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Abstract— Extracting fields from layer 7 protocols such as
HTTP, known as L7 parsing, is the key to many critical network
applications. However, existing L7 parsing techniques center
around protocol specifications, thereby incurring large human
efforts in specifying data format and high computational/memory
costs that poorly scale with the explosive number of L7 pro-
tocols. To this end, this paper introduces a new framework
named content-based L7 parsing, where the content instead of
the format becomes the first class citizen. Under this framework,
users only need to label what content they are interested in, and
the parser learns an extraction model from the users’ labeling
behaviors. Since the parser is specification-independent, both the
human effort and computational/memory costs can be dramati-
cally reduced. To realize content-based L7 parsing, we propose
REPLAY which builds on recurrent neural network (RNN) and
addresses a series of technical challenges like large labeling over-
head and slow parsing speed. We prototype REPLAY on GPUs,
and show it can achieve a precision of 98% and a recall of 97%,
with a throughput as high as 12Gbps for diverse extraction tasks.

Index Terms— Application layer protocol, deep packet inspec-
tion, protocol parsing, recurrent neural networks (RNNs).

I. INTRODUCTION

DEEP Packet Inspection (DPI) plays an irreplaceable role
in improving the performance and security of com-

puter networks. As more and more applications are encoding
their data using flexible data formats (e.g., XML/JSON), and
embedding them deeply into the payload of application-layer
protocols (e.g., HTTP/HTTPS), DPI often needs to extract
content from the payload of these application-layer protocols,
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commonly known as L7 parsing1 [1], [2]. Even most L7 pay-
loads are encrypted for private transmission on the Internet,
service providers still heavily rely on L7 parsing inside their
data centers where payloads are already decrypted, for real-
izing critical applications, e.g., data loss prevention [3], [4],
intrusion detection [5], big data analysis [6], and fine-grained
load balancing [7]. Besides, the network operators utilize
L7 parsing to troubleshoot their services by monitoring the
traffic between systems, which are not encrypted in the first
place, e.g., NFV/SDN monitoring [8], [9], application perfor-
mance management [10].

While L7 parsing has been heavily utilized in finer-grained
and domain-specific applications, current L7 parsing tech-
niques pose two serious issues.
Heavy human effort. Before extracting the content from
L7 protocol payload, most L7 parsers require operators to
specify the data format, i.e., specification, used by each
application. This requires heavy human effort even for a
single application. For example, to analyze a remote file
access behavior, the operators may have to explicitly learn the
data format of NetWare Core Protocol, which has more than
400 individual request types [5], [11]. It can take even more
effort if a protocol is proprietary, or constantly evolving. For
example, Qosmos, a famous DPI solution vendor, has hired
a team comprised of experienced engineers to ensure their
3000+ L7 specifications with 4500+ fields stay fresh [12].
Unscalable extraction overhead. Even with perfect data
format, L7 parsing is still faced with a high online extrac-
tion overhead. First, sequentially matching each protocol is
computationally expensive, making the parsing unacceptably
slow, especially when there are a large number of protocols.
On the other hand, merging the data formats of all protocols
can achieve a higher parsing speed, but will cause the memory
explosion problem [13]. For example, it is reported that the
DFA that merges 794 signatures from Snort consumes 5.29GB
memory [1]. Note that the above overhead, either in computa-
tion or in memory, depends on the number of specifications,
rather than the traffic to parse. Thus, even though the majority
of the traffic is irrespective, the L7 parsers will still incur the
overhead by having to cover a complete set of specifications.

Many efforts have been made to mitigate the above prob-
lems. For the first problem, recent work attempts to learn the
data formats from the raw traffic, a.k.a., protocol reverse engi-
neering [14]–[16]. However, preparing enough clean traffic for
format learning is time-consuming, as operators often do not
have the pre-knowledge of target protocols. Moreover, training
on the singular protocol would lacks accuracy on multiple
similar protocols, e.g., reverse engineering on web applications

1In this paper, we use the term L7 to collectively refer to all protocols that
operate above layer 4, and define the task of extracting critical content from
the payload of L7 protocols as L7 parsing.
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may generate identical specifications, since they share the
same format of the header (HTTP) and the content (HTML).
For the second problem, previous work tries to minimize the
combined automaton, but at the risk of lowering the parsing
speed [17], [18].

We observe that the root cause of the above problems lies in
the previous design principle of L7 parsers, i.e., first generating
the specifications, and then extracting the content accordingly.
Such principle makes operators focus on “how” to extract,
which varies in different specifications, and as a result, both
the human efforts and computation/memory cost grow linearly
or even exponentially with the number of specifications. This
paper proposes a new design philosophy for L7 parsing that
is fundamentally different from what its predecessors build
on. In this design, the users first specify the content that they
are interested in by labeling sampled traffic, based on which
the parser automatically learns how to extract from incoming
traffic. This design allows users to focus on “what” content
to extract on a small data set without considering the data
formats of the content. In this way, the human efforts and
parsing overhead only depend on the content itself, instead of
the specifications, leading to a more scalable performance.

Deep learning technique is an intuition to realize the above
content-based approach, which however will face several chal-
lenges if implemented naively: (1) the labeling process can
be even more costly than specification writing, since training
an accurate model requires large amount of labels, and (2)
the parsing speed tends to become the bottleneck due to the
complex computations for each input byte.

In this paper, we propose REPLAY, a deep learning
approach that realizes the content-based parsing, while
addressing the above challenges. Specifically, REPLAY adopts
the recurrent neural networks (RNN) as the footstone, and
enhances it from several perspectives: (1) REPLAY combines
semi-supervised learning and active learning schemes into
RNN, so as to learn the extraction behaviors from only a minor
amount of labeled data, and (2) REPLAY selectively parses
the input that might be useful for extraction, which greatly
accelerates the parsing due to the low value density of network
traffic. Combining the above enhancements, we advocate that
REPLAY is an application-oblivious L7 parser, which extracts
fields for all applications by the labeled content at line rate,
without any pre-knowledge of protocol specifications.

The main contributions of this work are as follows:
• We propose the framework of the content-based parser,

whose application-oblivious property makes it possible
to minimize human intervention while achieving high
accuracy and minor overhead (Section III).

• We design an RNN equipped with semi-supervised learn-
ing, active learning and selective parsing techniques, so as
to use a small amount of samples to train a model that
is accurate and efficient in real time (Section IV).

• We implement REPLAY and evaluate it with diverse
L7 traffic datasets. The experimental results show
that REPLAY is able to achieve scalable performance
of 12Gbps throughput with 98% precision and 97%
recall in an intricate data environment (Section V and
Section VI).

II. CURRENT PRACTICE AND PROBLEMS

Generally speaking, existing L7 parsing can break down into
two stages: off-line specification generation and on-line field

Fig. 1. An SMTP message flow. The shadowed text are expected to be
extracted.

extraction. In the following, we show how these two stages
work, highlighting their inefficiency in both human labor and
system performance.

A. Specification Generation

The goal of the specification generation stage is to obtain a
specification on the data format for different application.2 To
achieve this, there are two options, i.e., manually writing an
accurate specification, or manually/automatically generating a
coarse-grained specification. We will use a simple example to
show the problems of these two options. As shown in Fig. 1,
suppose we want to extract the subject and the content
fields from emails sent through the SMTP protocol.

For the first option, we can manually write the format
of SMTP protocol exactly following RFC 5321, which has
95 pages [19]. Due to the complexity of modern protocols,
it can take days to write an accurate format for a single
protocol [2]. Worse still, if a protocol is proprietary without
public description, we need to manually analyze the format
from the raw packets, which can take longer time. Considering
there can be tens to thousands of L7 protocols, this manu-
ally specification writing process clearly requires prohibitive
human efforts.

As another option, we can generate a coarse specification
using regular expressions (RegEx). To extract the mail subject,
we can write a RegEx Subject: (.*)\r\n to extract the
subject field. This coarse specification can raise lots of false
positives, as it can match arbitrary non-SMTP content contain-
ing the word “Subject”, e.g., an HTML page introducing the
SMTP protocol [20]. For reducing such false positives, the cur-
rent approaches go to another extreme: the operators write
the RegEx-based specifications very carefully, to ensure that
only the samples they have seen can match the specifications.
This, in contrast, generates lots of false negatives. For example,
l7filter as a famous RegEx-specification set, can achieve high
precision (nearly 100%), but only with a recall of 70% [21].
Moreover, for mail content extraction, we need to locate and
store the boundary field, which cannot be achieved by
RegEx-based specification due to its low expressiveness.

Apart from manually writing, some methods learn RegEx
by clustering similar strings from the clean traffic for a specific

2A specification corresponds to a certain application, which describes the
format of the protocol of the application. As a result, we use “specification”,
“application” and “protocol” interchangeably.
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application [14]–[16]. Such reverse-engineering methods lead
to similar problems with handed-writing method, i.e., potential
false positive and low expressiveness. Besides, their perfor-
mance heavily relies on the quality of input traffic. As a result,
to obtain a sufficiently accurate specification, it takes much
human effort to clean the input traffic beforehand, especially
considering that the operator does not have any pre-knowledge
of the protocol, e.g., signature, port.

B. Field Extraction

Based on the specifications obtained from the last stage,
the corresponding L7 parsers can be automatically gener-
ated [2], [5], [22], which aims to extract interested fields
from real traffic. Considering multiple L7 protocols coexist,
we need to extract fields based on multiple specifications
simultaneously. There are roughly two ways to achieve this.
One is rather straightforward: for each piece of content,
we try each specification one-by-one, until there is a match.
Obviously, the computation complexity of this method grows
linearly with the number of specifications, and can result in
prohibitive running time when there are a large number of
specifications.

For the second method, we can combine all the specifi-
cations to achieve a scalable extracting speed. For example,
we can merge multiple RegExes into a single one, so that the
extracting time can be scalable with the number of specifica-
tions. However, this method can consume a large volume of
memory due to the exponential increase of states. For example,
it is reported that the DFA that merges 794 signatures needs
5.29GB memory [1], and merging only 38 specifications can
take up to 5× memory than the individual ones [13]. Recalling
the potential large amount of specifications, the memory
explosion could be a fatal issue of this mechanism.

In sum, the above overhead does not scale with the num-
ber of specifications, and always exists no matter what the
inspected traffic or interested fields are. However, in real
scenarios, the majority of the traffic would just be “noises”
that do not interest operators. As a reference, the relative value
density of the data generated in the Internet is only 6.25% [23].
Wasting so much computation/storage resources on the noisy
data makes existing field extraction methods rather unscalable.

III. APPLICATION-OBLIVIOUS PARSING

A. Observations and Intuition

Our solution to the above problems of L7 parsing is based
on the following key observations and intuitions.
Observations. After a close examination of the first stage of
L7 parsing, i.e., specification generation, we find that it nat-
urally decomposes into two steps. First, the operator inspects
the traffic samples and identifies the content that interests her,
i.e., the bytes she seeks to extract. Then, she could examine
the context of the content, e.g., keywords, separators around
the content, and generalize it into an accurate specification.
Our key observation is that the first step is relatively easy, but
the second one is a highly demanding task.

1) Identifying the interested content is easy. The reason is
threefold. First, the operator often focuses on a small
portion of fields, e.g., Content-Type, Message-ID
in SMTP are irrelevant when analyzing the mail content.
Second, the content to extract often has clear separators,
e.g., \r\n in HTTP, <> in XML. Third, most fields have

semantic meanings and are easy to recognize, e.g., MAIL
FROM field in SMTP protocol. Thus, the interesting
content can be easily identified even the operator does
not have intimate knowledge of L7 protocols.

2) Generalizing the specification is hard. Recall that the
goal of generalization is to summarize the data format
specifying the way all the content is organized. As a
result, the information of how the interested content is
identified in the first step is of little help for this step:
the identification only reveals the format patterns near
the target content, while the rest part remains obscure
to the operator without the aid of such content. If the
operator summarizes the specification from the limited
patterns, it would raise false positives as discussed in
Section II-A; otherwise, she must refer to the protocol
details for correct generalization.

Intuition. Based on the above observations, we identify the
root cause of the hard specification generalization as the lack
of the uninterested information in the sample traffic: they can
rule out the false positives due to the true positive nature of
the sample traffic, but are hard to summarize without the help
of the intelligible content.

To this end, we have the following intuition to fulfill such
missing part: we can let the operator remain focusing on the
first step, i.e., identifying the interested content, and let the
parser itself generalizes an extraction model (rather than a
concrete format specification) from the examined samples, by
learning both their interested and uninterested contexts. This
is essentially shifting the goal of generalization from the spec-
ification to the content, bypassing the difficulty of clarifying
the uninterested chaos. As a result, the L7 parsing becomes
application-oblivious, since we no longer need to care about
data formats specified by different L7 applications. Moreover,
as the parsing workload only depends on the content, the
parsing speed can scale with the number of applications.

B. Content-Based L7 Parsing Framework

Based on the above intuition, we propose a new framework
termed as content-based L7 parsing. Different from previous
techniques, in our framework the content instead of the for-
mat becomes the first-class citizen. In a nutshell, operators
explicitly indicate “what” content they are interested in by
labeling it in sampled traffic, and based on the labeled traffic,
the L7 parser learns “how” to extract them for real traffic. In
the following, we will use an SMTP example to illustrate the
workflow of content-based L7 parsing, which consists of two
stages: off-line training and on-line extracting.

In the training stage, the operators are offered sample
traffic, and should explicitly label the content that they want
to extract. The labels are a sequence of tags, representing
different extraction behaviors for the corresponding byte, e.g.,
extracting or not, extracting as a key or a value. The parser
takes the labeled traffic as input, and learns an extraction
model that captures how the operators extract the content.
As shown in the top of Fig. 2, the operator highlights the
subject (i.e., “accepted paper”) in the SMTP payload. From
such labeling behaviors, the parser learns the patterns in the
complete context for content extraction, such as the separators
(e.g., colons and newlines) and keywords (e.g., “From”, “To”,
“250 OK”). Note that the training data contains flows that are
with and without interested content, denoted by “positive” and
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Fig. 2. A content-based parser learns the extraction behaviors from the
labeled flows off-line, and extracts fields in real-time.

“negative” flows respectively, where the latter ones are learned
to distinguish similar extraction behaviors.

In the extraction stage, the parser takes the byte sequence of
each flow as the input, and outputs a prediction, i.e., the extrac-
tion behaviors, based on the extraction model. As shown in
Fig. 2, for an incoming real flow (left bottom), the parser
outputs a sequence of extraction behaviors (right top), where
1 for extracting, 0 for not extracting. The final prediction is
to extract the mail subject, i.e., “Hello!” (right bottom).

There are two benefits for the content-based L7 parsing.
Little human effort. In the training stage, the operators
only need to pick out the content they want to extract,
without being disturbed by the complicated data format. Such
application-oblivious nature results in two advantages on min-
imizing the human efforts: (1) operators are not required to
have any pre-knowledge of protocol specifications, as shown
in Section VI-C that even the inexperienced operators can
generate the extraction model for 12 applications in a very
short time; (2) each labeling process is independent from one
another, so the whole labeling tasks can be conquered by
multiple operators simultaneously, while in contrast, the spec-
ification writing is based on the knowledge gradually obtained
through its process, which can hardly be parallelized.
Scaling with the number of applications. Instead of
generating model for each application, the content-based
parser extracts fields by a universal extraction model for
all applications, which enables the scalability of the number
of applications in real-time parsing: (1) the universal model
performs exactly the same computations on all input sequences
no matter how many applications are involved, and (2) the only
storage cost of content-based parser is the parameters of the
extraction model, which takes stable and minor memory.

In this way, we claim the content-based parsing framework
is application-oblivious in both labeling and parsing.

C. Realizing L7 Parsing With RNN

In this paper, we employ a recurrent neural network (RNN)
based approach to realize content-based L7 parsing. RNN
is a type of artificial neural network that is able to process
sequenced inputs, by the ability to perceive temporal informa-
tion. RNN has been successfully employed in context-sensitive
applications such as machine translation [24], speech recog-
nition [25]. Specifically, given a sequence of d-dimensional
inputs X = {xi ∈ R

d}T
i=1 and a specified time t ≤ T ,

a RNN reads the input xt as well as its previous hidden state
ht−1, and updates its hidden state according to the mapping
ht = fΘ(xt, ht−1), then it outputs the current prediction
by ot = gΘ(ht), where h and o are vectors with arbitrary
dimensions, and f and g are functions parameterized by Θ.
The goal of L7 parsing hence can be defined as obtaining the

set O which contains all the possible sub-sequences Ô ⊂ O
that make positive predictions, where O = {oi}T

i=1 is the
output sequence.

However, the classical RNN has several problems that make
it impractical to directly serve as the content-based parser.
Expensive labeling task. Even the content-based L7 parsing
can potentially save human efforts in generating specifications,
it is still necessary to label sampled traffic by operators.
The classical RNN has to be trained in a fully supervised
way [26], i.e., all the training data should be labeled. As a
result, the operators need to label a large amount of data to
train an accurate extraction model.
Poor sample quality. The sample quality measures the degree
to which the samples contribute to the training of extraction
model. Samples with good quality should fully capture the
contents to extract, which cannot be ensured by randomly
picking from the unlabeled data sets. Recall the SMTP exam-
ple in Fig. 1, if the mails in all positive samples have only
one receiver, the extraction model may ignore the mails with
multiple receivers in real traffic, since it has not seen such
mails in the training stage.
Slow parsing speed. In classical RNN, each byte has to
be computed through matrix multiplications and exponentia-
tions, which heavily degrades the parsing speed. For example,
the extraction model in Fig. 2 can only achieve ∼0.9Gbps
throughput even with a high-end platform of two GPUs.
The slow parsing speed greatly limits the application of
classical RNN for real-time parsing in high-speed networks.

In the next section, we will show how REPLAY overcomes
the above limitations by extending the classical RNN.

IV. DESIGN OF REPLAY

After setting a basis of REPLAY with RNN (Section IV-A),
this section presents three techniques to enhance REPLAY,
which respectively addresses the challenges listed in
Section III-C: (1) the semi-supervised learning scheme to
reduce the amount of required labeled data (Section IV-B);
(2) the active learning scheme to select high-quality data
for labeling (Section IV-C); and (3) the selective parsing to
speed up the parsing process by dropping meaningless data
(Section IV-D).

A. Setting a Basic RNN

Before introducing the enhancements, we need to first set a
basic RNN structure for REPLAY. We note that the classical
RNN lacks the complete understanding of the input: the
context only includes states before the current input, i.e., ht−1.
For example, suppose we want to extract the Method field
of HTTP protocol, e.g., GET/POST. Since there is no other
bytes before this field, classical RNN cannot collect enough
context. As a result, we may end up always extracting the first
few bytes of all traffic using RNN.

REPLAY adopts a typical encoding-decoding structure
to address this problem [26], as shown in Fig. 3. First,
the encoder reads the whole input sequence, and generalizes
sT as the complete understanding, where T is the length of
the input. Then, the decoder takes sT as its initial hidden state
(h0), and performs typical recurrent computations to output
the prediction. We present the architectures of the encoder
and the decoder as follows.
Encoder. REPLAY constructs the encoder using the Gated
Recurrent Unit (GRU), a gating mechanism that can adaptively
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Fig. 3. The encoding-decoding RNN.

capture the dependencies among different time steps, thereby
achieving a more comprehensive generalization, especially for
long input sequences [26]. As shown in the left part of Fig. 3,
GRUs calculates and passes on the hidden state st, i.e., st =
GRUs(xt, st−1; Us, Ws), where s0 is initialized as a zero
vector, Us ∈ Θ, and Ws ∈ Θ are weights of GRUs. Here the
bias parameters in GRU are omitted.
Decoder. The right part of Fig. 3 shows the decoder that
outputs ot as the prediction. Specifically, a hidden state ht

is calculated by GRUh, i.e., ht = GRUh(xt, ht−1; Uh, Wh),
where h0 is initialized as the output of encoder, i.e., sT ,
and Uh ∈ Θ, Wh ∈ Θ are weights of GRUh. Given ht,
a softmax classifier is used to predict the label of xt,
i.e., ot = softmax(htV ), where V ∈ Θ is the weights
of the classifier. Here we use the hierarchical softmax
(H-softmax) [27] instead of the typical softmax function to
ensure the scalability, which outputs an N -bit binary code
to represent the selected extraction behavior (see details in
Section V).
Basic learning process. Given the encoding-decoding
structure, the learning phase of REPLAY is intuitively super-
vised: injecting the training input x, for each time step t
(each byte of the input), comparing the prediction ot with
the ground truth yt, and adjusting the computation weights
accordingly. Specifically, the goal of training is to estimate
the set of optimized global parameters Θ = arg minΘ J(Θ).
J(Θ) = 1

T ΣL(ot, yt|Θ) is the loss function to minimize,
where L(ot, yt|Θ) represents the error between ot and yt.

However, due to the low value density, we have to deal with
the class imbalance problem [28]: since only a few bytes of
an input sequence are interesting to the operators, common
loss function will encourage the extraction models to increase
the accuracy by not extracting any byte(s). To overcome this
problem, we introduce the proportion of the extraction behav-
iors into the loss function. Consider an extraction behavior i,
its proportion for an input sequence will be:

prop(i) =
the number of bytes that fall into i

total number of bytes
(1)

Next, we can add this factor into the loss function to balance
the contribution from each extraction behavior, where the goal
is to minimize the cross entropy (CE) between the ground truth
yt and the prediction ot = p(yt|x1:t, θs, θh, θo):

JL(θs, θh, θo) =
1
T

T∑
t=1

CE(yt, ot)
prop(yt)

(2)

where θs = (Us, Ws), θh = (Wh, Uh).
We use Adam optimizer [29] and back-propagation through

time (BPTT) [30] to optimize the parameters.

Fig. 4. Semi-supervised learning process.

B. Reducing the Number of Required Labels

The supervised training of RNN requires lots of “expensive”
labeled data [26]. On the other hand, the unlabeled data is
very “cheap”. Therefore, REPLAY adopts a semi-supervised
learning (SSL) scheme to reduce the number of labels,
by leveraging the unlabeled data. The novelty of this process is
that REPLAY proposes a new autoencoder structure to realize
SSL, which gains better understanding in L7 parsing scenario.
How SSL works. Fig. 4 shows the SSL process of REPLAY,
which consists of two stages. In the first stage, SSL feeds the
unlabeled data into RNN, and the decoder is expected to output
extra information rt for each input. REPLAY collects these
outputs to perform an unsupervised optimization to obtain a
rough Θ. In the second stage, based on the obtained Θ, SSL
performs the typical supervised learning process as presented
in Section IV-A. The warm-up unsupervised learning in the
first stage can learn the inherent features of the unlabeled data,
e.g., the boundaries of different semantics (fields). Since the
labeled data used in supervised phase also comes from the
unlabeled data, those features are of great help to “complete”
the patterns that are not described in the limited labeled
samples, resulting in a model with better understanding.

The key of realizing the SSL process is the unsupervised
learning phase. Specifically, in the phase we need to (1) extend
the decoder to output an effective rt, and (2) design the
training objectives to obtain an initial sensible Θ.
Extending decoder with autoencoders. Autoencoder is an
essential component to realize SSL in conventional areas
like question-answering system [31], [32]. The basic idea
of autoencoder is to learn an approximation of the identical
mapping function, which can yield a sequence (r1, . . . , rT )
that is similar to the input sequence (x1, . . . , xT ). This process
is expected to generate a sensible initial Θ, which can provide
more meaningful features for handling the labeled data than
the randomly initialized weights.

The key that the autoencoder can reproduce the input
sequence in previous natural language processing (NLP) sce-
narios [33], [34] is that it has a complete understanding from
the encoder, i.e., ST . However, T in L7 parsing scenario is
much larger than it in NLP scenarios, e.g., an HTTP response
can have hundreds of kilobytes, while in NLP, the processing
targets are mostly several sentences or paragraphs within 1KB.
As a result, the information of xt+1, . . . , xT deduced from ST

would be “forgotten” after so many time steps, and can barely
contribute to reproducing the original input xt. To this end,
we design a new autoencoder structure for dealing with the
long contexts in L7 parsing scenarios.

Fig. 5 presents the decoder extended with the newly
designed antoencoders. The left part is its inner-encoding
process to output ht, which acts as the decoder in Fig. 3, while
the right part is the inner-decoding process to obtain rt with
the help of ht. Specifically, the inner-encoder will sequentially
reads the input xt and previous state h

(fw)
t−1 , and generates

a forward hidden state h
(fw)
t at each time step t. After
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Fig. 5. Extended decoder with autoencoder.

Fig. 6. Better understanding from the proposed autoencoder.

that, the inner-decoding GRU (GRUr) in the inner-decoder
reversely reads h

(fw)
t and previous state h

(bw)
t+1 , and generates

a backward hidden state h
(bw)
t at the corresponding time step t.

Next, a sigmoid function would process such states and output
the rt = sigmoid(h(bw)

t Vr).
The intuition behind this process is as follows: if consid-

ering the propagation of the hidden state, we can roughly
say that ST is obtained by x1, . . . , xT in the encoder, and
h

(fw)
t is obtained by ST and x1, . . . , xt in the inner-encoder.

Recall that h
(bw)
t+1 is calculated using h

(bw)
t+2 and h

(fw)
t+1 . The

former embeds the information of xt+1 into h
(bw)
t+1 , while

the later adds the information of xt+2 and h
(bw)
t+3 . In sum,

h
(bw)
t+1 contains the information of xt+1, . . . , xT . Intuitively,

x1, . . . , xt and xt+1, . . . , xT can decide the encoding of
the separator, i.e., xt, while x1, . . . , xT can ensure that the
above two sub-sequences are from the same input. Therefore,
the combination of h

(fw)
t and h

(bw)
t+1 could generate an infor-

mative h
(bw)
t to obtain an accurate rt for reproducing xt.

In the literature, the bidirectional RNN [35] also employs
the backward hidden state to better understand the current
context. The major difference is that the bidirectional RNN
directly uses the forward and backward information to output
the final prediction, while our design leverages those informa-
tion to reproduce the input. In other words, our design com-
bines the merits of autoencoder and bidirectional RNN, which
can provide better understanding and faster convergence.
Unsupervised training objectives. Recall the grouped para-
meters of Θ, the unsupervised training phase would obtain
an initial parameters of the encoder and inner-encoder, i.e., θs

and θh. We further define a new parameter set θr : {Wr, Ur}.
Then the goal of unsupervised training is to minimize the
difference between the current input xt and rt over unlabeled
samples, by calculating the mean squared error (MSE):

JU (θs, θh, θr) =
1
T

T∑
t=1

MSE(rt, xt) (3)

Fig. 6 compares the convergence effect of previous and
newly designed autoencoder on the same data set, where we
use the training loss, i.e., the deviation between the ground
truth and the prediction, to measure the effectiveness of the

Fig. 7. Starting with a minor amount of labeled flows, BMAL selects
informative unlabeled samples for labeling manually.

model. It shows that the new autoencoder can decrease ∼30%
training loss. Note that the previous autoencoder reproduces
the input sequence by iteratively predicting the next input,
while our design is reproducing the current input. However,
as they both reproduce the complete input sequence, the
training loss in Fig. 6 is calculated based on the same input
(original sequence) and the same output (the reproduced
sequence), which is still a fair comparison.

C. Improving Sample Quality

Though SSL largely reduces the number of required labeled
flows, the sample quality remains a concern. Specifically,
we cannot ensure the diversity of the labeled flows used in
SSL, so the learned model may not completely reflect the
extraction behaviors. The other problem related to the sample
quality is the data amount to be checked: to obtain enough
good-quality flows, the operator needs to check many more
unlabeled flows, which heavily burdens the labeling work.

REPLAY applies the batch mode active learning (BMAL)
scheme as a complementary to SSL, which iteratively selects
informative unlabeled data for human labeling [36], [37]. The
novelty of this process is that REPLAY propose an algorithm
for identifying the high-quality samples with H-softmax.
How BMAL works. Fig. 7 depicts the learning process
combining SSL and BMAL. At each iteration, BMAL selects
a batch of samples from the unlabeled flows with the largest
uncertainty for labeling manually, and SSL would be retrained
with the additional labeled samples. The learning process
ends when the trained model can ensure high accuracy. With
such high-quality samples, the accuracy of the extraction
model can be ensured with smaller amount of labeled flows.
Besides, through this process, the operator need not manually
or randomly check the unlabeled flows, but focuses on the
most informative ones provided by BMAL.

The key of BMAL is, it identifies the samples with largest
uncertainty (lowest confidence) are more informative for
describing the boundaries of the extraction behaviors. In the
following, we will first propose the algorithm that calculates
the confidence, and then present the workflow of the BMAL.
Selecting algorithm. Recall the H-softmax function outputs
an N -dimensional vector ot to represent the final extraction
behavior for each input xt, where each dimension has a
probability ot,i. Then, for any possible extraction behavior
j ∈ {1, . . . , 2N} and its N -bit binary representation bj , we can
calculate the similarity between ot and bj by each bit, as
g(ot,i, j) = bj,iot,i + (1 − bj,i)(1 − ot,i). The probability of
selecting j as the final decision for ot is calculated as:

p(j|t) =
N∏

i=1

g(ot,i, j)) (4)

js = argmax p(j|t) is selected as the final extraction. It
is obvious that a low p(js|t) means that the model cannot
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well distinguish all the extraction behaviors, i.e., with large
uncertainty.

Finally, we take the variance Cd = 1
Td

∑Td

t=1 p(js|t)2 as the
confidence of the sample d, where Td is the length of d.

D. Speeding Up Extraction

To obtain an accurate prediction over each input, RNN has
to check the complete input sequence, which heavily lowers
the parsing speed, considering the complex computation in
each time step. Previous L7 approaches face the similar
challenge, and they address it by skipping the useless bytes
through parsing, a.k.a., selective parsing (SP). Their principle
is to skip the pure content that is irrelevant to resolving the
protocol format. For example, when parsing a HTTP response
with Content-Length field, the payload of this response
can be directly skipped by counting the length. However,
content-based parser cannot simply apply this technique for
acceleration due to the absence of specifications.

REPLAY designs a novel scheme to effectively realize SP in
RNN. Specifically, at each time step, REPLAY checks whether
the rest input contains interested content, and drops the whole
input if the answer is no. Since the real traffic is noise-
dominating, REPLAY can expect a much higher throughput
by early dropping the long tails of the meaningless data.
Design of stop trigger. Recall the encoder of RNN that reads
the whole input, we can reuse this component to output the
stop decision for input sequence, besides st, since this process
can capture the comprehensive understanding of the input.
To be specific, another non-recurrent layer (sigmoid) is added
into encoder to read st and output zt = �zt−1sigmoid(stVz)�,
where zt is the probability of continuing parsing, named “stop
trigger”. That is, once zt−1 is small than 0.5, all of the next
zt will be zero, so that the stop decision can be propagated.

We then compute a new hidden state at time step t,
ŝt = st−1(1 − zt−1) + stzt−1. That is, if we decide to stop
the parsing, i.e., zt−1 = 0, ŝt will be the same with st−1.

In the training stage, since we have to perform a back deriv-
ative for tuning the parameter in the encoder, the computation
would continue with this same ŝt. Recalling the rounding
update of zt, this ensures the final hidden state of the encoder,
i.e., ŜT , is the same with st̂, where t̂ is the time step that
pulls the stop trigger. As a result, the decoder in the training
stage will not try to understand the dropped bytes.

While in the testing stage, the encoder will directly truncate
the input if finding zt = 0, and the decoder will only
process the truncated input, which is the key to save the
computation.
Training stop trigger. The stop trigger is trained after the
SSL process. The only parameter to be trained is the weight
for the sigmoid function, i.e., θz = {Vz ∈ Θ}, since Us

in the encoder has been well adjusted. We tune θz in a
supervised way by again using the labeled flows obtained in
BMAL process. We then use SGD and BPTT to fine tune
zt by comparing ôt with the ground truth yt, to minimize
the cross entropy JZ(θz) between yt and the prediction
ôt = p(yt|x1:t, θz):

JZ(θz) =
1
T

T∑
t=1

CE(yt, ôt)
prop(yt)

(5)

We note that some RNNs (e.g., word2vec [38]) employ
the “end of sentence” (EOS) token to “stop” analyzing the

sentences, which is a quite different concept with SP. The key
is that in the NLP scenario, the EOS token can be manually
specified in the text, e.g., the period or the line break. While
in L7 parsing, we do not have such natural terminals, instead,
REPLAY learns the proper location to stop the parsing.

V. IMPLEMENTATION

We implement REPLAY with TensorFlow r1.8 [39] with
∼1800 lines of Python code, including all training and testing
modules. Here we highlight several key designs.
Embedding. We encode each byte into an 8-dimensional
vector with the value of its binary ASCII code before feeding
it into REPLAY. Compared with the commonly used one-hot
embedding, this embedding approach trades off the accuracy
for efficiency. Ideally, the memory size of embedding can be
reduced by 31

32 with ASCII-based embedding compared with
the one-hot embedding, as row size of RNN is reduced from
256 to 8. That is, given the limited memory, REPLAY can
process much more neural cells in parallel with ASCII-based
embedding to accelerate the inference. The results in Table III
show that REPLAY with ASCII-based embedding is three
times faster than it with the one-hot embedding, at the cost of
only 1.8% degradation of accuracy.
H-Softmax. The typical softmax function outputs ot as an
N -dimensional vector, where each dimension represents the
probability of an extraction behavior for xt. That is, the size of
ot and other weight vectors in Θ will linearly increase with the
number of extraction behaviors, which heavily slows down the
computation in RNN. Instead, REPLAY employs H-softmax
function, which does not output the probabilities of all extrac-
tion behaviors. Instead, it outputs an N -dimensional vector,
where each dimension indicates the probability of selecting
0 and 1: if the probability is less than 0.5, it should be 0,
otherwise it should be 1. In the end it will result in a binary
encoding with length N , which represents a certain extraction
behavior. In other words, the N -dimensional vector can clas-
sify 2N extraction behaviors. In our prototype, REPLAY can
classify 216 extraction behaviors with a 16-dimensional vector
for each ot, which is plenty enough to ensure the performance
scalability with the number of applications.
Extraction post-processing. The content-based parser outputs
extraction behaviors for each byte, so it is possible the
final extracted content is not continuous as a single field,
making it hard to be directly used in real scenarios like SDN
control system. To this end, we propose a simple heuristic
to post-process the extractions for producing a complete yet
still accurate extraction result. Specifically, for each extraction
behavior, if the extracted content is continuous, we directly
use this result. Otherwise, we use the longest continuous
extracted content as the baseline, and calculate the distance
between it and other extracted content. If the distance is
within a threshold, REPLAY will identify the gap text as
the false negative, and merge the baseline and the gap text
as well as the separated extracted content to compose the
final result. Otherwise, REPLAY will identify the separated
extracted content as the false positive and directly drop them.
Experiment in Section VI-E shows that this heuristic works
well for our data set, which can achieve even higher accuracy,
because some errors are fixed through this heuristic.
Hyperparameters. When training with SSL, all the weights
in Θ are initialized by sampling from a truncated normal
distribution with standard deviation of 0.01, and all the bias
parameters are initialized to zeros. To avoid the over-fitting
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problem, we employ a dropout wrapper [40], [41] with a keep
probability of 0.5 and L2 regularization with scalar of 0.01.
We set the learning rate initially to be 0.001, and dynamically
reduce it when the loss stops decreasing during training. We
end the training if the loss on the whole epoch converges to a
stable value, e.g., not decreasing in continuous 10 iterations.
GPU platform. GPU platform is an intuitive choice for
implementing a computation-intensive system like REPLAY.
One major concern of this heterogeneous processor is how
to well use the large number of processing units without
performance penalty brought by frequent I/O with CPU. Our
implementation builds multiple pipelines to asynchronously
feed training/testing flows from CPU memory to GPU, and
the GPU processing units will greedily read data from these
pipelines to maximize the parallel processing ability.

VI. EVALUATION

In this section, we experimentally evaluate REPLAY. Our
experiments cover a series of realistic data set with many
related approaches, which answer the following questions:

(1) Can REPLAY achieve high throughput and high accu-
racy at the same time? We find that REPLAY can reach
over 10Gbps throughput while ensuring ∼97% precision
and recall on the mixed data sets (Section VI-B).

(2) Is REPLAY cost-effective to learn an extraction model?
We find that even an amateur operator can handle
12 applications with various extraction requirements
in 3 hours with the help of REPLAY (Section VI-C).

(3) Does the model learned by REPLAY generalize to
the new extraction cases? Our results suggest that
REPLAY can maintain its high accuracy, even tested
on a different dataset or for more complex data formats
(Section VI-D).

(4) How sensitive is REPLAY to various factors? Our results
show that the performance of REPLAY is largely unaf-
fected by these parameters, e.g., 20 initial labeled flows
are sufficient for high accuracy (Section VI-E).

A. Methodology

Data set. To evaluate the application-independence of
REPLAY, we collect L7 traffic from 12 applications. Each
traffic consists of 5,000 samples, where 3,000 of them are
used as the training set, and the rest forms the testing set.
We involve not only the typical L7 protocols, e.g., HTTP,
SMTP, but also user-defined protocols embedded in L7 pay-
load, e.g., YouTube video information based on JSON, RSS
based on XML. We obtain above traffic from the real world
or by widely used traffic sampler/tester for a realistic eval-
uation. Table I depicts the details of the collected traffic,
where “extract rate” represents the average proportion of the
extracting bytes from the flows. The “real traffic” in the table is
collected from a campus network, which is anonymized before
given to us. Note that all the samples in the data set have
been automatically labeled according to manually generated
specifications, while for the testing samples, such gold labels
are only used when verifying the correctness of extraction.

To simplify the experiments, we randomly group all appli-
cations into 12 sets as shown in Table II. We also prepare a
pure noise data set without any interested information.
Ethics statement. The operators who capture the traces from
the real users anonymized the traces by the following steps:
(1) reassembling the L4 payload (i.e., L7 data) and removing

TABLE I

THE TRAFFIC OF COLLECTED APPLICATIONS

TABLE II

THE GROUPED DATA SETS

all L2-L4 headers; (2) modifying the privacy-related fields
(e.g., QQ number) through an irreversible hash function. We
only have the rights to access the anonymized traces. We also
discuss other privacy issues in Section VII.
Involved approaches. For comparison, we introduce several
approaches into the evaluations alongside with REPLAY.
To evaluate the impact of the proposed three techniques,
i.e., SSL, BMAL, SP, we remove each of them from
REPLAY to implement three sub-optimal approaches, denoted
as REPLAY/SSL, REPLAY/BMAL, and REPLAY/SP, respec-
tively. As for specification-based approach, we use the binaries
from COPY [13], which can be configured as a sequential-
or combined-specification parser, referred as sequential and
combined parser respectively.
Experimental settings. For training experiments, we mix
the training sets of all 12 applications, and combine them
with pure noises to make an unlabeled training set that
consists of 100K flows. For testing experiments, we select
2000 samples in total from the target application testing sets,
and combine them with other testing sets to keep the noise
rate (the volume of the uninterested flows divided by the total
traffic volume) to be 80%. For example, to test A2, we will
respectively select 1K samples from the testing sets of SMTP
and Weibo. And then we randomly fulfill this new testing set
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Fig. 8. Precision and recall vs. #applications.

with traffic from other applications’ testing set and the noise
set, until the noise rate reaches 80%.

In BMAL process, we assume an initial labeled set with
20 positive flows in total for all interested applications, and
select 100 samples each time from the unlabeled flows.
Without otherwise specified, all content-based approaches
are trained with 300 labeled flows along with all unlabeled
flows (if needed). These labeled flows are selected from the
BMAL process, and for REPLAY/BMAL, we randomly select
300 positive flows from the corresponding training set.

All experiments are conducted on an x86 platform
(20× Intel 2.2Ghz CPU, 64GB memory) with 2×Nvidia Tesla
K80 GPU (12GB memory for each GPU). Our implementation
can use both GPUs at the same time for acceleration.

B. Performance

Accuracy. We verify the correctness of REPLAY by compar-
ing the extraction results with the pre-generated labels. Two
metrics are considered in the evaluation: precision and recall
(“Pre” and “Rec” in the figure), which are defined as TP

TP+FP ,
and TP

TP+FN , respectively. Here TP denotes the number of
interested bytes that are correctly extracted, FP denotes the
number of meaningless bytes that are wrongly extracted, and
FN denotes the number of interested bytes that are missed.
Note that here we calculate the byte-level accuracy, and the
accuracy after post-processing is shown in Section VI-E.

Fig. 8 shows the accuracy of all four content-based
approaches trained with different number of applications.
REPLAY yields a precision of 98.6% and a recall of 97%
averagely over all cases. The accuracy is quite stable, proving
the application-oblivious feature of REPLAY.

REPLAY/SSL achieves a good precision (∼93%), since
it can correctly recognize the testing samples that are very
similar to the training ones. However, its recall is unaccept-
able (lower than 80%), because hundreds of labeled sam-
ples are far less than it requires to completely understand
the extraction. Recall REPLAY/BMAL is trained with pure
positive samples that are sub-optimal, it therefore suffers a
∼3% accuracy penalty compared to REPLAY. We note that
it is an ideal case of REPLAY/BMAL, since it could be
expensive to obtain 300 positive samples without BMAL,
and if we randomly select and label 300 samples, most of
them would be negative, which will dramatically lower the
accuracy. REPLAY/SP checks every byte of the input, and
expects to be the most accurate approach, while REPLAY
achieves a near-optimal accuracy with only ∼1% degrade than
REPLAY/SP.

As a comparison, when parsing HTTP, QQ and DNS pro-
tocols, a specification-based parser results in 11.7% and 2.4%
fault rate (the mis-identified bytes divided by the total bytes)
with coarse- and fine-grained RegExes, respectively [13]. The

Fig. 9. Parsing speed.

Fig. 10. Memory cost.

major reason to its low accuracy is the high false-negative rate
from the conservative specification writing, as mentioned in
Section II-A. Another reference is that the SMTP specification
generated by a reverse engineering approach (ProDecoder)
achieves lower accuracy (95% precision), but is trained by
much more samples (4,500 positive) [16].
Parsing speed. We compare the parsing speed of REPLAY
and REPLAY/SP to show the boost of the throughput due
to the stop trigger. In addition, we also involve the two
specification-based parsers in comparison: although they are
executed on a single CPU core instead of GPU, we can observe
their performance trends with the number of applications.

The results in Fig. 9 show that REPLAY can achieve stable
throughput around 12Gbps with different number of applica-
tions involved. We observe higher throughput for applications
A4–A12 because their extraction rate is small (see Table II),
which means the stop trigger can skip more bytes.

REPLAY/SP is also scalable, but with a much lower
throughput of ∼1Gbps due to the byte-by-byte checking.

On the other hand, the combined parser can also achieve
stable throughput, while the performance of sequential parser
linearly degrades when the number of applications grows.

C. Overhead

Memory cost. We measure the memory cost of REPLAY and
the combined parser. Note that REPLAY is accelerated by
parallel parsing, so it will greedily copy its RNN for better
performance. Here we only measure the off-line memory cost
of a single parsing structure to observe the trend, i.e., a single
RNN vs. the combined automaton. Fig. 10 shows the memory
cost trend with the increase of the number of applications.
REPLAY consumes exactly the same memory (21MB) for
all experiments, while the combined parser suffers a rapidly
growing memory cost from 28MB to 200MB.
Labeling efforts. The major human efforts involved in
REPLAY is to obtain enough high-quality labeled flows. We
evaluate the efficiency of BMAL by measuring the accuracy
with different BMAL selection rounds. Fig. 11a shows that
a 3-round labeling process that obtains 300 labeled flows is
sufficient for achieving high accuracy on A12.

The other metric we consider is the time cost for human
labeling. Specifically, to imitate the operators with differ-
ent technical background, we recruit 12 persons in this
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Fig. 11. Labeling efforts.

experiment, including five undergraduate students who have
bare knowledge of network protocols, five master students who
major in computer networks but has not used any L7 parser,
and two authors of this paper as the experts. The labeling
process is to manually check the contents of the selected flows,
and write the positions of interested bytes in a separate file for
each flow. We measure the average time cost of the labeling
process for each group of the operators.

According to Fig. 11b, the inexperienced operators spend
more time (less than 3 hours for labeling 300 A12 samples)
than the other two experienced groups, but a master student
can achieve nearly the same efficiency compared to an expert
(less than 1 hour for labeling 300 A12 samples). We also find
that the operators are more efficient after the first two labeling
rounds, as they gradually gain a grasp of the labeling patterns.
In addition, we verify the label correctness, i.e., whether
the operator labels the correct field. Specifically, we com-
pare the manually labeled results with the gold labels from
the specifications, and observe that even the inexperienced
operators can guarantee a high label correctness. We finally
emphasize that the labeling tasks can be parallel conquered
by multiple operators due to the independence of each label,
as discussed in Section III-B.
Training time. The combination of SSL and BMAL conducts
a two-stage training process: (1) unsupervised training on the
complete data sets, and (2) iterative supervised training on the
newly labeled flows.

For unsupervised training, we randomly select and inject
50 samples into RNN, and iterate this process for 50,000 times,
which in total takes approximately 5 hours. We note that the
unsupervised training is a one-time cost, unless the target
network has been significantly changed.

For supervised training, we inject the same number of
samples, and iterate until the loss converges. We measure
the accumulated time costs for training, e.g., for REPLAY,
the cost includes the time of selecting samples with BMAL,
the supervised training, and the stop trigger training, but
excludes the time of manually labeling. The results report
that REPLAY takes ∼60 minutes to train 300 labeled flows
on A12.

D. Generalization

In above experiments, we train and evaluate REPLAY on
datasets collected from/by the same source, which raises
the generalization concerns: can REPLAY perform well,
if (1) the target application is with more complex format,
or (2) the testing dataset is different from the training set?
In this section, we use two cases to tap the potential of
REPLAY’s generalization ability. Accuracy is the focus of
these experiments.

Fig. 12. Accuracy for complex extractions (TLV).

Complex extractions. One concern of content-based parser is
whether it can perform well for complex extraction behaviors.
We choose the type-length-value (TLV) format as the building
block to simulate a complex scenario, since to extract value
requires an understanding of length, making it a complex
context-sensitive grammar.

Specifically, we obtain four data sets, each of which contains
500 TLV samples. For each sample, we synthesize 100 TLV
blocks following four principles: fixed blocks in fixed order
(FBFO), fixed blocks in random order (FBRO), random blocks
in random order (RBRO), and recursive blocks in random
order (EBRO). Here a “random block” means a random type,
while the other two fields are always generated randomly.
The length of type and length is one byte. For EBRO,
we generate 50 parent blocks, each of which contains a random
child block as its value. We assume the interested content
is the value of a specific type. For each data set, we use
100 samples as the labeled samples, and use the rest mixed
with other data sets as the unlabeled samples.

As the results shown in Fig. 12a, REPLAY can still reach
∼97% for both precision and recall. This is because REPLAY
learns a distribution of the context, which helps it localize the
beginning and ending of value with varied length.

We further test REPLAY on RBRO with a varied-length
length, ranging from 1 byte to 4 bytes. As shown in
Fig. 12b, 100 samples for 4-byte length can only achieve
∼89% of precision and recall, because they are not sufficient
to learn the abstract relationship between length and the
factual length of value. But the accuracy is rapidly growing
with more samples, and when training with 200 samples,
the 4-byte case can also reach ∼95.5% precision and recall.
Testing with different datasets. It would largely improve the
practicality of deploying REPLAY if the extraction model can
perform well on a dataset that is different from the training
dataset. Specifically, we note that the SMTP and MySQL
traffic listed in Table I are collected by fuzzing the jmeter
sampler [46] and random query generator [47], which is much
more diverse than the SMTP and MySQL traffic from the real
users. Therefore, we retrain the REPLAY with another SMTP
and MySQL traces captured from the campus network, and
test it with the fuzzing traffic, to evaluate whether REPLAY
can perform well even some cases are not included in the
training dataset. Fig. 13 compares the accuracy when testing
on the same (real) and different (synthetic) dataset, and shows
that the different testing sets lower 3.25% of the accuracy in
average. This results suggest that, even in this unfavorable
case, REPLAY can still provide a minimum guarantee when
handling a broad range of network conditions.

E. Diving into REPLAY

How SSL improves the accuracy. As mentioned in
Section IV-B, the unsupervised phase of SSL helps to
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Fig. 13. Testing on different data sets.

Fig. 14. Accuracy and convergence with SSL (A1).

Fig. 15. Accuracy vs. #initial flows (300 samples, A12).

understand the inherent features of the traffic, which can
improve the accuracy of the final model. To demonstrate
this feature, we compare the accuracy trends of REPLAY
and REPLAY/SSL with different training epochs. Fig. 14
shows that REPLAY can achieve much better accuracy than
REPLAY/SSL, but converges a little slower. This is because
REPLAY/SSL can easily converge to a model that perfectly
classifies the limited labeled samples, though it may not be
accurate in testing phase. While with SSL, the supervised
phase has to involve the knowledge obtained from the unsu-
pervised phase, which may take more time for convergence.
Note that the precision of REPLAY/SSL gets lower after
90 epochs, because continuously training the minor samples
(300) can result in the over-fitting issue. While thanks to the
unsupervised phase, REPLAY will have an accurate model
long before the over-fitting happens.
Trade-off of the ASCII-based embedding. As mentioned
in Section V, the ASCII-based (binary) embedding trades off
the accuracy with the parsing efficiency. We compare the
accuracy and parsing speed with binary embedding and one-
hot embedding in Table III, which reports that REPLAY with
binary embedding is three times faster than it with the one-hot
embedding, at the cost of only 1.8% degradation of accuracy.
Initial number of labeled flows. The initial labeled flows
are used to train the first extraction model, and therefore can
benefit next rounds of BMAL. Starting from different number
of initial labeled flows, we perform BMAL process 3 rounds
on A12 to obtain 300 samples, and measure the precision and
recall. Fig. 15 shows that REPLAY can maintain its accuracy
with only 20 initial labeled flows, which can be seen as a
reasonable assumption of most L7 parsing scenarios.
Total number of labeled flows. Some may concern if
REPLAY will require many more labeled flows when the
number of applications grows. Fig. 16 shows the accuracy of

TABLE III

TRADE-OFF OF ASCII-BASED EMBEDDING (A12)

Fig. 16. Accuracy vs. #labeled flows (REPLAY).

Fig. 17. Parsing speed vs. noise rate (A1).

REPLAY on four datasets, trained with different the number of
labeled flows, where we have two observations. First, it indeed
needs more labeled flows when involving more applications
into the unified extraction model, e.g., 200 samples for A1
can obtain ∼95% of accuracy, but can only reach ∼90% for
A12. Second, the number of samples for each application
actually decreases when the number of applications grows: to
achieve 97% of accuracy, A12 requires 300 samples in total,
i.e., 15 samples per application, while A1 needs 250 samples
to achieve similar accuracy for a single application.

The reason to this counter-intuitive fact is that for a certain
application, the labels from other applications, i.e., the true
negative samples, also contribute to its accuracy. Specifically,
the positive samples from application Y not only improves its
own accuracy, but also helps the accuracy of application X by
serving as the negative samples for X . As a result, we believe
the efforts for involving more applications are scalable.
Parsing noise. The major throughput boost of REPLAY comes
from the stop trigger, i.e., the more data can be dropped,
the better throughput can be realized. We test how this factor
impacts the throughput of REPLAY by adjusting the noise
rate in the test traffic when parsing A1. Note that A1 has an
extract rate of ∼70%, so when noise rate is 0%, the actual
uninteresting data is ∼30%.

Fig. 17 shows the parsing speed boost with the increase
of noise rate (12.8Gbps on 80%-noise). We also emphasize
that REPLAY can only achieve 0.97Gbps when most data is
meaningful for the extraction. We believe this is a better
trade-off compared with the application-dependent penalty,
because applications can be added very frequently, but the
noise rate is relatively high and stable in most scenarios.
Dropping rate. We measure the dropping rate of REPLAY
to confirm the effect of the stop trigger. Here the dropping
rate is defined as the factual dropped bytes divided by the
uninterested bytes. Fig. 18 shows that REPLAY drops ∼80%
bytes for all cases. However, the noise rate is 80%, while the
factual rate of the uninterested bytes should be much higher,
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Fig. 18. Dropping rate vs. #applications (REPLAY).

since the extract rates of many datasets are very low. For
example, A1 has an extract rate of 70%, so the total unin-
terested bytes for the testing data set should occupy ∼86%,
i.e., NoiseRate + (1 − NoiseRate) × (1 − ExtractRate),
while for A12, the uninterested bytes could occupy ∼99%.

The reason is that the stop trigger can only tailor the rest of
the input, which means if the interested bytes are located in the
end of input, REPLAY can barely drop the text. On the other
hand, the pure noise can be dropped with a glance at the first
few bytes. Therefore, REPLAY can efficiently drop the noise
(NoiseRate, i.e., 80%), but is not stable for dropping the other
uninterested bytes (1 − ExtractRate). This finally results in
a dropping rate that is slightly higher than the noise rate. We
discuss this limitation of REPLAY in Section VII.
Accuracy with extraction post-processing. As mentioned in
Section V, we use a simple heuristic to compose a contin-
uous extraction result for each type of extraction behavior.
We expect the post-processed results can still maintain the
high accuracy. The reason is that REPLAY can achieve high
accuracy in byte-level (> 97%). That is, it is quite unlikely
that REPLAY generates two or more continuous false positives
or negatives. As a result, the longest continuous results should
be correct, the long-distant (wild) extraction results should be
false positives, and the short gaps between two continuous
results are likely to be false negatives.

We set the distance threshold very aggressively, i.e., 2 bytes,
and verify the accuracy before and after applying the extraction
post-processing on A12. The result reports that REPLAY can
achieve an even higher accuracy (0.1% of precision and 0.4%
of recall), because some simple false positives and negatives
can be fixed by the heuristics.

VII. DISCUSSION AND LIMITATIONS

Unreadable and encrypted protocols. REPLAY can learn
and parse both text- and binary-based L7 protocols. The
challenge of handling the latter one is that the operator may
not achieve high labeling effectiveness if the content is unread-
able. For the similar reason, REPLAY may perform poorly
on encrypted protocols, because the operator cannot provide
effective labels on the encrypted content. However, as we
discussed in Section I, many valuable L7 data are unencrypted
and readable, ensuring the significance of REPLAY.
Overlapped extractions. Using H-softmax as output layers
means that REPLAY can only output one extraction behavior
for each byte, which is a limitation of REPLAY. Moreover,
unless the two applications label the same samples, such over-
laps cannot be identified, because without protocol knowledge,
the parser can only distinguish the extraction by the content.
We will explore this valuable question in our future work.
Fortunately, such overlapping labels could be rare cases in
practice, since the operators using REPLAY usually train their
own models for specific networks. That is, REPLAY is not

meant to serve as a single large parser for everyone, but a
customized one trained with specific samples, which can be
easily managed by each operator of different networks. Finally,
even the operators work independently on the same parser, it is
still easy for them to feed the samples to REPLAY before
labeling them, so that they can verify if REPLAY can already
extract the interested content. If so, they can directly reuse the
parsing result instead training with different labels.
Skipping more bytes. As discussed in Section VI-E, the stop
trigger can fast drop the noise traffic, but cannot efficiently
save the computation inside an interested flow. This limitation
results from that the stop trigger can only learn the “end” of
the interested content, but cannot be aware of the uninterested
content in-between two interested pieces. It is possible to
design a new trigger, say “skip trigger”, that can identify
whether a batch of input bytes contains any interested content,
and directly drop them if the answer is no. We leave this design
for our future study.
Privacy issue. Like all DPI tools, REPLAY also faces the
problem that how to prevent from being used for nefarious
purposes. Apart from the common defenses that designing
a DPI tool does not touch the legal part, we have the
following specific arguments for REPLAY. (1) As discussed
above, the encrypted content is still secured with REPLAY,
because the operators cannot provide effective labels. (2) For
the non-encrypted content, the key of protecting privacy is
to prevent the unauthorized access. Otherwise, even without
REPLAY, the larger human-efforts of building a parser are
acceptable to the hackers, as long as the privacy is worthy
enough.

VIII. RELATED WORK

Specification-based parsers. All previous L7 parsers are
based on specifications. Binpac [5], GAPA [22], Ultrapac [1]
and FlowSifter [2] automatically generate parsers by the spec-
ifications written in their declarative languages. COPY [13]
designs a distinguishable automaton for parsing multiple pro-
tocols simultaneously without speed or accuracy loss. These
parsers can yield high accuracy, but at the risk of massive
human labor and the performance penalty.
Reverse engineering-based approaches. This kind of
approaches distills message patterns hidden in the traffic.
Polyglot can extract message formats by analyzing application
binaries [14], which are not easy to fetch in the network.
Several approaches adopt the machine learning technique to
automate the protocol inference [15], [16], [48], while all those
solutions require considerable human intervention to prepare
training data for each protocol. Besides, they only focus on
the target protocol but ignore the potential similar ones, raising
lots of false positives if the application is carried by a common
embedded protocol like JSON and XML.
Deep learning on text. NN has shown great success when
handling natural language problems, such as word embed-
ding [38], speech recognition [25], machine translation [24],
etc. RNN is especially effective to interpret complex texts from
structured data, e.g., XML/JSON files [49]. Hence, we refer
RNN as a good start of realizing a content-based parser,
but directly applying classic RNN will result in incomplete
context awareness of the whole text, large labeling efforts, and
low parsing speed. Snorkel [50] uses the weak supervision
to fast obtain the labeled data, which shares the goal of
reducing the human labeling efforts. However, Snorkel can
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only label the whole samples instead of the certain texts, which
means it can only serve as a flow classifier, instead of an
L7 parser that extracts underlying fields. REPLAY addresses
the above problems, and achieves content-based parsing with-
out any application dependence, targeting at line-rate network
applications.

IX. CONCLUSION

REPLAY shifts the focus of L7 parsing from the specifica-
tions to the contents with enhanced deep learning techniques.
Operators can just care about “what” content to extract,
and leave the question of “how” to extract the content to
REPLAY, minimizing the human interventions of handling
new applications. In real-time parsing, REPLAY yields high
accuracy and throughput, which is stable and oblivious to the
applications. To the best of our knowledge, REPLAY is the
first approach to model and realize L7 field extraction without
specifications, which enables effective, efficient and scalable
L7 parsing for fine-grained and domain-specific scenarios.
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