request to the ring buffer, we need to acquire
the mutex lock first. If the ring buffer is already full, we have
to wait; otherwise, we enqueue the request and modify the
tail pointer (if now the ring buffer becomes full, we also need
to set the full flag). Then, we unset the empty flag since there
is at least one request in the ring buffer. Now we can send
a notification to the ring buffer reader side to signal that the
dequeue operation has been prepared. We unlock the mutex
in the final. When deleting a request from the ring buffer,
we have the almost mirror steps to the previous discussed
insertion procedure.

4) Consumer Rate Adjustment: The content consumer con-
ducts AIMD-like rate adjustment and is implemented with
two threads. One thread keeps sending Interest packets unless
unacked exceeds cwnd. The other thread handles cwnd
update according to the congestion status marked on the
received Data packets. Specifically, the cwnd should not be
halved more than once during one RTT, guaranteed by a timer.

VI. EVALUATION

A. Methodology

To evaluate the proposed NB-Cache, we build an
NB-Cache-enabled content router prototype and a network
emulation environment with 3124 lines of C++ code, which
is available at our git repository [6]. The network emulation
topology is shown in Fig. 13. It contains one host, four routers
and the links between them. We use one process to emulate
each router/host/link and leverage shared memory for inter-
process communication (for simplicity, we do not rely on
real packet I/O like pf_ring or dpdk, instead, we adopt inter-
process communication mechanism to mimic the packet I/O).
Inside each router (running as a process), we allocate multiple
threads to implement router components. We also implement
non-blocking I/O access using libeio under Linux. Since the
original version of libeio cannot well handle the contention
issue when multiple readers and writers access the same
file, we modify its source code to address the Interest/Data
contention problem. As real-world ICN traces are not readily
available, we evaluate using a synthetic trace with a name
format like “[url]/[id]”. We select 500 url prefixes from “Alexa
top-1M site urls” with each containing a variable number of
data segments according to the actual homepage size (ranging
from 15.9KB to 26.2MB, with average size 3.6MB). Each data
segment occupies 4096B. The data segments under the same
url are stored into the same file and the 500 files are distributed
in the CS of four routers (R1, R2, R3 and R4 contain 200, 75,

Fig. 13. Topology of NB-Cache-enabled routers. We use one process to
implement a router/host/link and shared memory for inter-process communi-
cation.

Fig. 14. Four test cases for performance comparison.

50 and 500 files, respectively). We configure static routes in
FIB to achieve the minimal forwarding capability (especially
for R1’s two output ports). During the emulation, the queue
capacity between two threads and between two processes are
both set to hold 20000 packets by default. The CS bypass
threshold is set to 64 by default. The default traffic generation
speed is set to 100kpps.

Since NB-Cache has several novel design choices, for
comprehensive comparison, we build four test cases to evaluate
the performance improvement brought by each design choice
(as shown in Fig. 14). Among them, case A is a classic content
router without using Bloom filter (instead, it uses a content
index for request prefiltering implemented by a red-black tree
via the Map structure in C++ STL), AQM and non-blocking
I/O; case B is an NB-Cache-enabled router; case C adopts
Bloom filter but uses blocking I/O; case D adopts Bloom filter,
non-blocking I/O but without using AQM. We also evaluate
case A and case B working with ECN and NB-CC.

The network emulation is conducted on a desktop with
Intel i5-6500 quad-core CPU, 8GB DRAM, 256GB SSD, 1TB
HDD. The OS is Ubuntu 16.04 with Linux kernel 4.4. We also
build a router prototype based on a more powerful machine
with two E5-2686 v4@2.3GHz CPUs and 128GB DRAM.

B. Experimental Results

1) Single-Node Performance in Emulation: Table II shows
the packet latency of different processing paths inside a
single router (R1) of blocking and non-blocking in-network
caching (i.e., case A and case B). In case A, 40% of the
packets complete the I/O access with an average latency
of 0.1934ms and 60% of the packets bypass the CS due to
the early misses of the content index with an average latency
of 0.00639ms. In case B, 20.05% of the packets issue the
I/O access command but return immediately with an average
latency of 0.0439ms and the same group of the packets finally
complete the I/O access with a pretty long average latency
of 18.699ms. The overlong latency is ascribed to the thread
manipulation overhead according to our debugging. In case B,
60% of the packets bypass the CS due to the early misses of
the Bloom filter and 19.95% of the packets bypass the I/O
access due to the traffic congestion at the I/O queue. Although
the thread manipulation overhead increases the I/O access
latency, the bypass techniques via the Bloom filter and the
active queue management (AQM) as well as the non-blocking

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 24,2021 at 02:53:21 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PAN et al.: NB-CACHE: NON-BLOCKING IN-NETWORK CACHING 11

TABLE II

PACKET LATENCY IN A SINGLE ROUTER (R1) OF BLOCKING AND NON-
BLOCKING CACHING (COMPARISON OF CASE A AND CASE B)

Fig. 15. Interest queue length vs Data queue length.

I/O mechanism can potentially reduce the end-to-end queuing
latency. We will see extensive RTT measurement results later.

2) Content Store Resource Contention: Fig. 15 shows
the Interest queue length and the Data queue length when
resource contention occurs during the I/O access. Specifically,
in Fig. 15(a), the contention resolution strategy is set as first-
in-first-out (FIFO) thus the Interest has the same priority with
the Data. In this situation, the queue length of both types
of the packets grows only depending on the real-time traffic
congestion. In Fig. 15(b), when the contention resolution
strategy is changed to assign a higher priority to the processing
of the Data, the Data queue length drops sharply while the
thread for Interest processing is blocked frequently. In real ICN
deployment, we can tame the ingress/egress performance by
flexibly adapting the data plane traffic prioritizing strategies.

3) Round-Trip Time: Fig. 16 shows how the packet arrival
rate impacts the RTT without congestion control. As the packet
arrival rate grows, the RTT of the four cases increase as well.
The reason lies in that when the packet arrival rate grows,
the number of queuing packets in routers will increase rapidly,
which contributes significantly to the average RTT. Among
the four cases, NB-Cache outperforms the other solutions
thanks to the CS bypass techniques. Under the 100kpps packet
arrival rate, the RTT in case B and case A are 1122.5ms and
3754.5ms, respectively. NB-Cache can tremendously reduce
the RTT by 70.10% compared with the classic architecture.
Fig. 17 and 18 show the probability distribution of per-packet-
based RTT in cases with/without congestion control. We can
figure out that applying congestion control can remarkably
reduce the average RTT from around 1000ms (Fig. 17) to
100ms (Fig. 18) by decreasing the number of queuing packets.
In Fig. 18, the average RTT of case A+ECN, B+ECN and
B+NB-CC are 86.23ms, 107.82ms and 125.48ms, respec-
tively. Detailed analysis of Fig. 18 can be found in §VI-B.7.

4) Throughput: Fig. 19 shows the average throughput in
cases with/without congestion control. The throughput is
measured as the number of Data packets divided by the
time between the first and the last Data packet received by
the consumer. Among the cases without congestion control,
NB-Cache (case B) outperforms the other three cases. The
average throughput in case A and case B are 4.56kpps and

Fig. 16. Average RTT vs packet arrival rate in four test cases.

Fig. 17. Probability distribution of RTT in case A and case B.

Fig. 18. Probability distribution of RTT in cases with congestion control.

Fig. 19. Average packet throughput in cases with/without congestion control.

10.51kpps, respectively. NB-Cache can improve the through-
put by 130.48% compared with the original design. Specif-
ically, we can figure out that non-blocking I/O access plays
a dominant role in the throughput improvement; while using
an additional Bloom filter and conducting active queue man-
agement also have sound contribution. Generally, applying
congestion control will degrade the throughput but generate a
more balanced performance (with much lower RTT). Among
the three cases with congestion control, case B+NB-CC has
the highest throughput due to delayed congestion notification.
Detailed analysis can be found in §VI-B.7.

5) Impact of the CS Bypass Threshold: Fig. 20 shows
the impact of the CS bypass threshold on RTT with/without
congestion control. For case B, we can observe that when the
threshold is set from 0 to 400, the average RTT decreases;
when set from 400 to 600, interestingly, the RTT increases
again. The observation can be explained considering two
extreme cases. If the threshold is set to 0, all the packets
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Fig. 20. RTT vs CS bypass threshold with/without congestion control.

Fig. 21. The impact of #threads on RTT and throughput (case B+NB-CC).

Fig. 22. Dynamics of cwnd size in cases with congestion control.

will be forwarded to the upstream which will finally cause
traffic congestion at R4 (R4 has all the content segments but no
bypass possibility). If the threshold is set to ∞, all the packets
will be queued at R1 rather than being distributed network
wide. Here, 400 is a sweet spot for the CS bypass threshold.
For case B+NB-CC, since the consumer will adaptively adjust
the sending rate, larger bypass threshold just means delayed
congestion notification, which will further cause longer RTT.

6) Impact of the Number of Spawned Worker Threads: As
mentioned in §V-C.1, libeio will spawn a number of worker
threads for non-blocking I/O access. Fig. 21 shows the impact
of the number of spawned threads on RTT and throughput
in case B+NB-CC. We can figure out that as the number
of threads grows, both of the RTT and the throughput will
increase. The reason lies in that excessive multithreading will
drain I/O bandwidth thus improve the throughput. However,
since i5-6500 is a quad-core CPU with only 4 hardware
threads, excessive multithreading will also increase the thread
switching and migration overhead, resulting in longer RTT.
In our experimental settings, spawning more than 8 worker
threads for each router is not recommended. Besides, here we
have to emphasize that the absolute throughput (in pps) seems
quite limited because we emulate all the routers on a single
CPU and the Data packet/segment has a jumbo size (4096B).

7) NB-CC Vs ECN for Congestion Control: Fig. 22
shows the dynamics of congestion window size (cwnd).
Case A+ECN has the minimum cwnd since traffic will be
blocked at the first pipeline stage and router’s CS queue will

Fig. 23. Per-packet-based RTT on SSD and HDD (case B+NB-CC).

Fig. 24. Dynamics of queue length (#packets) in the front of the four routers.

quickly reach ECN threshold for early congestion notification.
Case B+ECN has a larger cwnd since NB-Cache allows some
traffic to bypass the overloaded CS queue thus delays the time
to notify congestion. Case B+NB-CC has the maximum cwnd
since NB-CC delays congestion notification until the CS queue
occupation reaches some threshold and there is no bypass
possibility. Generally, larger cwnd means higher throughput
and potentially longer latency (recall Fig. 19 and Fig. 18).

8) SSD Vs HDD as CS Storage Medium: Fig. 23 shows
the per-packet-based RTT when using SSD and HDD as the
storage medium in case B+NB-CC. SSD is much faster than
HDD, and the average RTT of SSD is only 125.48ms while
that of HDD can reach 837.73ms. It is obvious that a single
HDD without proper hierarchical design might be too slow to
adequately accommodate CS in high-speed ICN networks.

9) Network-Wide Load Balancing: Fig. 24 shows traffic
load distribution of the four routers in cases without congestion
control. Since the traffic generation speed is higher than
router’s processing capability, packets inevitably accumulate
in the front of the routers. In case A (Fig. 24(a)), most of
the packets are blocked in R1’s queue, and R2, R3, R4 have
relatively idle queues. While in case B (Fig. 24(b)), due to CS
bypass, R2, R3, R4 (especially R4) share considerable traffic
load for R1, which lessens R1’s queue occupation (the y axis
is log scaling). With network-wide load balancing, NB-Cache
(case B) completes the ingress processing of all the traffic
in 0.7s while the classic architecture (case A) spends 2s.

10) A Router Prototype With Different CS Storage
Mediums: All above evaluation is conducted in the emulation
environment. However, we are also curious about NB-Cache’s
real performance on bare-metal hardware, which is consid-
ered important for real-world deployment. More specifically,
we want to see: (a) NB-Cache’s forwarding performance
on the multicore architecture, which is widely leveraged by
today’s network processors embedded in high-speed routers;
(b) CS lookup performance under excessive multithreading
with different storage mediums (SSD and ramfs). To achieve
this, we build a router prototype with multiple NB-Cache
instances in parallel on a 36-core x86 machine. The ramfs
is Linux’s RAM-based file system which has an even faster
speed than SSD. The CS hit rate is set to 100% to maximally
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Fig. 25. The (decoupled) forwarding throughput and content retrieval
throughput with different CS storage mediums (SSD, ramfs) on a 36-core
machine.

exploit the I/O bandwidth. Fig. 25 shows the forwarding
and content retrieval throughput with SSD and ramfs. It is
observed that (a) the forwarding throughput increases roughly
linearly with the number of forwarding instances; (b) the
excessive multithreading drains CS bandwidth regardless of
storage medium types as the number of forwarding instances
grows; (c) the forwarding performance is totally decoupled
from the content retrieval performance due to the non-blocking
mechanism (the forwarding performance grows linearly while
the CS lookup performance is bounded by the I/O bandwidth);
(d) interestingly, although ramfs has a higher CS throughput
(0.8Mpps), its forwarding performance (1.3Mpps) is lower
than that of SSD (1.4Mpps) (this can be explained as the
asynchronous I/O operations rely on additionally spawned
threads, which also consume processing cycles of the CPU
thus the remaining cycles for packet forwarding become less).
We show that NB-Cache can achieve high performance with
massive multicore machine, competitive for real deployment.
More than that, NB-Cache can also be deployed with low-
end machines, without blocking the traffic along the end-
to-end path. The latter one is the most exciting part of our
work and has never been mentioned in existing literature.
By decoupling the fast packet forwarding from the slower
content retrieval, NB-Cache-enabled routers with different
memory/disk technologies can coexist in the same network,
providing best-effort content caching service economically.

VII. RELATED WORK

Due to content router’s stateful design, achieving wire-
speed forwarding is challenging [2]. Since the data plane
can be regarded as a three-stage pipeline, previous works
mostly focus on accelerating the component-level performance
at each pipeline stage. The challenge for FIB lies in per-
forming the longest prefix match of string-based names of
unbounded length. To address this technical issue, [3] proposes
a GPU-based approach to implement wire-speed name lookup
and achieves 63.52Mpps throughput. Reference [4] adopts
the Patrica trie for FIB compression and achieves 284Gbps
throughput based on SRAM. The challenge for PIT is to
handle the frequent lookup and update of explosive pending
states at line rate. Reference [5] proposes a novel PIT design
with an approximate data structure and achieves 100Gbps at
a memory cost of 37MB.

Interestingly, although it is obvious that CS will also suffer
from the flooding of content queries, to our best knowl-
edge, there are only a few works addressing CS performance
issues [8], [9], [16]. Reference [8] makes use of memory
hierarchy to scale in size and speed of the CS. Their design can
sustain cache operations in excess of 10Gbps. Reference [16]
raises CS design principles with SSD but only provides very
preliminary implementation details and experimental results.

Reference [9] exploits the temporal and spatial locality in con-
tent retrieval and proposes the locality-aware skip list which
can achieve 1.796Mpps single-threaded throughput. Although
with the similar target, NB-Cache tackles the performance
issue from a different perspective in a more cost-effective
way. It modifies CS’s surrounding logic and router’s internal
packet flow to relieve CS performance burden thus can well
collaborate with [8], [9], [16].

Most previous works treat the content router as a three-
stage pipeline except for BFAST [17]. BFAST proposes a
unified index which can simultaneously accommodate CS,
PIT and FIB that can potentially improve the lookup speed
by reducing the table access times. However, if implemented
using multithreading on modern general-purpose processors,
this design may have performance issue when multiple threads
contend for one shared data structure (i.e., the unified index).
While NB-Cache retains the modularity of the original router
architecture which is rather parallelism-friendly.

In either CDN or NDN space, cache federation [18], [19] is
widely adopted to allocate local space for storing locally popu-
lar objects and remote federated space for storing less popular
objects. The content request will first consult the local cache.
If the data is not present locally, the node will subsequently
consult the remote federated cache. While cache federation
aims at reducing the popular content access latency as well
as the upstream link utilization to further save the link usage
expense, NB-Cache focuses more on improving the forwarding
plane performance by mitigating the congestion in the front
of CS. Even the requested content objects exist in the local
CS, traffic bypass will still be triggered given CS is heavily
used. Besides, cache coordination in NB-Cache is guaranteed
naturally by the underlying routing mechanism without the
explicit need of stateful cache federation algorithms.

Honestly, we are not the first to add Bloom filter into the
content router [20], but Bloom filter is indeed an integral part
of our proposal. The active queue management in NB-Cache
is actually inspired by the random early detection (RED) [12]
in Internet routers. The key difference lies in that, when
congestion occurs, NB-Cache chooses to forward the packets
to the upstream while RED decides to drop the packets.

Historically, various queuing models are proposed to ana-
lyze diverse queuing behaviors. For example, the models
considered in [21], [22] involve a tandem queue with two
waiting lines, and as soon as the second waiting line reaches
a certain upper limit, the first line will be blocked. Unlike the
tandem queue models, our N-queue bypass model considers
another queuing behavior that the traffic will migrate from
the first pipeline stage to the next one if the first waiting
line reaches a certain upper limit. In [23], an on-demand
load balancing model is proposed for the “balls into bins
with repeated tosses” scenario, in which if a ball is tossed
into a fully occupied bin, it will be tossed repeatedly into
the bins again until an empty or a partly loaded bin is
met. In this scenario, the number of balls in each bin will
always accumulate and never decrease. Essentially, [23] can
be regarded as load balancing among multiple queues without
servers for the dequeue operation, while our model depicts
load balancing among multiple queues with servers for item
processing (i.e., the dequeue operation).

VIII. CONCLUSION

In this work, we quantitatively identify CS as content
router’s performance bottleneck and propose a novel traffic
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bypass design called “NB-Cache” to ameliorate the bottleneck.
Distinct from previous works that optimize for a single compo-
nent, NB-Cache modifies CS’s surrounding logic and diverts
router’s internal packet flow. Besides, we also propose con-
gestion control for NB-Cache. In essence, NB-Cache follows
a design pattern of on-demand load balancing and we adopt
the Markov chain to establish its theoretical base. Evaluation
shows that NB-Cache can remarkably improve the content
delivery efficiency and reduce the hardware cost.
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