
ROOM: Rule Organized Optimal Matching for

Fine-Grained Traffic Identification
Hao Li, Chengchen Hu

MOE Key Lab for Intelligent Networks and Network Security

Department of Computer Science and Technology

Xi’an Jiaotong University

Abstract—Fine-grained traffic identification (FGTI) reveals the
context/purpose of each packet that flows through the network
nodes/links. Instead of only indicating the application/protocol
that a packet is related to, FGTI further maps the packet
to a meaningful user behavior or application context. In this
paper, we propose a Rule Organized Optimal Matching (ROOM)
for fast and memory efficient fine-grained traffic identification.
ROOM splits the identification rules into several fields and
elaborately organizes the matching order of the fields. We
formulate and model the optimal rule organization problem of
ROOM mathematically, which is demonstrated to be NP-hard,
and then we propose an approximate algorithm to solve the
problem with the time complexity of O(N2) (N is the number of
fields in a rule). In order to perform evaluations, we implement
ROOM and related work as real prototype systems. Also, real
traces collected in wired Internet and mobile Internet are used
as the experiment input. The evaluations show very promising
results: 1.6X to 104.7X throughput improvement is achieved by
ROOM in the real system with acceptable small memory cost.

I. INTRODUCTION

Application traffic identification is a fundamental technol-

ogy for network monitoring and measurement [1], which

empowers people to better monitor, manage and control the

networks. The traditional traffic identification, called Coarse-

Grained Traffic Identification (CGTI) [2]–[5], only reports at

the protocol or application granularity, e.g., the traffic belongs

to MSN or skype, but it fails to provide Fine-Grained Traffic

Identification (FGTI) information for nowadays’ complicated

use, e.g., tweeting using iPhone with Chrome.

FGTI system has to employ semantic-based rules instead

of regular expression-based (regex-based) rules as CGTI. A

regex-based rule will be hit no matter which part of a packet

matches with it, while a semantic-based rule is considered

matched only when all the values in specified segments (a.k.a.,

fields) of the packet matches with the rule. This requirement

of first splitting the packet into different fields brings higher

complexity. In addition, FGTI also employs more rules than

CGTI to demonstrate more specific behaviors of application.

Even only considering the simpler regex-based rules, it is

demonstrated that the combination of a selected rule set with

794 regular expressions consumes 5.29GB memory [6].

FGTI is also different with the Intrusion Detection sys-

tem (IDS). Only few packets related to intrusions would be

This paper is supported by 973 plan (2012CB315901), 863 plan
(SS2013AA010601), NSFC (61272459, 61221063), the Fundamental Re-
search Funds for Central Universities.

matched in IDS, but every packet should have a match in

FGTI system. Besides, IDS system will not do any further

identification for a “bad” flow but just reset the connection,

while FGTI system checks every single packet of a flow even

it has matched for certain behaviors. Therefore, the previous

studies cannot be directly used for FGTI.

In this paper, we investigate efficient method to support

semantic based rules for FGTI so as to provide high identifi-

cation throughput with controlled memory consumption. We

observe the feature that segments (a.k.a., fields) in different

matching rules of FGTI can share the same signature. Based

on this observation, we propose a Rule Organized Optimal

Matching (ROOM) to eliminate the matching on redundant

fields. As a result, we exploit a better tradeoff between the

time complexity and the memory complexity. ROOM splits

the rules into fields, determines the matching order of each

field, and selects only a (small) part of the rules that could

be possibly hit to do the matching. We make the following

contributions in this paper:

• We have proposed ROOM to construct a Layered Match-

ing Tree (LMT), which reduces the space complexity and

improve throughput for FGTI matching.

• We have demonstrated that the construction problem

of an optimal LMT is NP-hard and we proposed an

approximation algorithm to solve the problem.

• We have implemented a real system of ROOM for

performance testing, which achieves 5Gbps matching

throughput in average with only 20MB memory cost.

Compared with previous work, ROOM improves the

performance-cost ratio by 1.5 times to 23 times.

The remainder of the paper is organized as follows: In

Section II, we present our basic idea of this paper. We describe

the detailed design of ROOM in Section III. In Section IV, a

prototype of ROOM is built and evaluated under real traces.

And finally in Section V, we conclude the paper.

II. BASIC IDEA

In the literature, there are two ways to match a large number

of semantic-based rules in CGFI and IDS systems [6, 7]. As

shown in Fig. 1(a), the first one constructs one matcher for

each rule, by checking each field of the rule sequentially [7].

Matchers are checked one by one as well. The system moves

to the next matcher if no match in current matcher, and stops

when one of the matchers (rule) is hit. Obviously, the matching

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

65
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:26:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Indicative comparisons of different matching systems.

speed is the major concern since time scales with the number

of rules/matchers and fields in them.

To improve the processing speed, following the idea of

regex-based rules, all the rules can be first divided according

to their fields, and then regular expressions in the same field

can be merged to construct one DFA-based matcher, as shown

in Fig. 1(b). The system stops when a matcher failed and

moves to next matcher if any rule is hit [6]. Although DFA

matcher saves the matching time, there are two main concerns:

1) memory explosion caused by the combination of values in

rules brings uncertain risk. 2) It costs extra space to save the

intermediate result of each matcher, and extra time to merge

them to get the final hit rules. The problem becomes severe

with the growing number of both rules and fields.

The idea of the proposed ROOM in this paper is depicted

in Fig. 1(c). First, the whole rule set is divided into sub-sets

according to fields, which is similar with the second method, to

maintain the matching speed of DFA-based matcher. Besides,

the transitions between matchers remove the extra overhead

for intermediate results in the second method, which may

lead to a higher performance. Second, the next matcher is

determined by the matching result of the current matcher, that

every matcher is constructed on a rule sub-set, which leads to

lower risk on memory explosion.

To give an intuitive explanation on how ROOM works, we

suppose a simple rule set in Table I, where a column represents

a packet field and a row is a matching rule. Based on the

rules, we can first construct a tree structure called “Layered

Matching Tree” (LMT) with the above idea, as shown in

Fig. 2. Suppose that a packet holding “weibo.cn” in its “Host”

field and “/ttt/gettimeline.php” in its “URI” field comes into

ROOM based system. In the first step, ROOM searches “Host”

field of the packet in Matcher0,0 and selects the left branch

Fig. 2. Matchers constructed by ROOM on the rule set in Table I.

to activate the Matcher1,0, and ROOM matches “URI” field

of packet with this matcher to hit on the left branch. For

Matcher1,0 is on the last field, we can get R1 as the final hit

rule. As a result, the key problem is how to construct LMT

based on the rule set, which will be present in Section III.

RuleID Field == “Host” Field == “URI”

1 weibo.cn gettimeline.php

2 weibo.cn getnews.php

3 * .jpg

4 3g.qq.com *

5 * .css

TABLE I
SIMPLIFIED RULE SET SAMPLE

III. CONSTRUCTING THE MATCHERS OF ROOM

A. Primary Matcher Construction

The matchers are sorted into a LMT as shown in the

example of Fig. 2. In each layer, the matchers are con-

structed according to a field. In a matching field i, there

can be several matchers and we use Mi,k to denote the

kth matcher for the ith field1. We define a matcher as a

two-tuple (ProtocolF ield, InitRuleSet), where InitRuleSet

describes the whole set of the matcher and its descendant, and

ProtocolF ield determines which part (field) of InitRuleSet

will be used for the matcher. If the maximum number of fields

is N , then the maximum depth of the LMT is also N .

The primary method constructs matchers by recursively

selecting one unmatched field. In the initial, the whole rule set

is denoted by H0,0 and the first field is selected to construct the

first layer of the LMT. The number of branches equals to the

number of unique values in H0,0. The unique values of the first

field in the rule set H0,0 form a set {F1,j}, j = 1, 2, . . . , |F1|,

where |F1| is the element number in {F1,j}. The rules whose

values of the first field equals F1,j are the possible hitting

rules in M1,j , denoted by H1,j . If we remove the rules with a

wildcard “∗” in the first field (denoted by O0,0), the rest rules

are denoted by S0,0. Also, we use V1,j denotes the field value

set that excludes “∗” from F1,j .

When building matcher M1,j , set F1,j and V1,j are first

outlined from H0,0. Then, the rule sub-set H1,j and S1,j

are associated with the matchers. Next, the lower layer

matchers are constructed by its parent layer recursively:

1The primary method does not rely on specific order of field. The order can
be changed to obtain better performance as discussed later in Section III-B.

2013 Proceedings IEEE INFOCOM

66
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:26:51 UTC from IEEE Xplore. Restrictions apply.

H0,0 → {F1,j , V1,j} → {H1,j , S1,j} → · · · → {Hi,k, Si,k} →

{Fi+1,l, Vi+1,l} → {Hi+1,l, Si+1,l} →

The matcher is the node of the LMT, and the rule sub-set on

the transition is H for the next matcher. LMT clearly indicates

the status of the matching, which will always active a correct

next matcher according to the current matching result (values

on the transitions). LMT is pre-constructed and keeps steady

if the rule set is fixed.

B. Organize the Order of Rule Fields

The change of the field order in the aforementioned matcher

construction algorithm will lead to different LMTs. In the

example of Fig. 2, the construction takes “Host” as the first

field and “URI” as the second. If we disorder the two fields,

LMT will be in the form of Fig. 3, which has 5 matchers in the

second layer. The memory consumptions of these two LMTs

are obviously different that Fig. 3 has 94 nodes in total while

Fig. 2 has 65 only.

Fig. 3. Disordered Layered Matching Tree

This example brings a question: what is the optimal order of

the fields? We define it as a Rule Organization Problem (ROP).

Given a rule set, ROOM determines an optimal field order to

construct the LMT, so the memory cost is minimized. Suppose

that the field i has a new order Ψ(i), i = 1, 2, · · · , N, after the

organization, and the memory consumption of the matchers

in field i is DΨ(i). So ROP seeks Ψ(i), i = 1, 2, · · · , N, to

minimize the total cost as shown below.

min
ψ∈TN

N∑

i=1

Diψ(i), (1)

where Tn is the set of all the permutation: Ψ : {1, 2, · · · , N} →

{1, 2, · · · , N}.

In fact, ROP can be reduced to Quadratic Assignment

Problem (QAP) [8]. QAP considers allocating n facilities to

n locations. There are three costs in the problem: one is the

cost function of distance between locations, the second is the

function of flow between facilities and the last is the cost

placing a facility in a location. The objective of QAP is to

minimize the total cost related to the assignment of facilities

to locations. If we remain the first two costs in QAP and set the

cost of a facility-location placement to be zero, the problem

can be formulated as,

min
φ∈Sn

n∑

i=1

n∑

j=1

fijdφ(i)φ(j), (2)

where φ(i), i = 1, 2, · · · , n is the location used to placing

facility i, fij and dφ(i)φ(j) are the cost function related to

flow between facilities and distance between locations.

To reduce our ROP to QAP, we first rewrite the ROP

formulation in (1) as

min
ψ∈TN

N∑

i=1

N∑

j=1

DijIψ(i)ψ(j), (3)

Iψ(i)ψ(j) =

{
1, ifj = ψ(i)

0, otherwise
(4)

If we map the original fields order (of ROP) to facility (of

QAP) and the organized order (of ROP) to the location (of

QAP), (3) can be transferred to (2) by mapping the variables

and functions: N → n,D → f, I → d, TN → Sn,Ψ → φ. f and

d are given in QAP, but D and I in ROP need to be calculated

from the rule set. It is demonstrated in [9] that the calculation

of the memory consumption about merging of DFAs can be

completed in Polynomial time. So the reduction can be done

in polynomial time. Since QAP is known as an NP-hard

problem [8], ROP is also NP-hard with a polynomial reduction

to QAP. As a result, we need to propose an approximate

algorithm to organize the rule field order so as to get the

optimal memory consumption.

The number of matchers in a certain layer impacts its

complexity, that more matchers leads to many smaller DFAs

instead of a few large DFAs which brings less overhead. So

it tends to choose fields bringing more branches for higher

layers. However, such kind of field may also bring huge

overhead for current layer, which is a trade-off. Besides, we

can see that R3 and R5 are replicated more than once in Fig. 2.

It results from the “∗” cases of the first field which brings

copying work for these two rules. The effect of such kind

of redundancy depends on two factors: the complexity of the

redundant values brought by “∗” cases, and the number of

branches, to which all “∗” rules would be copied. The product

of these two factors describes the redundant effect brought by

“∗” cases.

In general, we aim to choose a field, which brings more

branches for next layer, lower complexity for current layer

and less redundancy to LMT. Here we first define a notation

C, where C(RuleSet) represents the number of nodes of

the matcher constructed by rules in RuleSet and Cfield,i

represents the number of the nodes in the matchers on ith

layer in total if field is placed in this layer. Now we try to

describe the feature of the field, which will affect the choice.

Wfield,i =

Pi∑

k=1

(C(Ei,k) × |Vi,k|) (5)

This notation represents the redundancy effect of this field

where Ei,k describes the set of values brought by “∗” cases,

and |Vi,k| describes the number of branches. Now we can use

Wfield,i to define a complexity factor for each field when we

need to choose one.

Gfield,i =
Cfield,i × (Wfield,i)

|Vfield,i|
(6)

The algorithm simply chooses the field holding Gmin. As

this calculation has to be done each time choosing a next field,

the time complexity is O(N2) where N represents the number

of the fields.

2013 Proceedings IEEE INFOCOM

67
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:26:51 UTC from IEEE Xplore. Restrictions apply.

In the case of rules in Table I, for the first layer, we

compute C“Host” = 18, C”URI” = 30. Then, W“Host”,0 =

(C({“.jpg”, “.css”}) × 2 = 8 × 2, and W“URI”,0 =

(C({“3g.qq.com”})×4 = 10×4. Then we can get G“Host”,0 =

(C“Host”,0 ×W“Host”,0)/|V“Host”,0| = (18× 16)/3 = 96, and

G“URI”,0 = 240 by the same way. So “Host” is chosen for the

first layer. Then we calculate the G from the rest fields for the

next layer . Finally, we get an optimal fields’ order: “Host”

and “URI”, which is just the order we depict in Fig. 2.

C. Further Optimizations

We propose two more optimizations to further save the

memory. As shown above, a matcher is defined as a two-

tuple (ProtocolF ield, InitRuleSet). It is possible that multiple

matchers share same two-tuple. In this case, we merge such

matchers and their descendants as well.

On the other hand, copying “∗” case impacts the overhead a

lot. As we can see from Fig.2, LMT copies R3 and R5 to every

matcher in “Host” field, because a packet matches “weibo.cn”

in this field may finally match R3 or R5 although they don’t

depend on the field. However, we find some fields provide

semantic-proof to exclude this possibility. For instance, “Host”

is a field to describe the destination host domain in HTTP

request. If a packet matches a certain “Host” value, it must

be related to this certain host server, which excludes the

rules holding “∗”. We define Critical Field (CF) simply as

follows: a field that can make a partition of the rule set in this

layer by using its semantic. For application layer protocols

are generally based on strong semantics, it is easy to find a

CF in an application protocol, e.g., “Host” in HTTP protocol,

“DomainName” in DNS protocol etc.

Fig. 4. Optimal Rule Set Organization

The optimal LMT for rules in Table I is shown in Fig. 4.

Compared with the LMT in Fig. 2, it now only contains four

matchers without any copying of “∗” cases as the original one.

IV. EVALUATIONS

A. Experimental Settings

In this section, we compare the performance of ROOM with

related work. To the best of our knowledge, NetShield [6]

achieves the best performance with semantic-based rules,

which has the similar structure as Fig. 1(b), and we first

involve it in the comparison. We also implement sequential

matching method for comparison whose architecture is de-

picted in Fig. 1(a). Each of these three methods is implemented

Univ. trace ISP trace Synthetic trace

Capture time 05/22/2012 12/20/2010 04/05/2012

Duration 67 min. 40 min. N/A
Trace size 19GB 4.9GB 731MB

Mean pkt. length 793 B 572 B 342 B

of behaviors 27360 99641 143922

TABLE II
SPECIFICATION OF SELECTED TRACES

into a prototype system for evaluations. The evaluations are

performed on a platform with Intel Xeon E5606 (2.13 Ghz),

32 GB memory and Linux 2.6 kernel. Each system is with

single thread for clean comparisons.

There are 262 experimental rules, which contains 6 inde-

pendent fields. The rule set can identify both wired Internet

and mobile Internet application behaviors. The rules for wired

Internet traffic are selected from Snort [10] and are rewritten to

be semantic-based rules. The rules for mobile Internet traffic

are provided by KOP (Keen on Packet) DPI [11], which cover

the behaviors of 13 popular mobile applications for their iOS,

Symbian and Android versions, e.g., chatting of skype in iOS,

refreshing of Weibo in Android, etc.

Two real traces and one synthetic trace are used as the

experiment input. One real trace is captured from the gateway

of the wired network of a university in China, named as

“Univ. trace”. The other real trace is collected in Hangzhou,

Zhejiang province of China, from a Radio Network Controller

(RNC) of a leading ISP in China, denoted as “ISP trace”. A

third experimental trace utilized is an artificial and random

mix of a set of “atom-behavior” (single behavior of a certain

application) traces generated by mobile devices like phones

and pads. The synthetic trace is employed to simulate various

situations in real world and to confirm the identification

accuracy with the ground truth. Table II lists the features of

the three traces.

During the evaluations, we have checked three metrics of

the matching systems: identification throughput, memory cost

and performance-cost ratio (which is defined as the normalized

throughput divided by the normalized memory cost).

B. Experimental Results

1) Throughput: When testing the throughput, we pre-load

the traces into the memory to remove the bottleneck in hard

disk I/O. Fig. 5 illustrates the tested throughput. ROOM per-

forms 6.28Gbps, 3.19Gbps and 2.736 Gbps throughput on the

univ. trace, the ISP traces and the synthetic trace, respectively.

As shown in Table III, ROOM provides a speedup from 1.61

to 2.08 over NetShield and a speedup from 24.8 to 104.7 over

sequential matching. In fact, two facts affect the throughput.

The first effect comes from the number of behaviors. A

large number of behaviors obviously make the sequential

matching slow as demonstrated in the figure. However, the

behavior number does not affect ROOM and NetShield much.

The throughput differences in different traces for ROOM and

NetShield are caused by the mean packet length, which is the

second fact to the throughput. For all the methods, smaller

mean packet length leads to higher throughput since matching

is performed on each packet.

2013 Proceedings IEEE INFOCOM

68
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:26:51 UTC from IEEE Xplore. Restrictions apply.

Univ. trace ISP trace Synthetic trace

ROOM 1.0 1.0 1.0

NetShield 1.61 1.85 2.08

Sequential 104.7 39.8 24.8

TABLE III
THROUGHPUT SPEEDUP OF ROOM OVER OTHER METHODS

Fig. 5. Matching throughput plotted with logarithmic coordinates.

2) Memory Consumption: There are two categories of

memory consumptions: one is the flow structure for main-

taining the flow information and the other is the matching

data structures representing different rule set organizations.

The first part consumption is the same for the three methods

so we only check the second one. The memory for matching

data structure can be further divided into static memory

usage and dynamic memory usage. The former is used to

store the matcher and the latter is for caching the temporary

intermediate results. Table IV shows the memory usage. The

results indicate that ROOM costs a little bit more static

memory. The experimental rule set is not very complex which

leads no exponential growth inside matchers, so the effect

brought by “∗” case is the dominant factor for the static

consumption. When processing the matching, ROOM shows

its advantage in dynamic usage over NetShield for it has no

intermediate results. When it comes to synthetic trace which is

more complicated, ROOM performs better than NetShield in

total space complexity. It can be predicted that if the rule set

gets more complicated as well as the trace, ROOM can get

even better performance. The comparison ratios (the overall

memory cost of ROOM divided by the cost of Netshield) are

1.1065, 1.0848 and 0.9627 for the Univ. trace, ISP trace and

Synthetic trace, respectively.

3) Performance-Cost Ratio: To give a fair comparison of

the three methods over both throughput performance and

memory consumption, we check the performance-cost ratio

R, which is defined as the normalized throughput divided by

the normalized memory cost.

R =
T/Tmax

M/Mmax
, (7)

where T is the achieved throughput and M is the consumed

memory cost. T and M are normalized by the maximum

throughput Tmax and memory cost Mmax. The definition

keeps the value of R in the range of [0, 1] and larger R means

larger efficiency. Table V illustrates such kind of performance

gain of throughput over memory cost for ROOM, NetShield

and sequential matching. The results confirm the proposed idea

in Section II: ROOM provides the best tradeoff between the

processing speed and the memory cost.

Univ. trace ISP trace Synthetic trace

ROOM Static 4.3MB 4.3MB 4.3MB

Dynamic 27.9MB 20.0MB 11.2MB

NetShield Static 2.7MB 2.7MB 2.7MB

Dynamic 26.4MB 19.7MB 13.4MB

Sequential Static 1.1MB 1.1MB 1.1MB

Dynamic 18.6MB 12.2MB 4.4MB

TABLE IV
MEMORY CONSUMPTION

Univ. trace ISP trace Synthetic trace

ROOM 1.0000 0.6731 0.9031

NetShield 0.6872 0.4074 0.4172

Sequential 0.0156 0.0308 0.1025

TABLE V
PERFORMANCE-COST RADIO

V. CONCLUSIONS

In this paper, we have proposed ROOM, which constructs

a layered matching tree for semantic-based rules to accelerate

the matching speed and to save the memory consumption. The

optimal construction of the LMT is demonstrated to be NP-

hard and therefore an approximate algorithm is developed.

We also implement prototypes for ROOM, NetShield and

sequential matching. The experiments under two real traces

and one synthetic trace demonstrate that ROOM improves

the performance-cost ratio by 1.5 times to 2.4 times than

NetShield and 16 times to 23 times than sequential method. As

the throughput evaluation in Section IV is single-thread-based,

and it can be easily extended to a multi-thread implementation

to achieve higher performance. We leave it as future work. In

addition, ROOM may check the payload in application layer,

so privacy could be a concern. However, ROOM is provided as

a tool for service and content providers to extract insensitive

information, and as a result they can provide better services

to users, e.g., application promotion and acceleration.

REFERENCES

[1] Tongqing Qiu, Jian Ni, Hao Wang, Nan Hua, Y. Richard Yang, and
Jun Jim Xu. Packet doppler: network monitoring using packet shift
detection. In ACM CoNEXT, pages 3:1–3:12, New York, NY, USA,
2008. ACM.

[2] Andrew W. Moore and Konstantina Papagiannaki. Toward the accurate
identification of network applications. In 6th International Workshop on

Passive and Active Network Measurement (PAM), March 2005.
[3] T.T.T. Nguyen and G. Armitage. A survey of techniques for internet

traffic classification using machine learning. IEEE Communications

Surveys Tutorials, 10(4):56 –76, quarter 2008.
[4] Yeongrak Choi, Jae Yoon Chung, Byungchul Park, and J.W. Hong.

Automated classifier generation for application-level mobile traffic iden-
tification. In IEEE NOMS, pages 1075 –1081, April 2012.

[5] A. Dainotti, F. Gargiulo, L.I. Kuncheva, A. Pescape and, and C. Sansone.
Identification of traffic flows hiding behind tcp port 80. In IEEE ICC,
pages 1 –6, may 2010.

[6] Zhichun Li, Gao Xia, Hongyu Gao, Yi Tang, Yan Chen, Bin Liu, Junchen
Jiang, and Yuezhou Lv. Netshield: massive semantics-based vulnerability
signature matching for high-speed networks. In ACM SIGCOMM, pages
279–290, New York, NY, USA, 2010. ACM.

[7] ntop. ndpi. “http://www.ntop.org/products/ndpi/”.
[8] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal

of the Association of Computing Machinery, 23:555C565, 1976.
[9] Yanbing Liu, Li Guo, Muyi Guo, and Ping Liu. Accelerating dfa

construction by hierarchical merging. In IEEE ISPA, pages 1 –6, may
2011.

[10] Sourcefire. Snort. “http://snort.org”.
[11] ANTS. KOP DPI. “https://github.com/antsgroup/KOP-DPI-System”.

2013 Proceedings IEEE INFOCOM

69
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:26:51 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

