
An Intermediate Representation for Network
Programming Languages

Hao Li
Xi’an Jiaotong University

Peng Zhang
Xi’an Jiaotong University

Guangda Sun
Xi’an Jiaotong University

Chengchen Hu
Xilinx Labs Asia Pacific

Danfeng Shan
Xi’an Jiaotong University

Tian Pan
Beijing University of Posts and

Telecommunications

Qiang Fu
Victoria University of Wellington

ABSTRACT
Network programming languages (NPLs) empower operators
to program network data planes (NDPs) with unprecedented
efficiency. Currently, various NPLs and NDPs coexist and no
one can prevail over others in the short future. Such diversity
is raising many problems including: (1) programs written
with different languages can hardly interoperate in the same
network, and (2) most NPLs are bound to specific NDPs,
hindering their independent evolution. These problems are
mostly owing to the lack of modularity in the compilers,
where the missing part is an intermediate representation
(IR) for NPLs. To this end, we propose Network Transac-
tion Automaton (NTA), a highly-expressive and language-
independent representation as the IR. We show that NTA
can express semantics of 6 mainstream NPLs, and can be
composed efficiently without any semantics loss.

ACM Reference Format:
Hao Li, Peng Zhang, Guangda Sun, Chengchen Hu, Danfeng Shan,
Tian Pan, and Qiang Fu. 2020. An Intermediate Representation for
Network Programming Languages. In 4th Asia-Pacific Workshop on
Networking (APNet ’20), August 3–4, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3411029.
3411030

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNet ’20, August 3–4, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8876-4/20/08. . . $15.00
https://doi.org/10.1145/3411029.3411030

1 INTRODUCTION
With the advance of SDN, many languages (e.g., Pyretic [15])
have been proposed for programming computer networks.
These languages, which we refer to as network programming
languages (NPLs), offer operators with an unprecedented
way to program network data planes (NDPs). Different from
general-purpose languages shipped with controllers (e.g.,
Java in Floodlight [1]), NPLs provide various high-level con-
structs that can greatly facilitate composing complex func-
tions like path selection, monitoring, etc.
Multiple NPLs and NDPs coexist in modern networks.

Recent surveys [13, 21] report more than 15 NPLs including
Merlin [20], SNAP [3], etc, and more than 10 NDPs including
OpenState [6], P4 [7], etc. We believe such diversity will
persist in the short future, due to the following reasons.

First, each of NPLs and NDPs offer different sets of features.
For example, Merlin can specify a routing path with way-
points [20], while SNAP can realize a stateful end-to-end
monitoring function [3]. These two NPLs are designed for
fulfilling different management demands in the first place,
and cannot be simply replaced with one of them.
Second, deploying a unified NPL/NDP can be quite costly.

As currently there is not a “perfect” NPL/NDP that can pre-
vail over others, deploying a unified NPL/NDP is risky: it is
very likely we need to update it very frequently. Moreover,
even recent NDPs like P4 [7] claim that they outperform
OpenFlow in almost all perspectives (flexibility, forwarding
performance, etc), the high cost, e.g., the higher price of de-
vices, the training cost for the operators, still obstructs their
broad deployment in the Internet and data centers.
The long-term coexistence of multiple NPLs and NDPs

means the operators may need to deploy cross-language pro-
grams in the single network, or port programs into heteroge-
neous data planes. Unfortunately, existing NPL compilation
systems are monolithic and offer neither of these features.
In the following, we first elaborate the problems resulting

1

https://doi.org/10.1145/3411029.3411030
https://doi.org/10.1145/3411029.3411030
https://doi.org/10.1145/3411029.3411030

APNet ’20, August 3–4, 2020, Seoul, Republic of Korea Hao Li, Peng Zhang, Guangda Sun, Chengchen Hu, Danfeng Shan, Tian Pan, and Qiang FuAPNet ’20, August 3–4, 2020, Seoul, Republic of Korea Hao Li, Peng Zhang, Guangda Sun, Chengchen Hu, Danfeng Shan, Tian Pan, and Qiang Fu

Merlin Pyretic Frenetic

Merlin
Compiler

Pyretic
Compiler

Frenetic
Compiler

OpenFlow OpenState

× ×

NPL Programs
NDP Configurations

×

(a) The monolithic compiler

Merlin Pyretic Frenetic

Merlin FE Pyretic FE Frenetic FE

unified IR

composed IR
ME

OpenFlow BE OpenState BE

OpenFlow OpenState

(b) The modular compiler with IR
Figure 1: Three stages in a modular compiler with IR: the
front end (FE), the middle end (ME), and the back end (BE).

from the de facto monolithic compilers, then propose our
approach with key contributions highlighted.

1.1 Problems of Monolithic Compilation
The monolithic compilers compile programs all the way to
a specific NDP (Figure 1a), which can raise many problems
when handling the coexistence of multiple NPLs and NDPs.
Cross-language programs cannot interoperate. Opera-
tors might run multiple programs by using program com-
position. The correct compositions require complete seman-
tics from all programs, which however is only achievable
in single-language programs [3, 15, 17]. For cross-language
programs, the only possible way is to merge the NDP configu-
rations compiled individually from their own NPL compilers.
However, this cannot be achieved in a safe way due to the
rule conflicts. Consider two programs, one sets a waypoint B,
and the other counts the packet in an end-to-end way. The
individual compilers may interpret these two intents to two
paths, A → B → D, and A → C → D, respectively. These
two paths raise a rule conflict in A, and cannot be merged
or overwritten, because B is a waypoint of the first program,
and C could be the counting switch of the second program.
CoVisor [11] addresses this problem by assuming all the

rules are either (1) compatible, e.g., a forwarding rule and
a counting rule can naturally operate on the same traffic,
or (2) manually prioritized , e.g., a forwarding rule from a
firewall program can overwrite another forwarding rule from
a routing program. However, most programs would generate
the forwarding rules, which can be incompatible for the same
traffic. Moreover, the overwriting operation can only provide
limited composition ability, e.g., it cannot generate a possible
new solution like A → B → C → D. Finally, CoVisor will
fail on merging different NDP configurations.
NPLs and NDPs cannot independently evolve. As cur-
rent NPL compilers compile the program all the way down
to a specific NDP, it is costly for an NPL compiler to support
every NDP, especially a new one. Similarly, NDPs are also
evolving for serving complex operations: e.g., fine-grained

flow control, stateful operations. However, existing NPLs
barely support the newly designed NDPs, because of the
out-of-date abstractions they rely on, e.g., many NPLs [19]
are built upon the NetCore abstractions [14], which does not
support stateful operation. This close binding between NPLs
and NDPs greatly hinders their independent evolution.

1.2 Our Approach and Contributions
To break the monolith, we intuitively analog to the successful
PC compiler, which also compiles the high-level programs
(e.g., C program) into low-level instructions (e.g., assembly).
One critical missing part of the NPL compiler is that PC
compilers firstly compile the source code to an intermediate
representation (IR), before further translating it to target
code. To this end, we introduce the concept of IR into network
compiler, and modularizes the compilation into three stages
(Figure 1b): a set of front ends translate NPL programs into
IR, a middle end conducts compositions, and a set of back
ends translate the IR into various NDP configurations.

The decoupling of NPLs and NDPs naturally addresses the
above problems: (1) the programs are compiled into the IR
that retains all intents, which can be composed, and compiled
into NDP configurations without any conflicts; and (2) a new
NPL only needs to implement a thin front end for supporting
all NDPs, and vice versa for a new NDP standard.

Based on this insight, we state our research contributions.
Contribution 1: An expressive and unified IR (§3.1).We
introduce Network Transaction Automaton (NTA), a new au-
tomaton that can express the semantics of existing (and pos-
sibly future) NPLs. The key difference of NTA is that we
incorporate network resources and state variables into its
transitions. This enables NTA to express not only path con-
straints, but also resource constraints and stateful operations,
in a fine-grained, hop-by-hop way (see §3.2).
Contribution 2: Compositions without semantics loss
(§3.3). We design the composition operator upon NTA that
respect its physical meanings, so that NTAs can be composed
without any semantics loss.

Our preliminary evaluation shows that NTA can express
semantics of 6 mainstream NPLs, and can be composed effi-
ciently and correctly without semantics loss (§4).

2 OVERVIEW
In this section, we will first take a glance at the proposed IR,
i.e., NTA, and then use a concrete example to present how
IR modularizes the compilation process.

2.1 A First Look at NTA
We have two observations by revisiting the semantics of
NPLs. First, NPL semantics can be grouped into three classes:
(P1) path control with waypoints, e.g., traversing a firewall,
(P2) path control with resource constraint, e.g., bandwidth

(a) The monolithic compiler

APNet ’20, August 3–4, 2020, Seoul, Republic of Korea Hao Li, Peng Zhang, Guangda Sun, Chengchen Hu, Danfeng Shan, Tian Pan, and Qiang Fu

Merlin Pyretic Frenetic

Merlin
Compiler

Pyretic
Compiler

Frenetic
Compiler

OpenFlow OpenState

× ×

NPL Programs
NDP Configurations

×

(a) The monolithic compiler

Merlin Pyretic Frenetic

Merlin FE Pyretic FE Frenetic FE

unified IR

composed IR
ME

OpenFlow BE OpenState BE

OpenFlow OpenState

(b) The modular compiler with IR
Figure 1: Three stages in a modular compiler with IR: the
front end (FE), the middle end (ME), and the back end (BE).

from the de facto monolithic compilers, then propose our
approach with key contributions highlighted.

1.1 Problems of Monolithic Compilation
The monolithic compilers compile programs all the way to
a specific NDP (Figure 1a), which can raise many problems
when handling the coexistence of multiple NPLs and NDPs.
Cross-language programs cannot interoperate. Opera-
tors might run multiple programs by using program com-
position. The correct compositions require complete seman-
tics from all programs, which however is only achievable
in single-language programs [3, 15, 17]. For cross-language
programs, the only possible way is to merge the NDP configu-
rations compiled individually from their own NPL compilers.
However, this cannot be achieved in a safe way due to the
rule conflicts. Consider two programs, one sets a waypoint B,
and the other counts the packet in an end-to-end way. The
individual compilers may interpret these two intents to two
paths, A → B → D, and A → C → D, respectively. These
two paths raise a rule conflict in A, and cannot be merged
or overwritten, because B is a waypoint of the first program,
and C could be the counting switch of the second program.
CoVisor [11] addresses this problem by assuming all the

rules are either (1) compatible, e.g., a forwarding rule and
a counting rule can naturally operate on the same traffic,
or (2) manually prioritized , e.g., a forwarding rule from a
firewall program can overwrite another forwarding rule from
a routing program. However, most programs would generate
the forwarding rules, which can be incompatible for the same
traffic. Moreover, the overwriting operation can only provide
limited composition ability, e.g., it cannot generate a possible
new solution like A → B → C → D. Finally, CoVisor will
fail on merging different NDP configurations.
NPLs and NDPs cannot independently evolve. As cur-
rent NPL compilers compile the program all the way down
to a specific NDP, it is costly for an NPL compiler to support
every NDP, especially a new one. Similarly, NDPs are also
evolving for serving complex operations: e.g., fine-grained

flow control, stateful operations. However, existing NPLs
barely support the newly designed NDPs, because of the
out-of-date abstractions they rely on, e.g., many NPLs [19]
are built upon the NetCore abstractions [14], which does not
support stateful operation. This close binding between NPLs
and NDPs greatly hinders their independent evolution.

1.2 Our Approach and Contributions
To break the monolith, we intuitively analog to the successful
PC compiler, which also compiles the high-level programs
(e.g., C program) into low-level instructions (e.g., assembly).
One critical missing part of the NPL compiler is that PC
compilers firstly compile the source code to an intermediate
representation (IR), before further translating it to target
code. To this end, we introduce the concept of IR into network
compiler, and modularizes the compilation into three stages
(Figure 1b): a set of front ends translate NPL programs into
IR, a middle end conducts compositions, and a set of back
ends translate the IR into various NDP configurations.

The decoupling of NPLs and NDPs naturally addresses the
above problems: (1) the programs are compiled into the IR
that retains all intents, which can be composed, and compiled
into NDP configurations without any conflicts; and (2) a new
NPL only needs to implement a thin front end for supporting
all NDPs, and vice versa for a new NDP standard.

Based on this insight, we state our research contributions.
Contribution 1: An expressive and unified IR (§3.1).We
introduce Network Transaction Automaton (NTA), a new au-
tomaton that can express the semantics of existing (and pos-
sibly future) NPLs. The key difference of NTA is that we
incorporate network resources and state variables into its
transitions. This enables NTA to express not only path con-
straints, but also resource constraints and stateful operations,
in a fine-grained, hop-by-hop way (see §3.2).
Contribution 2: Compositions without semantics loss
(§3.3). We design the composition operator upon NTA that
respect its physical meanings, so that NTAs can be composed
without any semantics loss.

Our preliminary evaluation shows that NTA can express
semantics of 6 mainstream NPLs, and can be composed effi-
ciently and correctly without semantics loss (§4).

2 OVERVIEW
In this section, we will first take a glance at the proposed IR,
i.e., NTA, and then use a concrete example to present how
IR modularizes the compilation process.

2.1 A First Look at NTA
We have two observations by revisiting the semantics of
NPLs. First, NPL semantics can be grouped into three classes:
(P1) path control with waypoints, e.g., traversing a firewall,
(P2) path control with resource constraint, e.g., bandwidth

(b) The monolithic compiler

Figure 1: Three stages in a modular compiler with IR: the
front end (FE), the middle end (ME), and the back end (BE).
from the de facto monolithic compilers, then propose our
approach with key contributions highlighted.

1.1 Problems of Monolithic Compilation
The monolithic compilers compile programs all the way to a
specific NDP (Figure 1(a)), which can raise many problems
when handling the coexistence of multiple NPLs and NDPs.
Cross-language programs cannot interoperate. Opera-
tors might run multiple programs by using program com-
position. The correct compositions require complete seman-
tics from all programs, which however is only achievable
in single-language programs [3, 15, 17]. For cross-language
programs, the only possible way is to merge the NDP configu-
rations compiled individually from their own NPL compilers.
However, this cannot be achieved in a safe way due to the
rule conflicts. Consider two programs, one sets a waypoint B,
and the other counts the packet in an end-to-end way. The
individual compilers may interpret these two intents to two
paths, A → B → D, and A → C → D, respectively. These
two paths raise a rule conflict in A, and cannot be merged
or overwritten, because B is a waypoint of the first program,
and C could be the counting switch of the second program.
CoVisor [11] addresses this problem by assuming all the

rules are either (1) compatible, e.g., a forwarding rule and
a counting rule can naturally operate on the same traffic,
or (2) manually prioritized , e.g., a forwarding rule from a
firewall program can overwrite another forwarding rule from
a routing program. However, most programs would generate
the forwarding rules, which can be incompatible for the same
traffic. Moreover, the overwriting operation can only provide
limited composition ability, e.g., it cannot generate a possible
new solution like A → B → C → D. Finally, CoVisor will
fail on merging different NDP configurations.
NPLs and NDPs cannot independently evolve. As cur-
rent NPL compilers compile the program all the way down
to a specific NDP, it is costly for an NPL compiler to support
every NDP, especially a new one. Similarly, NDPs are also
evolving for serving complex operations: e.g., fine-grained

flow control, stateful operations. However, existing NPLs
barely support the newly designed NDPs, because of the
out-of-date abstractions they rely on, e.g., many NPLs [19]
are built upon the NetCore abstractions [14], which does not
support stateful operation. This close binding between NPLs
and NDPs greatly hinders their independent evolution.

1.2 Our Approach and Contributions
To break the monolith, we intuitively analog to the successful
PC compiler, which also compiles the high-level programs
(e.g., C program) into low-level instructions (e.g., assembly).
One critical missing part of the NPL compiler is that PC
compilers firstly compile the source code to an intermediate
representation (IR), before further translating it to target
code. To this end, we introduce the concept of IR into network
compiler, and modularizes the compilation into three stages
(Figure 1(b)): a set of front ends translate NPL programs into
IR, a middle end conducts compositions, and a set of back
ends translate the IR into various NDP configurations.

The decoupling of NPLs and NDPs naturally addresses the
above problems: (1) the programs are compiled into the IR
that retains all intents, which can be composed, and compiled
into NDP configurations without any conflicts; and (2) a new
NPL only needs to implement a thin front end for supporting
all NDPs, and vice versa for a new NDP standard.

Based on this insight, we state our research contributions.
Contribution 1: An expressive and unified IR (§3.1).We
introduce Network Transaction Automaton (NTA), a new au-
tomaton that can express the semantics of existing (and pos-
sibly future) NPLs. The key difference of NTA is that we
incorporate network resources and state variables into its
transitions. This enables NTA to express not only path con-
straints, but also resource constraints and stateful operations,
in a fine-grained, hop-by-hop way (see §3.2).
Contribution 2: Compositions without semantics loss
(§3.3). We design the composition operator upon NTA that
respect its physical meanings, so that NTAs can be composed
without any semantics loss.

Our preliminary evaluation shows that NTA can express
semantics of 6 mainstream NPLs, and can be composed effi-
ciently and correctly without semantics loss (§4).

2 OVERVIEW
In this section, we will first take a glance at the proposed IR,
i.e., NTA, and then use a concrete example to present how
IR modularizes the compilation process.

2.1 A First Look at NTA
We have two observations by revisiting the semantics of
NPLs. First, NPL semantics can be grouped into three classes:
(P1) path control with waypoints, e.g., traversing a firewall,
(P2) path control with resource constraint, e.g., bandwidth

2

An Intermediate Representation for Network Programming Languages APNet ’20, August 3–4, 2020, Seoul, Republic of Korea

0 1 2 3
•

B

• r1

B r1

• r1

e

0 1 2 3

0 1 2 3

•

•

• g1,u1

e g1,u1

•

e

•

•

• !g1

e !g1

•

e

0 1

2

3

4 5
•

B

• r1

• r1 g1,u1

B r1

B r1 g1,u1

• r1

B r1

• r1

• r1 g1,u1

e g1,u1

e

[x: (ip.src=ip1 and ip.dst=ip2)
→.*B.*],
min(x,100MB/s)

(a) A Merlin Policy with a waypoint B for
packets from ip1 to ip2, while consuming
100MB/s bandwidth.

if srcip=ip1 & dstip=ip2 then
if num_pkt<1000 then

num_pkt += 1
else id

else id

(b) A SNAP program that counts the first
1000 packets sent from ip1 to ip2 using a
network variable num_pkt.

(c)

(d)

(e)

(f)

(h)

⋂

⋂
(g) A very similar NTA by replacing g1, u1 with !g1.

A

B

C

D

ip1 ip2
125M/s

125
M/
s

125
M/
s125M/s

125M/s
r1: bw[h′][h]◁100MB/s
g1: num_pkt>1000
u1: num_pkt+=1
• : any switch

e : destination host

Abbreviations:

Figure 2: The compilation process with NTA. (a)–(b): Two programs written in Merlin and SNAP; (c): NTA for Merlin policy;
(d)–(e): NTA group for SNAP program; (f)–(g): Composed NTA group; (h): A simple network with 125MB/s bandwidth per link.

reservation, and (P3) stateful packet manipulation with vari-
ables persistent on NDP, e.g., counting all SSH packets at
some switch. Second, operators expect to specify the above
semantics in the finest grain, i.e., hop-by-hop.
With the above observations, we show how to design an

IR for NPLs. Firstly, we note that the Deterministic Finite
Automaton (DFA) is a good starting point, as it can easily
represent the path control semantics of (P1): proceeding a
transition corresponds to the action of forwarding to a next
hop. Secondly, to express the resource constraints of (P2),
we add resource consumption actions into DFA transitions:
proceeding a transition will consume the specified resources at
the current switch. Then, resource constraints like reserving
an end-to-end bandwidth can be expressed by adding the
bandwidth consumption into eachDFA transition. Finally, for
expressing the stateful operations in (P3), we embed variable
operations, i.e., checking and updating variables, into DFA
transitions, so that the stateful manipulation can be assigned
to specific switches. Putting the above together, to distin-
guish from traditional DFA, we refer to a transition in our
new automaton as a network transaction, which is an atomic
set of operations including forwarding to a next hop, consum-
ing specified resources, and checking and updating variables.
Then, we refer to our new automaton equipped with such
transitions as Network Transaction Automaton (NTA).

2.2 A Walk-through Example
Now we walk through the compilation process with NTA
using two real programs written in Merlin and SNAP.
Using NTA to express programs. Figure 2a shows a Mer-
lin policy [20], which specifies a waypoint B for packets
sent from ip1 to ip2, while consuming 100MB/s bandwidth

along the above path. Figure 2c is the corresponding NTA for
packet class srcip=ip1&dstip=ip2. Each transition in the
NTA carries a three-tuple, in the order of next hop, resource
consumption, and variable operation. This NTA has a start
state (node 0) indicating the packet is entering the network,
and an end state (node 3) indicating the packet has left the
network. The loops on node 1 and 2 along with the transition
1 → 2 realize the waypointing and NTA explicitly uses e
to denote the destination host in transition 2 → 3. bw is a
2-dimensional array indicating the available bandwidth of
each link, The consumption r1: bw[h′][h]◁100MB/smeans
that a bandwidth of 100MB/s is consumed on the link from
the current switch h′ to the next hop h. Since r1 appears in
all transitions (except those connects to start and end nodes),
this NTA reserves 100MB/s for the end-to-end connection.
Figure 2b shows a SNAP program [3], which counts the

first 1000 packets sent from ip1 to ip2 to ensure the two
hosts are properly connected. Instead of a single NTA, this
program corresponds to a NTA group, as shown in Figure 2d
and 2e, which maps to the two network transaction spaces,
i.e., counting+routing (g1), and routing only (!g1). Since com-
piling an NTA will generate one transaction sequence, we
need to express all possible variable checking results using
a group of NTAs. Note that the NTAs consider all possible
locations triggering the counting operation, i.e., in middle of
the network (1→ 2), or at the last hop (1→ 3).
Composing programs at NTA. Since NTA is language-
agnostic and has the complete semantics from the programs,
it is a sweet spot to compose cross-language programs.

In our case, the composition of the two example programs
is a newNTA group consisting of the intersection of Figure 2c
and 2d, and the intersection of Figure 2c and 2e. The former

3

APNet ’20, August 3–4, 2020, Seoul, Republic of Korea Hao Li, Peng Zhang, Guangda Sun, Chengchen Hu, Danfeng Shan, Tian Pan, and Qiang Fu

is shown in Figure 2f, where num_pkt is checked and updated
exactly once along the path traversing B. The other NTA is
much the same with Figure 2f except (g1,u1) is replaced with
!g1. The composite semantics can be stated as “forwarding
the packet class with 100MB/s bandwidth while traversing
B, and counting the first 1000 of them” (see §3.3 for details).
Compiling NTAs. NTAs are compiled in two steps: (1) gen-
erating a valid transaction sequence, and (2) mapping each
transaction in the sequence into NDP configurations.
The first step can be modeled as a mixed-integer linear

problem (MILP), which has to consider the three types of
constraints: (1) path constraints: the path must traverse the
specified waypoints; (2) resource constraints: the resource
consumption should not exceed the available resource, e.g.,
path A → B → D in Figure 2h is invalid for Figure 2c if
another NTA consumes 50MB/s bandwidth on link (A,B); (3)
consistency constraints: the same variable should be oper-
ated at the same switch in order to avoid synchronization, e.g.,
Figure 2d and 2e must update num_pkt at the same switch.
Finding a feasible solution for above constraints might take
long time with complex NTA and/or large topology. Fortu-
nately, this step is NDP-independent, thus can be reused for
all NDPs. In other words, the factual back-end contains only
the second step, which is relatively lightweight.

The compilation of NTA is outside the scope of this paper,
and will be explored in our future work (see §5).

3 NETWORK TRANSACTION
AUTOMATON

In this section, we detail the design of NTA. Specifically,
we first formally define NTA (3.1), and show how NTA can
express various semantics (3.2). We finally present the oper-
ations on NTA for modular compositions (3.3).

3.1 Definitions
Network transaction. A network transaction is a three-
tuple, h r d , where h is the next hop to be forwarded,
r is the consumption of the network resources, and d is a
stateful operation that first checks the variables against a set
of predicates, namely guard, and then modifies the variables
with a set of operations, namely update.
NTA. An NTA is defined as a 5-tuple (Σ,Q,q0,a,T), where
Σ is the set of all possible network transactions, Q is the set
of NTA nodes, q0 ∈ Q is the start node, a ∈ Q is the end
node, and T is the set of transitions. Each transition t ∈ T
is a 3-tuple (q,σ ,q′), where q and q′ are the NTA nodes, and
σ ∈ Σ is the network transaction.

As an analog, NTA can be viewed as the “language” of all
network transaction sequences that comply with the pro-
gram intent, and the compilation of NTA is to produce one

“sentence” under the constraints of network topology, net-
work resources, and variable consistency.
Elements in NTA. NTA involves four major elements: the
next hop, the resource, the variable, and the packet class.

The next hop represents the forwarding target(s). The op-
erator can specify “any switch” with “dot”, a specific switch if
it is known to her, e.g., switch B, or a kind of switches with a
mnemonic, e.g., DPI , which can be replaced by real switches
according to the network configurations in the back end.
The resource represents the static constraints of the net-

work, e.g., entries in the flow table, bandwidth bw in Figure 2c,
which are shared by all NTAs and consumed by installing
the switch rules or end host configurations.
The variable records the network states, which is persis-

tent on the data plane switch [3], e.g., num_pkt in SNAP’s
NTA. The guard and update of variables map to the match-
ing fields and actions in data plane rules, respectively. There
could be different network transaction spaces depending on
the results of the guard, so a group of NTAs will be generated
to handle each of them, as shown in Figure 2d and 2e.
The packet class binding to the NTA is a packet header

filter. The filter must specify the source and destination IP
addresses, because they determine the concrete entrance
and exit in the network. NTAs from the same group specify
different transaction spaces for the same packet class, while
NTAs from different groups should have orthogonal packet
class; otherwise the overlapped part should be composed
using composition operators.

3.2 Expressiveness of NTA
A recent survey classifies the semantics of NPLs into three
catalogs [21]: (1) traffic engineering that optimizes the routing
paths, e.g., waypointing [18], QoS [20]; (2) virtualization that
abstracts amuch simpler virtual topology for the operators [2,
3]; and (3) monitoring that collects the telemetry data, e.g.,
#packets [15, 16]. In the following, we show NTA is capable
for expressing these and even more complex semantics.
Traffic Engineering (TE) includes waypointing and QoS.
First, NTA naturally supports all path requirements compli-
ant with regular grammar for waypointing. For example, for
a sequence of waypoints w1, . . . ,wn , we can construct an
NTA with a regular expression .*w1.*....*wn.*. For QoS,
NTA can express the constraints of network resources using
consumptions, e.g., Merlin’s NTA in Figure 2c.
Virtualization (VT) hides the low-level network details,
so that programmers can install the micro-flow rules on
a higher-level abstraction. There are typically two kinds
of VT: one-to-many and many-to-one. For the first, since
NTA nodes also have a one-to-many correspondence to the
switches, NTA can directly use .* transitions to support such
virtualization. For example, node 1 in Figure 2d maps to the

4

An Intermediate Representation for Network Programming Languages APNet ’20, August 3–4, 2020, Seoul, Republic of Korea

one-big-virtual-switch that performs the counting task. For
the many-to-one VT, the mappings are explicitly specified
by the operators [11], so NTA can leverage the devirtualized
result from the native compilers, i.e., network transaction at
a certain switch, and maps an NTA node to that switch.
Monitoring (MT) records and updates network statistics,
e.g., #packets of a matching flow. NTA supports such stateful
semantics using network variables. For example, num_pkt
in Figure 2b is used to record #packets that traverse certain
switches. We can also use variables to record #active con-
nections, if TCP SYN flag and FIN flag can be extracted by a
programmable parser [7].
Complex semantics. Thanks to the hop-by-hop expressive-
ness, NTA can represent the combination of above seman-
tics. For example, we could fix where to count the packets
in Figure 2d by setting a waypoint. Moreover, we could con-
catenate Figure 2d with Figure 2c , which produces a new
semantics: the first 1000 packets must traverse B (see Fig-
ure 3 in §3.3). Such semantics, where the stateful operation
depends on path, or the path depends on stateful contexts
(the value of num_pkt), cannot be expressed by either the
one-big-switch [3] or regular expression [20].

3.3 Composition of NTAs
Let the two NTAs be n1 and n2, and we offer two types of
composition on NTA: (1) parallel composition (+) that pro-
duces an NTA that accepts n1 and n2 simultaneously. which
is perhaps the most important type of composition, as it
enables cross-language programs to manipulate the same
traffic; and (2) sequential composition (>>) that produces
an NTA that performs n1 and n2 sequentially, which can be
used when one program is triggered by another, e.g., count-
ing the suspicious flows identified by a firewall. Note that
composition of two NTA groups can be viewed as a product
composition of each NTA in the groups.
The theoretical basis of the composition is the operation

on automaton, e.g., intersection, concatenation. However, the
resource and stateful elements carried in NTA transitions
will be lost if directly applying the conventional operation.
Hence, we customize those operations for composing NTAs.
Intersection. We adopt the Cartesian production for inter-
secting two NTAs, which realizes the parallel composition.
In a nutshell, the node set of the intersected NTA is the prod-
uct of the nodes in n1 and n2, i.e., Q1 ×Q2. Next, for the new
start node (q1,0,q2,0), a new transition is produced by merg-
ing transitions starting from q1,0 and q2,0, and the process
iterates for other nodes, as detailed below.
We say two transitions can be merged, if they carry the

same next hop, or at least one of them has a next hop of
“dot”. The merged transition will carry the same or the non-
dot next hop. For the stateful operations, the guard in the

0 1 2 3 5

4

6
•

B g1,u1•

• g1,u1 • r1

•

• r1

B r1

•

•

• r1

e

Figure 3: Sequential composition (Figure 2d>>Figure 2c).
merged transition is the intersection of the original guards,
i.e., g3=g1&g2, and the update is the union of the original
updates, i.e., u3=u1∪u2. For resource consumptions on the
different resources, we retain both of them; for those consum-
ing the same resources, we use the largest consumption to
overwrite others. For example, consider two NTAs reserving
different bandwidth for the same packet class, say 10MB/s
and 20MB/s, respectively. The parallel composed NTA should
not consume 30MB/s, because 20MB/s bandwidth has already
satisfied the semantics of both original NTAs. This principle
can be expanded to other resources, e.g., switch flow entries.
Figure 2f shows the intersection of Figure 2c and 2d.
Concatenation. The sequential composition can be viewed
as the concatenation of two NTAs. The major difference
between concatenating two NTAs and concatenating DFAs is
that the start node and end node in NTA map to the network
states that the packets are not inside the network. As a result,
the concatenated NTA should not include the end node of
the left operand and the start node of the right operand.
In detail, for concatenating n1 and n2, we removes the

end node a1 in n1 and the start node q2,0 in n2. Next, for
all transitions pointing to a1, we replaces e in the next hop
field with (•), and product-merges them with the transitions
starting from q2,0. Since the modified transitions must have
a dot next hop, the merging is ensured to be successful.

For example, when concatenating Figure 2d (n1) with Fig-
ure 2c (n2), node 3 in n1 and node 0 in n2 will be removed.
Transition 1→3 in n1 will be modified as • g1,u1 , and
then be merged with transition 0→2 in n2, producing a new
transition B g1,u1 from node 1 in n1 to node 2 in n2. By
product merging all the end transitions in n1 with the start
transitions inn2, we obtain a concatenatedNTA shown in Fig-
ure 3. Note that this processmay produce a non-deterministic
NTA, and we can reduce it using conventional technique.

4 PRELIMINARY EVALUATION
In this section, we evaluate (1) the expressiveness of NTA,
and (2) the efficiency of composing many NTAs.

4.1 Expressiveness for Diverse NPLs
Besides Merlin and SNAP, we further investigate the expres-
siveness of NTA for other 4 NPLs.

5

APNet ’20, August 3–4, 2020, Seoul, Republic of Korea Hao Li, Peng Zhang, Guangda Sun, Chengchen Hu, Danfeng Shan, Tian Pan, and Qiang Fu

Table 1: Features, snippets and NTAs for NPLs

NPL TE VT MT CP Snippets Corresponding NTA

Pyretic
√ √ √ (match(dstip=’10.0.0.1’) >> fwd(6))

route traffic with dstip 10.0.0.1 to virtual port 6

0 1 2

PC: srcip=any&dstip=10.0.0.1

•

•

e

Flowlog
√ √

ON packet_in(p) WHERE p.nwPort = 23:
INSERT (p.nwSrc) INTO blacklist;

block sender’s IP if its TCP port is 23.

0 1 2 3

PC: srcip=any&dstip=any&port=23

u: blacklist[srcip]←True b: a black hole (drop)

•
•

• u

b u

•
b

NetKAT
√ √ √ (if (dstip=’10.0.0.1’) then pt←6)

route traffic with dstip 10.0.0.1 to virtual port 6 same with the NTA of Pyretic snippet

PGA
√ √ Nml DPI DNS

53

route Nml’s DNS traffic to DNS traversing DPI

0 1 2 3

PC: srcip=Nml&dstip=any&dstport=53

•

•

DPI

•

e

Merlin
√

see Figure 2a see Figure 2c

SNAP
√ √ √

see Figure 2b see Figure 2d

Abbreviations: TE: traffic engineering, VT : virtual topology, MT : monitoring, CP : composition, PC: packet class

Pyretic [15] generalizes the abstractions from NetCore [14],
and offers a virtual topology construct. As discussed in §3.2,
NTA can express such semantics by using .* transitions to
connect the nodes that map to the virtual switches.
FlowLog [16] offers a SQL-like query syntax to manipulate
packets using the states stored in the controller. We suc-
cessfully express this semantics by mapping the database
table/entry used by FlowLog into network variables in NTA,
so that such manipulation can take place in the NDP.
NetKAT [2] provides a sound and complete set of semantics
including path selection and virtual topology, which have
already been covered by NTA. Thus, NetKAT programs can
be readily translated into NTA.
PGA [17] uses policy graphs to specify the source, desti-
nation, and waypoints of the flows, which can be directly
translated into an NTA that has no resources and variables.

We summarize above NPLs in Table 1, and find that no NPL
supports all features. This partially confirms the necessity of
running cross-language programs in the same network. We
also present the NTA for a snippet of each NPL, and conclude
that NTA can express all semantics of those NPLs.

4.2 Composition Performance
We synthesize NTAs to test the composition performance.
We observe that the NTAs for real programs are relatively
small: for programs in listed in SNAP’s appendix [4], each

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

T
im

e
(s

)

#NTAs

Figure 4: The time cost of the parallel composition.

NTA has ∼4 nodes and ∼7 transitions on average. Thus, the
number of nodes and transitions in our synthesized NTAs
are set to 4–10 and 5–15, respectively. We note that the
sequential composition only operates the start and end nodes,
so its running time is independent of NTA sizes, and very
fast (within 1ms for two large NTAs). Figure 4 reports the
running time for parallel composition, with the number of
NTAs varying from 2 to 300, which shows to be moderate.

5 SUMMARY AND FUTUREWORK
This paper motivated the need to modularize the compiler of
NPLs with IR. We proposed such an IR, i.e., NTA, and showed
it to be expressive for 6 mainstream NPLs. We also proposed
two composition operators of NTA and showed it can effi-
ciently compose hundreds of NTA. While this work sheds
the light of realizing a complete modular compiler, there still
exists many challenges and future work, as outlined below.
Semantics completeness.NPL semantics is constantly evolv-
ing, from forwarding the packets [15], to reserving the re-
source [20], to stateful operations [3]. NTA can fully cover

6

An Intermediate Representation for Network Programming Languages APNet ’20, August 3–4, 2020, Seoul, Republic of Korea

those static semantics. Besides, there also exists the dynamic
semantics that negotiate the packet behaviors in the runtime,
e.g., bandwidth negotiation [20], latency minimization [10].
And there are approaches to compose the dynamic seman-
tics [5, 8]. Currently NTA cannot express or compose such
dynamic semantics, but we argue that they are realizable by
further extending the semantics of transitions in NTA.
Middle end optimizations. Previously, running multiple
programs in a single network is only achievable for the pro-
grams written in the same NPL [3, 15, 17], or between the
compatible/prioritized NDP rules [11]. NTA currently sup-
ports the parallel and sequential composition in the middle
end. In the future, it is possible to investigate other optimiza-
tions upon NTA, e.g., the network verification [22].
Compilation of NTA. As discussed in §2.2, conducting an
MILP could be a packaged solution for compilation. How-
ever, creating and solving MILP for NTA could be very time-
consuming, as the #constraints of MILP would exponentially
grow with complexity of intents, e.g., the path and resource
constraints, the consistency of variable placements. As a ref-
erence, SNAP takes more than 300s to solve a stateful intent
(without path constraints) on a 160-switch topology [3]. This
becomes more challenging if the incremental compilation is
demanded for minor changes in network (e.g., a link failure).
To this end, we could leverage the heuristics introduced in
SOL [9], which reduces the size of MILP by pre-eliminating
the impossible solutions. Another direction is to parallelize
the MILP solving, which might be infeasible for a single large
MILP [12], but should be effective if we properly partition
the problem and create many smaller MILPs instead.

ACKNOWLEDGMENTS
The authors thank the anonymous APNet reviewers for their
valuable feedback. This work is supported by NSFC (No.
61702407, 61772412, 61702049 and 61902307), and in part
by the Fundamental Research Funds for the Central Univer-
sities, InternetNZ, Computing and Networking Innovation
Lab, Technology Innovation Department, Cloud BU, Huawei
and MoE-CMCC Artifical Intelligence Project under Grant
MCM20190701. The work of Peng Zhang was supported by
the K. C. Wong Education Foundation.

REFERENCES
[1] 2018. Floodlight OpenFlow Controller. https://bit.ly/2Riemyh. (2018).
[2] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-

nin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
Semantic foundations for networks. ACM SIGPLAN Notices (2014).

[3] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer
Rexford, and David Walker. 2016. SNAP: Stateful Network-Wide Ab-
stractions for Packet Processing. In ACM SIGCOMM.

[4] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer
Rexford, and David Walker. 2016. SNAP: Stateful Network-Wide Ab-
stractions for Packet Processing. Technical Report.

[5] Alvin AuYoung, Yadi Ma, Sujata Banerjee, Jeongkeun Lee, Puneet
Sharma, Yoshio Turner, Chen Liang, and Jeffrey C. Mogul. 2014. Demo-
cratic Resolution of Resource Conflicts Between SDN Control Pro-
grams. In ACM CoNEXT.

[6] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cas-
cone. 2014. OpenState: programming platform-independent stateful
openflow applications inside the switch. ACM SIGCOMM CCR 44, 2
(2014), 44–51.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM CCR 44, 3 (2014), 87–95.

[8] Victor Heorhiadi, Sanjay Chandrasekaran, Michael K. Reiter, and Vyas
Sekar. 2018. Intent-driven Composition of Resource-management SDN
Applications. In ACM CoNEXT.

[9] Victor Heorhiadi, Michael K Reiter, and Vyas Sekar. 2016. Simplifying
software-defined network optimization using SOL. In USENIX NSDI.

[10] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, Praveen
Tammana, and David Walker. 2020. Contra: A Programmable System
for Performance-aware Routing. In USENIX NSDI.

[11] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015.
CoVisor: A Compositional Hypervisor for Software-Defined Networks.
In USENIX NSDI.

[12] Thorsten Koch, Ted Ralphs, and Yuji Shinano. 2012. Could we use a
million cores to solve an integer program? Mathematical Methods of
Operations Research 76, 1 (2012), 67–93.

[13] Zohaib Latif, Kashif Sharif, Fan Li, Md Monjurul Karim, and Yu Wang.
2019. A Comprehensive Survey of Interface Protocols for Software
Defined Networks. (2019). arXiv:quant-ph/1902.07913

[14] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
2012. A Compiler and Run-time System for Network Programming
Languages. In ACM POPL.

[15] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford,
David Walker, et al. 2013. Composing Software Defined Networks. In
USENIX NSDI.

[16] Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shri-
ram Krishnamurthi. 2014. Tierless Programming and Reasoning for
Software-defined Networks. In USENIX NSDI.

[17] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang,
Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma,
and Ying Zhang. 2015. PGA: Using Graphs to Express and Automati-
cally Reconcile Network Policies. In ACM SIGCOMM.

[18] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar,
and Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement
Using SDN. In ACM SIGCOMM.

[19] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and
David Walker. 2012. Abstractions for network update. In ACM SIG-
COMM.

[20] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone,
Robert Kleinberg, Emin Gun Sirer, and Nate Foster. 2014. Merlin: A
Language for Provisioning Network Resources. In ACM CoNEXT.

[21] C. Trois, M. D. Didonet Del Fabro, L. C. E. de Bona, and M. Martinello.
2016. A Survey on SDN Programming Languages: Towards a Taxon-
omy. IEEE Communications Surveys Tutorials 18, 4 (2016), 2687–2712.

[22] Peng Zhang, Xu Liu, Hongkun Yang, Ning Kang, Zhengchang Gu, and
Hao Li. 2020. APKeep: Realtime Verification for Real Networks. In
USENIX NSDI.

7

https://bit.ly/2Riemyh
https://arxiv.org/abs/quant-ph/1902.07913

	Abstract
	1 Introduction
	1.1 Problems of Monolithic Compilation
	1.2 Our Approach and Contributions

	2 Overview
	2.1 A First Look at NTA
	2.2 A Walk-through Example

	3 Network Transaction Automaton
	3.1 Definitions
	3.2 Expressiveness of NTA
	3.3 Composition of NTAs

	4 Preliminary Evaluation
	4.1 Expressiveness for Diverse NPLs
	4.2 Composition Performance

	5 Summary and Future Work
	Acknowledgments
	References

