
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018 2757

Taming the Wild: A Scalable Anycast-Based CDN
Architecture (T-SAC)

Qiang Fu, Bradley Rutter, Hao Li , Member, IEEE, Peng Zhang , Chengchen Hu,
Tian Pan, Member, IEEE, Zhangqin Huang, and Yibin Hou

Abstract— The prohibitive cost of deploying a sophisticated
DNS-based CDN makes anycast-based CDN an attractive alter-
native for new or small CDN operators. In anycast-based
CDNs, user requests are naturally routed to the “closest” server
determined by Internet routing. For the operators, however, this
comes at a cost—loss of control—how the traffic is routed is
entirely at the mercy of BGP routing. The “closest” server may
be overloaded, or simply not the best choice. This “loss of control”
undermines the scalability of anycast-based CDN architectures.
To have control over how traffic is routed, existing work either
requires adding a large amount of complexity to the system
(high Capex/Opex) or is unable to achieve precise and fine-
grained control. This paper proposes T-SAC, a scalable anycast-
based CDN architecture that capitalizes on the programmability
and flexibility of SDN/NFV, enabling fine-grained traffic redi-
rection among CDN servers. T-SAC achieves precise control by
leveraging a load-based redirection algorithm and a single 1-bit
no-redirect flag. We implement T-SAC in the real system and
evaluate its performance from various aspects using DASH and
web applications. The results show that T-SAC is capable of
redirecting the right amount of traffic at the right time to the
right servers, making the system highly scalable.

Index Terms— CDN, NFV, scalability, SDN.

I. INTRODUCTION

IT IS estimated that by 2020 82% of Internet traffic will
be made up of video traffic, and 73% of the video traffic

Manuscript received March 16, 2018; revised August 11, 2018; accepted
August 20, 2018. Date of publication September 19, 2018; date of current
version December 11, 2018. The work of Q. Fu and B. Rutter was supported
by InternetNZ. The work of H. Li was supported in part by the National Nat-
ural Science Foundation of China (NSFC) under Grant 61702407 and in part
by the Fundamental Research Funds for the Central Universities. The work of
P. Zhang was supported in part by NSFC under Grant 61772412 and in part
by the K. C. Wong Education Foundation. The work of T. Pan was supported
by NSFC under Grant 61702049. (Corresponding author: Qiang Fu.)

Q. Fu is with the School of Engineering and Computer Science, Victoria
University of Wellington, Wellington 6140, New Zealand (e-mail:
qiang.fu@ecs.vuw.ac.nz).

B. Rutter is with Datacom, Wellington 6011, New Zealand (e-mail:
bradley.rutter@datacom.co.nz).

H. Li and P. Zhang are with the Department of Computer Science
and Technology, Xi’an Jiaotong University, Xi’an 710049, China (e-mail:
hao.li@xjtu.edu.cn; p-zhang@xjtu.edu.cn).

C. Hu is with Xilinx Labs Asia Pacific, Singapore 486040, and also with the
Department of Computer Science and Technology, Xi’an Jiaotong University,
Xi’an 710049, China (e-mail: chengchenhu@xjtu.edu.cn).

T. Pan is with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications,
Beijing 100876, China (e-mail: pan@bupt.edu.cn).

Z. Huang and Y. Hou are with the School of Software Engineering, Beijing
University of Technology, Beijing 100124, China (e-mail:
zhuang@bjut.edu.cn; ybhou@bjut.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2018.2871323

will be handled by Content Delivery Networks (CDNs) [1].
The prohibitive cost to deploy sophisticated DNS-based CDNs
as Akamai does make anycast-based CDNs an attractive alter-
native for new or small CDN operators. CloudFlare, CacheFly,
Edgecast, Amazon AWS, Microsoft Azure and Google Cloud
CDN are some of the examples. In anycast-based CDNs, all
the cache servers share the same anycast IP address. User
traffic is naturally routed to the “closest” server determined
by BGP routing [2], [3]. It has been shown that anycast-
based CDNs performs better than the traditional DNS-based
CDNs [4], even with 20% of these users connecting to sub-
optimal servers [5]. However, for the operators this simplicity
of anycast comes at a cost—loss of control—how the traffic is
routed is entirely controlled by BGP. It is difficult to redirect
traffic away from the server determined by BGP even if it is
overloaded. When a server is overloaded, often it may choose
to withdraw its BGP route. However, this will just break all
existing TCP sessions and move them to the next “closest”
server, making it at the risk of being overloaded. This “loss
of control” is a serious challenge to the design of scalable
anycast-based CDN architectures.

To have control on how the traffic is routed, the current
work either requires adding a large amount of complexity
to the system (high Capex/Opex) [6]–[8] and/ or is unable
to achieve precise and fine-grained control [4], [6], [9].
To overcome these limitations, we propose T-SAC (Taming the
wild: a Scalable Anycast-based Cdn architecture), which takes
advantage of Network Function Virtualization (NFV) [10],
Software Defined Networking (SDN) [11] and the combination
of anycast/unicast for traffic redirection.

OpenFlow-based SDN separates the data plane from the
control plane, which is a centralized controller. The controller
has a global view of the network and sets up the forwarding
rules in the data plane. The centralized controller makes
the network highly programmable. NFV, on the other hand,
emphasizes the migration of network functions from dedicated
hardware to virtual machines running on shared high-volume/
capacity commodity hardware.

We make use of the anycast and unicast IP addresses of
a server. When an OpenFlow switch receives a user request
destined to the anycast address of a CDN, it may forward
the request to an NFV Redirection Node, where the any-
cast address is translated into a unicast address of a cache
server. This server could be the one determined by BGP or a
more suitable one identified by the system. The request is then
received and processed by the server, which in turn returns the
requested content to the user with its anycast address.

0733-8716 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8776-6911
https://orcid.org/0000-0001-7721-2675

2758 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

In T-SAC, the SDN controller may add a forwarding rule
to the OpenFlow switch, which then forwards anycast packets
to an NFV Redirection Node. The NFV node performs the
redirection functionality, determining which CDN server is
going to handle the packets. In this way, we are able to move
the redirection functionality as well as associated flow entries
from the switch (data plane) to the NFV node. As a result,
the switch remains simple and scalable only looking after the
packet forwarding process, and the valuable TCAM memory
is preserved for this purpose (see Section III-A2).

The use of SDN and NFV is essential to the realization
of T-SAC. By manipulating the OpenFlow forwarding rules
on the fly, the operator can exercise control on whether the
traffic is handled by the native anycast or the NFV node,
as well as what traffic is handled by which NFV node. The
nature of NFV makes it convenient to spin up or shut down
an NFV Redirection Node, which can be potentially placed
anywhere in the network at anytime, even collocated with the
switches. These features make the scalability of the NFV node
controllable and allow incremental deployment of the nodes.

Now ISP/CDN operators have control on which server
a user is connecting to. From there we design a set of
mechanisms including a load-based redirection algorithm and
a no-redirect flag to enable precise and fine-grained control on
how traffic is routed for load management.

With these mechanisms, the traffic is redirected in a proac-
tive, dynamic, smooth, flexible and non-interruptive manner.
The redirection starts proactively when the server is at the
risk of being overloaded. Only the right amount of traffic is
redirected to maintain the performance of the current server
without unnecessarily offloading to other servers. Moreover,
the traffic can be potentially redirected to any servers that
are suitable to handle additional traffic. Only new flows are
redirected. The existing flows stay with the current server
without being interrupted. T-SAC is implemented in real
systems. Its performance is evaluated through emulation with
an extensive set of aspects using DASH and web applications.
It shows that the proposed CDN architecture can redirect the
right amount of traffic at the right time to the servers that
are able to handle the traffic, without breaking existing TCP
sessions. We demonstrate that T-SAC is simple yet effective
and scalable, suitable for practical deployment. While T-SAC
is designed to route traffic within a CDN, it can be extended to
route traffic between CDNs in the context of Meta-CDN [12].

The key contributions in this paper are as follows:
• We propose a scalable anycast-based CDN architecture

called T-SAC that capitalizes on the programmability of
SDN/NFV and the flexibility of virtualization, and takes
advantage of ISP/CDN collaboration, giving ISP/CDN oper-
ators the control on where the traffic is directed without
interrupting existing TCP sessions. For the applications that
support concurrent TCP sessions, T-SAC allows the retrieval
of content from multiple cache servers, with the concurrent
TCP sessions connecting to different servers.

• We design a method for proactive, dynamic and smooth
redirection that can handle nicely both sudden bursts and
slow movement of traffic, ensuring that the right amount of
traffic is redirected at the right time.

• We design a mechanism using a one-bit no-redirect flag that
enables flexible redirection, potentially allowing redirection
to any cache servers in the CDN.

• We propose a design that makes SDN/NFV scalability issues
controllable and allows the incremental deployment and
flexible placement of the NFV redirection nodes, which can
coexist with native anycasting.

• We prototype T-SAC using Ryu OpenFlow controller frame-
work [13] and Click [14] in Mininet [15] on AWS (Amazon
Web Service) [16], and evaluate it with an extensive set of
scenarios including the use of node.js [17], Wget [18] and
DASH applications [19].
The rest of this paper is organized as follows. Section II

analyzes the challenges of cache server selection, which leads
to the design of our CDN architecture. Section III describes
our architecture and its traffic redirection capability. Section IV
covers system level implementation issues. The evaluation of
the architecture is presented in Section V. Section VI discusses
some key issues related to our architecture. Section VII looks
at related work. Finally, we conclude our paper in Section VIII.

II. SERVER SELECTION IN CDN

CDNs can route a user to a cache server primarily in two
ways.

A. DNS-Based CDN

In DNS-based CDN, a client requests content from a CDN
via a hostname that belongs to the CDN. The Domain Name
System (DNS) is responsible for translating this human-
friendly hostname into the IP address of a cache server.
DNS is a hierarchical system. The client sends its DNS
request to its local recursive DNS resolver (LDNS), which
is typically configured by the client’s ISP. The LDNS is
responsible for identifying and forwarding the DNS request
to the authoritative DNS resolver of the CDN, which then
discovers and returns the IP address of a suitable cache server
(translation). The LDNS receives this translation and returns
the IP address of the cache server to the client. The client
then connects to the cache server and fetches the requested
content. In the meantime, the LDNS caches the translation
for the period of the time-to-live (TTL) associated with the
translation. In addition, the translation may also be cached
in OS or by applications such as web browsers, where the
TTL value may be modified [20]. Other clients behind the
LDNS requesting content via the same hostname will get
the translation from the cache during the TTL.

The decision on which IP address will be returned by the
authoritative DNS server is performance based. Often the
IP address of the cache server that is geographically close
to the LDNS will be returned. Or, advanced techniques may
be used to measure the performance of the cache servers and
identify the best possible server to serve the client. However,
there are a number of issues that are difficult to address with
DNS-based CDNs.

1. Client mis-location. The cache server associated with the
returned IP address may be close to the LDNS. There
is no guarantee that the cache server is close to the

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

FU et al.: TAMING THE WILD: A SCALABLE ANYCAST-BASED CDN ARCHITECTURE (T-SAC) 2759

client [21], [22]. Or the LDNS may have to serve its
clients over a large geographic area, making it impossible
to be close to all the clients. The use of public DNS
resolvers such as OpenDNS and Google Public DNS is
a good example [23]. A solution to this is to include the
client’s subnet prefix in the DNS requests [24] so that the
authoritative DNS resolver is aware of a portion of
the client’s IP address, and thus can identify a cache server
based on the subnet prefix, increasing the chance that
the selected server is close to the client. Obviously, this
approach would need substantial changes to DNS and client
behaviours.

2. DNS caching. During the period of TTL, if there is any
update on preferred cache servers, this update cannot be
propagated to the LDNS until the TTL expires, leaving
clients connecting to sub-optimal servers. This issue can be
addressed by setting small TTL values at the cost of sending
a large number of DNS queries. Moreover, as shown in [20]
the applications such as web browsers may modify and
adopt a large TTL value.

3. Centralized global mapping. Even with the authoritative
DNS resolver aware of client’s IP address and having a
small TTL value, it would need a great deal of effort to
measure the performance of the cache servers and identify
the geo-to-IP mappings. This requires global knowledge
to analyze user latency data and collect performance and
health data of the servers in real-time, creating a scalability
challenge. Akamai has been leading the development in
this field [25], but this requires a considerable amount of
investment in infrastructure and operations [6], making it
forbiddingly costly to small or new operators.

As a result, newer CDN operators are increasingly adopting
anycast-based CDN architectures.

B. Anycast-Based CDN

The DNS procedure is the same as DNS-based CDNs.
The difference is that for an anycast-based CDN, instead
of returning a unicast IP address, an anycast IP address is
returned by the authoritative DNS server, which is shared by
all the cache servers in the CDN. That is, the same IP address
is announced from multiple servers/locations. Then the user
traffic is routed to the cache server “closest” to the client,
based on BGP’s notion of best path. This simplicity of anycast
mitigates the issues identified above for DNS-based CDNs,
making it attractive to new and small CDN operators.

For example, Bing—part of Microsoft Azure—is an
anycast-based CDN that consists of FastRoute nodes [4]. Other
prominent anycast-based CDNs include CloudFlare [26],
Amazon AWS [27] and Google Cloud CDN [28]. The evalua-
tion of Bing CDN demonstrates that it can perform better than
DNS-based CDNs, despite its simple design [4]. The work
in [29] through passive measurement shows that anycast-based
CDNs perform well, and more than 50% of web users access
content served by anycast-based CDNs during peak times.

However, the simplicity of anycast comes at a cost—Loss
of control—how the traffic is routed is entirely at the mercy
of BGP routing. Due to this, there are a number of issues.

1. Cascading failure. When a cache server is overloaded,
the most practical intervention would be to utilize
BGP techniques such as AS Path pre-pending or withdraw-
ing routes. This may, however, create cascading failures.
An overloaded server withdrawing its route may cause a
traffic swarm to a nearby server, which may get overloaded
and withdraw its route, and so on.

2. Unaware of network/server dynamics. BGP is unaware of
network performance or server load, and may direct traffic
to a sub-optimal server. In contrast, ISP/CDN operators
have the knowledge, but are unable to control where the
traffic should be directed, making it impossible to take
advantage of ISP/CDN collaboration.

3. TCP session breaking. Even if we were able to divert
traffic from an overloaded server to an alternative server by
manipulating, for example, routing metrics, all the existing
TCP sessions would have to be terminated and need to
reestablish with the alternative server.

4. Anycast route flapping. A route change in the middle of
a TCP session can result in a client communicating to
an alternative server, causing the ongoing TCP sessions
to terminate. This is particularly undesirable for heavy
flows such as video streaming applications. The issue of
route changes is often used to question the viability of
anycast-based CDNs. However, it has been shown the
amount of traffic affected by route changes is extremely
small [30], [31].

5. Retrieving from multiple servers. The nature of anycast
makes it impossible to retrieve content over concurrent
TCP sessions connected to multiple cache servers
(e.g., video streaming over multiple servers). All the ses-
sions have to be connected to the same server.

All these issues are more or less a scalability challenge to
the system. Adding more cache servers can mitigate all these
problems. However, the intense competition in the content
delivery market requires operators to cut costs. Even for
hotspots where adding new servers is inevitable, it takes time
(weeks or months) to get a new server deployed. Given all
these challenges and with the programmability of SDN/NFV
and the flexibility of virtualization, we are motivated to design
a scalable anycast-based CDN architecture that enables precise
and fine-grained control on content delivery.

III. T-SAC ARCHITECTURE

Anycast-based CDNs generally perform well [4], [5], [29].
In [5], it shows that ∼20% of the users are directed to
sub-optimal servers. Potentially, we need to redirect some
of the 20% users to a more suitable server. However, this
does not justify a complicated solution that requires high
CapEx/OpEx, a principle followed in our design process.

The deployment of T-SAC does incur the costs of deploying
and operating the SDN/NFV infrastructure, that is, the deploy-
ment of programmable switches and NFV nodes. Both SDN
and NFV were proposed with a focus on, technically building
a flexible, programmable and agile network, and financially
the reduction in CapEx and OpEx. We do assume that SDN
and NFV are coming in one way or another. In a matter of fact,

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

2760 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

Fig. 1. Architecture overview.

SDN and NFV have been (or being) deployed, for example,
Google’s B4 [32] and the CORD project [33], which is
widely supported by the major ISPs globally. Furthermore,
T-SAC does not require a full deployment to function as it
can coexist with native anycasting. The SDN switches and
NFV nodes can be deployed incrementally, starting from a
single switch and NFV node.

To enable precise and fine-grained control and make the
system scalable and practical for deployment, there are a
number of goals that T-SAC needs to achieve, that is, being
able to:

1. offload a server in a proactive, flexible, dynamic, smooth
and non-interruptive manner – redirect traffic among the
CDN servers in a manner that reflects server and network
dynamics, while the existing TCP sessions are not affected.

2. redirect to alternative CDN servers based on ISP/CDN col-
laboration – the most suitable servers determined by CDN/
ISP operators based on their knowledge of network and
server dynamics may be different from the one determined
by native anycasting.

3. provide user transparency – there is no modification to the
user side. The user is unaware of traffic redirection.

4. minimize the knowledge needed about the server state –
this simplifies the design of the architecture and makes it
practical for real-world deployment.

5. coexist with native anycast and ensure incremental deploy-
ment and flexible placement – since anycast-based CDNs
already perform well, a complete overhaul is not justifi-
able or needed. Being able to coexist with native anycast
enables incremental deployment of the system. It is also
desirable to allow flexible placement of the system in the
network for operational simplicity as well as performance
optimization.

6. mitigate the anycast route flapping problem – since
the architecture makes use of both anycast and unicast
addresses of the server, the anycast flapping problem is

naturally eliminated for the part of the route using the
server’s unicast address.

A. System Architecture

Figure 1 overviews the proposed CDN architecture. It gives
an example of how anycast CDN traffic is routed. The example
system consists of a host making content requests, two anycast
CDN servers—one in Auckland (AKL) and one in Wellington
(WLG)—and an NFV Redirection Node.
1. Host1 sends a packet destined to the anycast IP address

of the CDN (CDN_IP). The packet could arrive at the
WLG or the AKL server, since they share the same
anycast IP address and are within the same server group.
(See Section III-A1 for how servers are grouped.)

2. When the packet enters the ISP network it is passed to an
NFV Redirection Node. This is achieved by adding flow
rules to the SDN switches in the network that forward the
packets to the NFV node. (See Section III-A2 for how the
switch and the forwarding rules could interact with NFV
nodes. See Section IV for the implementation of the rules.)

3. The NFV Redirection Node accepts the packet, performs
DNAT changing the anycast address of the servers to the
unicast address of the WLG server (WLG_IP), and then
sends it out back into the ISP network. (See Section III-B
and III-C for how the server selection decision is made.)

4. The packet originally sent by Host1 now has WLG_IP as
its destination address. The packet is then forwarded to the
WLG server using normal routing rules.

5. The WLG server processes the packet.
6. In response, the WLG server performs SNAT, using its

anycast IP address as the source address (CDN_IP). The
WLG server is then able to send its response straight back
to Host1, without the involvement of the NFV Redirection
Node. The response does not have to travel back through
the OpenFlow switch. Host1 will accept this response since
it comes from the CDN’s anycast address that it sent its

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

FU et al.: TAMING THE WILD: A SCALABLE ANYCAST-BASED CDN ARCHITECTURE (T-SAC) 2761

packet to. Host1 has no knowledge that its packet was
DNAT’d and sent to the unicast address of a specific server
(WLG_IP). (See Section III-C2 for the design choice.)

7. In this instance the AKL server was not communicated
with, but it is possible that if the user opened a new TCP
connection and the WLG server was overloaded the flow
could be redirected to the AKL server. (See Section III-B
and III-C for how flows are redirected.)

The above gives a high-level overview of how the system
works without going into details. Now, we illustrate how
servers are grouped for effective redirection, and the design
choice of using the NFV node instead of the SDN switch for
redirection and how to manipulate the forwarding rules in the
switch to affect the redirection behaviours at the NFV node.

1) Server Group: The servers are grouped so that if traf-
fic needs to be redirected from one server to another in
the group, the user would experience little difference in
latency or bandwidth capacity. For example, in our imple-
mentation we decided to group cache servers in Auckland,
Wellington and Christchurch all together. This is because all
their locations are relatively close to each other. The difference
in latency, when connecting to different servers in the group,
would have little impact on the user’s QoE.

This is in contrast to FastRoute [4], where to avoid tit-for-
tat or ping-pong redirection a user has to be redirected to a
server in a different layer, which is significantly further away
from the user (Fig. 17), say, from an edge server in Auckland
to a regional hub in Singapore, or from a regional hub to
a central hub, not the other way around or between peers.
For example, in FastRoute it is impossible to redirect from
Wellington to Auckland if both are edge servers, let alone
the redirection within the same PoP (Point of Presence).
Our architecture, however, allows the redirection between
potentially any servers.

Note that there can be multiple levels of server groups,
using PoP to illustrate, an intra-PoP level where servers are
within the same PoP (e.g., servers in Wellington) and an
inter-PoP level where servers are located at different PoPs.
Inter-PoP level can be further divided into national level
(a nation-wide inter-PoP server group) and international level
(a global inter-PoP server group). Our architecture has the
flexibility to divert traffic within the same level or between
levels. For example, T-SAC may first redirect to a server
within an intra-PoP server group (e.g., from Server A to
Server B in Wellington). If impossible, say, all the server
instances in Wellington are overloaded, T-SAC may then
redirect within a nation-wide inter-PoP server group (e.g., from
Wellington to Auckland) followed by a global inter-PoP server
group if needed. This layering approach of server groups in
T-SAC not only improves the scalability of the system but
also user experience. In comparison, the layering approach in
FastRoute [4], although designed for scalability, does not have
the level of flexibility that T-SAC has. In practice, the server
group could be predefined and/ or discovered with the help of
tools such as iGreedy [34].

2) NFV Redirection Node: The NFV Redirection Node
directs packets to a server’s unicast IP address, and then the
server replies with its anycast IP address. The redirection

process is completely transparent to the user. Note that the
redirection functionality could also be implemented between
the OpenFlow switch and the SDN controller without the
involvement of an NFV node. However, there are a number of
reasons to adopt the NFV approach.
1. It keeps the switch (data plane) simple and scalable. Other-

wise, the switch has to perform the redirection functionality
and maintain a large flow table at the socket level. With the
NFV approach, the complexity is moved to the NFV node
and the valuable TCAM in the switch is preserved for the
packet forwarding process.

2. It gives us the flexibility to implement the network func-
tionality anywhere in the network, even in the switch as
a logically independent module if desired (e.g., a software
switch). This makes it convenient for operational simplicity
and performance optimization.

3. It makes it possible to add new functionality or augment
existing functionality without being constrained by Open-
Flow. For example, tunneling (instead of DNAT/SNAT)
and QoS provisioning could be added. But, they are not
supported natively in OpenFlow.

Note that the NFV Redirection Node can be disabled and
enabled on the fly. If the redirection is not desirable, the
SDN controller may delete the forwarding rule in the switch,
which then stops forwarding anycast packets to the NFV node.
Any new flows thereafter will be handled by native anycasting.
If the redirection becomes desirable, NFV allows us to easily
set up an NFV Redirection Node. The SDN controller just
needs to insert a forwarding rule in the switch, which then
starts forwarding anycast packets to the NFV node.

In terms of the scalability of the NFV node, the operator
has the control on what and how much traffic is handled
by a particular NFV node by manipulating the forwarding
rules in the switch. No coordination or communication is
needed between the NFV nodes. For example, the operator
could mandate through the forwarding rules that only the
traffic to CDN A or only the traffic from Subnet A is to be
handled by the NFV node. Other traffic will then be handled
by native anycast or other NFV nodes. This means that any
scalability problem regarding the NFV node is controllable.
If an NFV node fails, only the involved TCP sessions get
interrupted. However, these sessions can restart with the native
anycast, or a new forwarding rule could divert the traffic to
an alternative NFV node. To avoid conflicting rules (e.g., one
rule says “Forward to Node A” while another says “Forward to
Node B”), intent framework and verification techniques such
as SNAP [35] and VeriFlow [36] could be used. Also note that
the data packets from the server are routed directly to the user
without having to go through the NFV node. Only the TCP
SYN and ACK packets need to go through the NFV node.
So, for a particular flow the NFV node only handles a small
amount of traffic.

B. NFV Redirection Architecture

The NFV Redirection Node (Fig. 2) is a core part of
T-SAC, and can be easily spun up and placed strategically
in the network due to the nature of NFV [37]. If a server
is overloaded, the NFV node is responsible for maintaining

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

2762 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

Fig. 2. NFV redirection architecture.

existing flows with the current server and redirecting new
flows to a suitable alternative server. The NFV node consists of
two main components, the Click Modular Router [14] and the
Controller. The Click router follows the rules that determine
when and where new flows should be redirected. These rules
are created and updated by the Controller via an API provided
by Click (Fig. 2 step 4).

1) Controller: The Controller is the brain of the NFV
Redirection Node. It makes the decisions regarding when
and where traffic should be redirected. It also decides how
much of a server’s traffic should be redirected. In the current
implementation we use the number of connections that a
server has as the metric to measure the server load. This is
useful to emulate possible TCP SYN flood DDoS attacks.
In practice, other metrics could also be used, e.g., CPU,
memory or network bandwidth usage depending on the type
of traffic hitting the server. The Controller is fed with the
information about the flow arrival rate of the server and the
number of flows that the server has, which is retrieved from
the Flow Table. Such information could also be retrieved from
the server. Before this information is passed to the Controller,
it travels through two modules: Arrival Rate and Number
of Connections, which transform the Flow Table informa-
tion into meaningful metrics that the Controller can use
(Fig. 2 steps 2 and 3). In addition, the Controller is fed with
no-redirect flags, which indicate which servers are not accept-
ing redirected traffic. The number of flows that a server is
handling may change rapidly over time. To smooth out the
spikes and thus avoid overreacting, we used Exponentially
Weighted Moving Average (EWMA) [38] to calculate the
number of flows. We set the EWMA weight to 90% to make
it reasonably responsive to traffic changes.

Our design leverages ISP/CDN collaboration
[20], [39]–[42], in particular, the informed user-server
assignment incorporated in NetPaaS [40]. The Controller may

interact with such platforms and utilize transit routes [43] to
identify the most suitable cache server.

2) Redirection Algorithm: When the Controller decides that
traffic should be redirected away from a server it creates a
Redirection Ratio for that server. This redirection ratio is the
ratio between the traffic to be accepted and the traffic to be
redirected. So in a 2:8 ratio, 8 in every 10 new flows will be
redirected. This ratio is passed to the Round Robin IPMapper
(Fig. 2 step 4) in the form of a string. A 2:8 ratio string may
look like the one in Fig. 3.

This string shows 2 connections that stay with the server
10.0.1.1, and the other 8 connections being redirected to
10.0.1.2 or 10.0.1.3. For the string to be created neither the
server 10.0.1.2 nor 10.0.1.3 had their no-redirect flag set,
meaning they are willing to accept redirected traffic. The
Controller takes the no-redirect flag, flow arrival rate and the
current number of connections that a server has as its inputs.
The Controller then uses these inputs as its variables in the
following equation to create the Redirection Ratio:

Redirection Ratio = (λ × τ − ε) : (NC − NT + ε) (1)

where λ is the flow arrival rate, τ is the sampling interval,
ε is the change in the number of flows that the server is
handling during τ , NC is the number of flows the server
currently has and used to derive ε, and NT is the threshold
that new flows should be redirected at.

The left side of the ratio defines the portion of the new
flows that should stay with the BGP determined server, while
the right side of the ratio determines the portion that should
be redirected. The left side is determined using the number of
new flows arrived during the sampling interval (λ× τ) minus
the change in the number of flows that the server is handling
observed during the sampling interval (ε). This indicates that
if the server has just seen a decrease in the number of flows
that it is handling, it is in a better state to accept more traffic.
Whereas if it is an increase, the server may not want to keep
too much of the new traffic. The right side of the ratio uses the
number of flows that the server currently has (NC) minus the
threshold that traffic should be redirected at (NT), plus the
change seen in the number of flows during the sampling
interval (ε). When this side of the ratio is greater than 0,
traffic redirection is activated. That is, we expect the server
load during the current sampling period to be greater than
the max number of flows that the server wants to handle
(the threshold, NT). We redirect this portion of new flows
so that the server load does not exceed the threshold (NT).
We use the change in the number of flows observed during the
previous sampling period (ε) to try to pre-empt the threshold
being broken. The redirection ratio is adjusted on the fly
according to server dynamics, λ and NC .

3) Click Modular Router: The Click Modular Router is a
powerful software router that can be easily configured and
modified to perform many different tasks. It is a good example
of what the idea of NFV is capable of. While this is a piece
of software, it is capable of performing the same task as a full
network router. But where a physical router must be fixed in
one place, a Click router can be spun up on almost any Linux
box or hardware in the network. In the Click Modular Router,

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

FU et al.: TAMING THE WILD: A SCALABLE ANYCAST-BASED CDN ARCHITECTURE (T-SAC) 2763

Fig. 3. A 2:8 redirection ratio string.

Fig. 4. Click flow mapping.

the Round Robin IPMapper accepts the ratio string from the
Controller (Fig. 2 step 4). It then, when the IPRewriter asks
for an IP address for redirection, returns in round-robin order
the next IP address in the string (Fig. 2 step 5).

The Flow Table is another important part of the module.
It stores a flow mapping for each TCP flow destined for a
CDN server that enters the NFV Redirection Node. A flow
mapping consists of two TCP 4-tuples, one before and one
after the redirection to be used by the flow, as seen in Fig. 4.
Only the Destination IP needs to be changed in the mapping
from the anycast address to the unicast address of the server.
The Source IP and Port will stay the same so that the host can
receive the server’s response. The destination port remains the
same as we are still retrieving the same content from the same
application.

4) No-Redirect Flag: One of our goals is to direct a
user to a server that has the capacity and willing to handle
additional traffic. The no-redirect flag helps us achieve this.
To identify such servers, some state information about the
servers is needed. However, passing state information around
complicates system design and creates a lot of communication
overhead. Meanwhile, the benefits may not be achieved if
the state information is not handled in a timely and reliable
manner. Moreover, the Controller will need to be updated
frequently. This is not a scalable approach. To minimize
the amount of state information needed for the Controller,
we introduce a single-bit no-redirect flag. The CDN servers use
this single-bit no-redirect flag to indicate whether it is willing
to accept redirected traffic. This single bit could be added to
control messages that are passed around the CDN network,
e.g., the messages indicating the health status of the servers
commonly implemented in CDNs. Or, a dedicated interrupt
message could be implemented. With the no-redirect flag,
the state information needed for the controller is reduced to a
single bit. The server may use any metrics to set the no-redirect
flag, e.g., the number of flows that the server is currently
handling, CPU utilization, network bandwidth, or maintenance
status.

C. Redirection in Operation

Having introduced the elements of the architecture, we now
focus on how redirection works in operation.

1) Redirection Procedure: The CDN anycast traffic is for-
warded by the OpenFlow switch to the NFV Redirection Node.
Each incoming packet has its 4-tuple checked against the
existing flow mappings (Fig. 2 step 1). If there is a match,

the packet belongs to an existing flow. The packet is then
handled by the IPRewriter, and gets its anycast IP address
changed to the unicast address of the server according to its
flow mapping (Fig. 2 step 6). After that, the packet is sent out
back to the ISP network (Fig. 2 step 8). If no match, it is the
first packet of a new flow. A new flow mapping needs to be
created. The packet is then handled by the IPRewriter while
awaiting for the new flow mapping to be created (Fig. 2 step 6).
The IPRewriter gets the unicast IP address of the selected
server from the IPMapper (Fig. 2 step 5) and creates the
new mapping. The packet gets its anycast IP address changed
to the unicast address of the server according to the new
mapping. The packet is then sent out back to the ISP network
(Fig. 2 step 8). Meanwhile, the IPRewriter inserts the new flow
mapping into the Flow Table (Fig. 2 step 7).

The IP address of the selected server provided by
the IPMapper (Fig. 2 step 5) is determined by the
Redirection Ratio string, which is obtained from the
Controller (Fig. 2 step 4). The Redirection Ratio string is
created by the Controller based on the redirection algorithm,
no-redirect flag and server load and dynamics, which is
provided by the Arrival Rate and Number of Connections
modules (Fig. 2 steps 2 and 3).

2) Redirection Method: To make the redirection process
transparent to users, tunneling or IP Rewriting may be used.
Tunneling has some performance advantages over IP Rewrit-
ing as TCP checksum has to be recalculated after an IP address
is rewritten. However, tunneling is not supported natively
in OpenFlow. A workaround has to be carried out in the
switch. Therefore in the current implementation, we chose
IP Rewriting for redirection. Then, the issue is that in its
response, the server will need to have its source address
changed from its unicast address to its anycast address, as the
user expects a packet with the server’s anycast address.
Moreover, due to this process TCP checksum has to be
performed over every single data packet, adding a performance
penalty.

To address these issues of IP Rewriting, DNAT is performed
on the SYN and ACK packets—rewriting from the server’s
unicast address to its anycast address—just before they are
passed to the server application. As a result, the data packets
from the server are routed directly to the user without having
to go through the NFV node. Only the TCP SYN and ACK
packets need to go through the NFV node and undergo
IP Rewriting. The performance penalty of TCP checksum on
these small packets can be neglected.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

2764 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

Fig. 5. OpenFlow rule.

TABLE I

BBB RESOLUTION AND BITRATES (Kbps)

IV. SYSTEM IMPLEMENTATION

Mininet [15] was used as the emulation environment to
implement T-SAC. OpenFlow [11] and Ryu [13] controller
were used as the implementation of SDN. We then only need
to add a rule to the OpenFlow switch so that CDN anycast
traffic is forwarded to an NFV node. An example of a rule
used in the implementation can be seen in Fig. 5, showing
eight of the main parameters that an OpenFlow forwarding
rule can have. This rule says that any TCP packet destined
for the CDN using its anycast IP address should be forwarded
to the NFV node. Since the server responds with its anycast
IP address the reply packet from the server does not have to be
forwarded to the NFV node. As a result, only one user-defined
OpenFlow forwarding rule needs to be added to the switch in
this case. In practice, multiple rules could be added on the fly
to specify what traffic is to be handled by which NFV node.

We used Click [14] to implement the NFV Redirection
Node. In practice, ClickOS [44] and In-Net [45] could be
used to speed up Click and address security issues. The
capacity of the NFV node is essentially limited by the under-
lying NFV platform. It shows that ClickOS [44] can deliver
production-level performance for carrier-grade NAT opera-
tions, a functionality used by the NFV nodes. Note that the
NFV node only needs to handle TCP SYN and ACK packets.
The data packets are routed directly from the server to the user.
Furthermore, the load of each NFV node can be managed by
manipulating the forwarding rules in the OpenFlow switches.
In other words, the NFV nodes only need to handle the load
that they can handle, and leave the rest to native anycasting.
There are also some other NFV platforms being proposed such
as Eden [46], which allows the efficient support of network
functions at network’s edge. Eden is an alternative to realise
the NFV nodes. It is worth noting that the scalability of T-SAC
is achieved due to a number of factors, namely, SDN and NFV
scalability, incremental deployment and flexible placement,
and the layering approach of server groups. Please see the
discussions in Section VI for details.

The CDN servers are equipped with HTTP web servers
implemented over node.js [17]. To emulate the performance
of T-SAC, these servers all hold the same content, ranging
from some random images to DASH videos. One DASH video
was Big Buck Bunny (BBB) [47] encoded to 10 different
bit rates. This allows us to show the improvement using our
architecture on the retrieved bitrate encoding. The standard
dash.js library [48] running in a chromium browser [49]
was used to retrieve the DASH video. Table I shows the

bitrate levels for different resolutions as defined by DASH
specifications [19].

When making requests for the images hosted on the
CDN server, we used Wget [18]. Wget makes HTTP requests
just like a browser does. The key exception is that when
retrieving a web page that has multiple pieces of content, e.g.,
embedded images. A web browser such as Chrome or Firefox
may create up to six TCP connections and retrieves each image
in parallel, whereas Wget retrieves all the images using a
single TCP connection. For the purpose of testing, there is
little difference in using a browser or Wget. However, Wget
is a non-interactive command line tool, so it can be easily
called from our scripts. Traffic was generated based on Poisson
distribution. We set the mean generation time to an interval
that would give us the desired number of flows. For example,
using (2), if we know the average time to retrieve the content
from the server is 10 seconds (t), and we want to have an
average of 500 open TCP sessions (NC) at a time, we would
use a mean interval of 0.02s (1/λ, λ being the flow arrival
rate) to generate flows.

1/λ = NC/t (2)

V. EVALUATION

Through evaluation, we would like to answer a few ques-
tions, that is, can T-SAC:
• redirect traffic with the popular web and streaming

applications?
• redirect the right amount of traffic, handling well in the

presence of slow movement of traffic as well as sudden
bursts of traffic?

• redirect at the right time so that the server load does not
overshoot the limit?

• prevent unnecessary redirection and ensure the preventing
mechanism behaves properly?
To this end, two overloading methods are used in the

evaluation. The first one is to generate a large amount of traffic
using Wget to retrieve content from web servers. This amount
of traffic is greater than what a single server would be able to
handle. The second one retrieves a dash.js video from a server
with limited bandwidth. We would like to see the performance
of T-SAC on the retrieved bitrate for each chunk of the video.

A. Network Setup

All the experiments were carried out in a Mininet emulation
environment running on an AWS EC2 instance [16], using

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

FU et al.: TAMING THE WILD: A SCALABLE ANYCAST-BASED CDN ARCHITECTURE (T-SAC) 2765

Fig. 6. Evaluation topology (courtesy: REANNZ ISP network [50]).

the topology of REANNZ ISP network shown in Fig. 6. The
clients, servers and NFV Redirection Node all ran on their
own Mininet host. Nowadays, the CDN servers have multiple
terabits of capacity, able to handle millions of flows. As our
implementation is emulation based, it is not suitable for stress
testing or handling millions of flows. The purpose of the
evaluation is to demonstrate T-SAC’s capability of diverting
traffic in a proactive, dynamic, smooth, non-interruptive and
flexible manner, echoing the evaluation questions raised at the
beginning of the section. For this purpose, we only need to
create a server load that can clearly demonstrate the redirection
capability of our architecture, instead of a load for stress
testing.

It is also worth noting that the evaluation would be much
more interesting and realistic if we had an actual deploy-
ment of T-SAC or were able to obtain traffic traces from
ISP/CDN operators. We would then be able to analyze the
impact of server load, server geographic location and net-
work dynamics in meaningful real-world scenarios, or inves-
tigate the impact of PoP-to-PoP communications via transit
routes vs. a backbone network. These studies would help
ISP/CDN operators determine the grouping of servers
(see Section III-A1 for details) or the impact of redirection
in practice. We will leave these for future studies.

For the evaluation using Wget, the redirection threshold is
set to 500 flows. This parameter defines at what point the traf-
fic should be redirected away from a server. We chose 500 as

Fig. 7. No redirection.

the threshold for the purpose of evaluation, demonstrating the
features of our architecture. In practice, each server may run
on different hardware with varying bandwidth connections to
the wider ISP network. The threshold should be left up to the
choice of the CDN operators. They are in the best position to
determine at what point traffic should be redirected. For the
evaluation using dash.js video streaming, which may require
a substantial amount of bandwidth to function, bandwidth
was the chosen metric to determine when traffic should be
redirected.

B. No Redirection

In the first experiment, we would like to show that T-SAC
is able to successfully route traffic to servers without redi-
rection. To show this, we set up three CDN servers, one
in Wellington (WLG), one in Christchurch (CHC) and one
in Auckland (AKL), which are expected to handle around
200, 400 and 600 open connections, respectively, at a time
throughout the experiments. Redirection is disabled. The
results are shown in Fig. 7. As expected, three servers in
WLG, CHC and AKL are processing an average of 200,
400 and 600 connections throughout the experiments. In this
set of experiments, the OpenFlow switch has a forwarding rule
which forwards anycast traffic to the NFV Redirection Node
which then directs the packets to individual CDN servers.
In another set of experiments (not shown in this paper),
the forwarding rule is disabled – the anycast traffic is for-
warded by the OpenFlow switch directly to the individual
servers. Similarly, the three servers are handling an average
of 200, 400 and 600 connections, respectively. This indicates
that the architecture is able to direct traffic through the
NFV node or relying on the native anycasting.

C. Baseline Redirection

In this scenario, we show an example of baseline traffic
redirection. The redirection threshold is set to 500 connections.
The AKL server is expected to experience a high traffic load
with 600 connections being destined for it, while the WLG and
CHC servers are expecting 200 connections each. This means
that some of the 600 connections need to be redirected away so
that the load handled by the AKL server does not significantly
go beyond 500 flows. Fig. 8 shows that around 500 flows are
actually being processed by the AKL server throughout the
experiment. This is because the NFV node redirects traffic
when the number of flows to the AKL server exceeds or is

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

2766 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

Fig. 8. Baseline redirection.

Fig. 9. Simple bound redirection.

about to exceed 500 flows. When this happens the NFV node
sets a ratio regarding how much traffic to be accepted and
redirected. This ratio is re-calculated every second so that the
node is able to react to any sudden changes to the arrival
rate and/ or departure rate of new and existing flows. The
new flows to be redirected are sent to the other servers in
the server group, which in this example are the WLG and
CHC servers. Each of these two servers receives about half
of the redirected flows in an attempt to balance the load
among the servers. This results in the two servers receiving
an average of 50 redirected flows each or in total 250 flows
each.

Figure 9 shows the redirection behaviours resulted from
MIMA proposed in [9] which employs hysteresis-based redi-
rection control. In the figure, the upper bound of the hysteresis
is set to 500, the same as the threshold in Fig. 8. The lower
bound is set to 200. But the architecture is unable to redirect
traffic in a dynamic way. In the figure, the traffic is redirected
at a fixed ratio of 1:2 until the number of flows the AKL server
is processing drops below the lower bound of 200, at which
point the AKL server stops redirecting new flows. It then
starts to redirect traffic again after it breaches the upper bound
of 500 flows. In this example, the architecture redirects more
traffic away than necessary, and thus is not able to achieve
an equilibrium load level. This may result in two potential
issues. The first one is that the WLG and CHC server may be
put at the risk of being overloaded. The second is that some of
the redirected users could have received decent performance
from the AKL server, but now have to be redirected to either
WLG or CHC and may suffer performance penalty. In contrast,
our architecture only redirects the right amount of traffic to
alternative servers.

Fig. 10. Redirection with sudden bursts.

D. Redirection With Sudden Bursts of Traffic

Figure 10 shows how T-SAC reacts to large sudden changes
in flow arrival rate that a server may experience. In the figure,
the AKL server is initially receiving appropriately 400 TCP
flows, while the WLG server has no traffic generated for it.
In the time periods 90-240s and 400-480s the AKL server
sees large spikes in flow arrival rate, with 600 and 800 flows,
respectively, destined for the AKL server. Even with these
large spikes in traffic we do not see the AKL server handling
a load significantly over its threshold of 500 flows. The
additional traffic is quickly and smoothly offloaded to the
WLG server. This is largely due to the redirection procedure
being proactive, dynamic and smooth. When the load is
approaching to the threshold, the redirection is started proac-
tively (proactive). As the flow arrival rate starts increasing
rapidly, the redirection ratio is adjusted accordingly to quickly
divert traffic to the alternative servers (dynamic). However,
T-SAC does not over redirect. It only redirects the right amount
of traffic, trying to keep the load of the current server below
the threshold (smooth). This ability of responsiveness is an
important feature of our architecture when we consider the
impact of social media events such as flash crowds, where a
huge number of people request the same content at almost the
same time [51].

E. Preventing Tit-for-Tat Redirection

In this experiment, we look at the scenario where all the
CDN servers in the group are highly loaded and are not in the
position to accept redirected traffic. Fig. 11 shows two servers
AKL and WLG with each server reaching the redirection
threshold of 500 flows. In the figure, both servers start off
handling around 200 flows. After 90 seconds, the AKL server
starts to see an increase in traffic, with 600 connections
destined for it. When the AKL server reaches the threshold
of 500, the additional flows are redirected to the WLG server.
This can be seen in the figure between 120 and 200 seconds
where the WLG server is receiving around 100 flows from the
AKL server (Fig. 11b). Later at around 220 seconds the WLG
server sees an increase in traffic. This increases the amount
of traffic originally destined for the WLG server from 200 to
400 flows. Plus the 100 flows redirected from the AKL server,
the load is now at the threshold of 500 flows. Traffic starts to be
redirected from the WLG server to the AKL server. This can
be seen at time 240 in Fig. 11b. At the same time more traffic
is redirected from the AKL server to the WLG server, as more

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

FU et al.: TAMING THE WILD: A SCALABLE ANYCAST-BASED CDN ARCHITECTURE (T-SAC) 2767

Fig. 11. Tit-for-Tat redirection.

traffic is redirected from the WLG server to the AKL server.
This causes a tit-for-tat redirection between the AKL and
WLG servers. While in this example the traffic is balanced
between the two servers, it is inefficient and unnecessary to
redirect traffic in this scenario. It ends up putting both servers
at their threshold and ultimately providing users with no real
benefit.

In order to avoid this tit-for-tat redirection, the no-redirect
flag is used. The servers are now able to set their no-redirect
flag. In this example a server sets its no-redirect flag whenever
the number of flows it is handling is greater than 200 – at
this point the server will not accept any redirected new flows.
Fig. 12 shows the results of using the no-redirect flag.

Both servers start off with around 200 flows. After
90 seconds, the AKL server starts to see an increase in
traffic with 600 flows destined for it. Since the WLG server
is handling more than 200 flows at the time and has its
no-redirect flag set, the AKL server cannot offload any of
its new flows. At time 110 the flag is unset and the AKL
server starts to redirect some traffic to the WLG server. Since
this pushes the number of flows to the WLG server well
above 200 flows, the no-redirect flag is set. This then happens
again 60 seconds later. In the figure, the flat caps in the number
of redirected connections indicate that during this period of
time no redirected flows arrive or leave, so the number of
redirected flows stays the same. At around time 220 the
WLG server sees an increase in non-redirected traffic. This
increases the traffic originally destined for the WLG server
from 200 to 400 flows. So now both servers have their
no-redirect flag set – no traffic for the AKL server can be
redirected to the WLG server. This leaves each server to
process its own traffic, that is, 600 flows for the AKL server
and 400 flows for the WLG server. While this does not balance
the traffic between the servers like in Fig. 11b, it does stop

Fig. 12. Redirection with no-redirect flag.

traffic being redirected to a server that cannot or does not
want to handle it. This is important, because we do not want
a server at its limit handling redirected traffic, while at any
moment a large amount of traffic of its own may arrive. Note
that to avoid oscillating redirection FastRoute [4] only allows
one-way redirection from an outer-layer server to an inner-
layer server (Fig. 17). In contrast, with the no-redirect flag our
architecture allows redirection potentially between any servers.

F. Handling No-Redirect Flag

Deciding when the no-redirect flag should be set and unset
turned out to be not as simple as depicted in the previous
scenario. We initially implemented the no-redirect flag to be
set on whenever the number of flows was above a given
threshold. A problem arises when the threshold is close to
the number of flows originally destined for the server. For
instance, the WLG server has a threshold at 200 for its
no-redirect flag, while it is receiving an average number
of 200 flows without the redirected traffic from AKL. This
results in the no-redirect flag of the WLG server flapping on
and off, as seen in Fig. 13. It is desirable to avoid this flapping
problem, as it provides no benefits and adds burdens to the
NFV node and the server.

To mitigate the flapping problem, we tried to smooth out
the number of flows that the server is handling by EWMA to
determine when to set the no-redirect flag. This did reduce the
number of times that the no-redirect flag turned on and off.
But, there are still a significant number of flaps. To further
address the issue, a hysteresis-based algorithm was developed.
The algorithm sets a lower and an upper bound. At the lower
bound, the no-redirect flag is turned off when the number of
flows drops below the threshold. At the upper bound, the flag
is turned on when it breaks above the threshold. The results
are shown in Fig. 14. In this figure, the no-redirect flag is

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

2768 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

Fig. 13. Instantaneous no-redirect flag.

Fig. 14. Hysteresis no-redirect flag.

set when the number of flows is above 225, and is only unset
once the number of flows drops below 175. Using this method
the number of flaps is dramatically reduced. In practice,
CDN operators may set appropriate upper/lower bounds based
on their knowledge of network and traffic dynamics.

G. Video Streaming

This experiment shows how T-SAC can improve the per-
formance of video streaming applications. We used DASH
(Dynamic Adaptive Streaming over HTTP) [19] as our video

Fig. 15. Average chunk bitrate.

Fig. 16. Chunk bitrate.

streaming client. DASH allows the bitrate of the video to
be automatically adjusted depending on what bandwidth is
available to the client. The bitrate increases or decreases with
the bandwidth. DASH breaks up the video file into many small
chunks, with each chunk being encoded at several different
bitrates. In this evaluation, we set up a set of DASH clients
and two CDN servers with the same video encoded at multiple
bitrates. We then limited the bandwidth that was provided to
each of the CDN servers. Fig. 15 shows the performance of
our architecture with and without traffic redirection. We can
see that with redirection the average bitrate that the clients
received was significantly improved. This is because whenever
the number of connections to a server went past the redirection
threshold, some of the new flows were redirected to another
server. As a result, the existing flows are not significantly
affected by the new flows – the current server only accepts
the amount of traffic that does not affect the user experience
of the existing flows. Meanwhile the new flows redirected
away from the current server are connected to an alternative
server that has the bandwidth to accommodate these new
flows. In this example, we only had two CDN servers. If we
increased the number of servers that the new flows could be
redirected to, there would be much more space to improve
bitrate performance.

Figure 16 shows the bitrate retrieved for each chunk over
a particular flow. For the first half of the streaming the server
has enough bandwidth for the dash client to retrieve the
chunks with the highest quality. After that the server and
the network suddenly get loaded, causing the DASH client
to retrieve with a much lower bitrate. In response to this,
our architecture rapidly redirects some of the new flows to
an alternative server. As a result, the bitrate for the DASH
client is quickly recovered to the best level that the current

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

FU et al.: TAMING THE WILD: A SCALABLE ANYCAST-BASED CDN ARCHITECTURE (T-SAC) 2769

server can offer. Without redirection the server is forced to
accommodate all the streaming requests. The DASH client has
to maintain a low bitrate for the chunks. With the proposed
architecture the DASH client can maintain a high bitrate for
most of the time. There are some fluctuations in the chunks
around 130. This is due to the current implementation of
DASH. If QDASH [52] was used, which allows a gradual
change in bitrate levels, the fluctuations would be mitigated.
SDNDASH [53], an architecture that uses SDN for resource
allocation and management for DASH, could be easily built
on top of our architecture for fine-grained QoS provisioning.

VI. DISCUSSIONS

How Are the Design Goals Met?

Goal 1. The redirection being proactive, flexible, dynamic,
smooth and non-interruptive will be discussed separately.
Goal 2. Suitable servers are selected based on ISP/CDN col-
laboration [40], the use of server group [34] and no-redirect
flag, and transit routes [43]. While ISP/CDN collaboration
is highly recommended, it is not required to make T-SAC
work. Without the collaboration from ISP, we would still
have the 1-bit flag from the alternative servers and the basic
load information from the current server. But, we could only
divert traffic at CDN edge, which might not be efficient.
Goal 3. The redirection is done via IP rewriting with no
modifications to the client.
Goal 4. The system only needs to know a one-bit no-redirect
flag of the servers and the basic load information of the
current server. However, if more bits were used to indicate
the state of the alternative servers, T-SAC would be able
to divert traffic more intelligently, for example, reducing
the possibility of overloading or unbalancing the alternative
servers.
Goal 5. If not needed, the redirection can be disabled by
removing the forwarding rule in the switch. Any new flows
thereafter will be handled by the native anycast. Deployment
and placement issues will be discussed separately.
Goal 6. Because of the use of the unicast address of the
CDN servers after the redirection procedure, the path from
the NFV Redirection Node to the server is not affected by
the anycast route flapping problem.

Proactive, Dynamic, Smooth, Non-Interruptive and Flexible
Redirection: By measuring server dynamics (load and its
trend), a redirection ratio is figured out based on the algorithm
in (1).

Proactive: If the predicted load is going to break the thresh-
old (server at the risk of being overloaded), redirection is
activated and traffic is proactively redirected away.
Dynamic: The redirection ratio is adjusted on the fly accord-
ing to server dynamics. Rapid increase in traffic may result
in a large portion of (or all) the traffic being redirected away.
Slow increase may result in a small portion being redirected.
Smooth: Based on the redirection ratio, only the right
amount of traffic is redirected away. The goal is to keep
the load of the current server just around the thresh-
old, which is considered the limit to provide satisfactory
performance.

Fig. 17. FastRoute redirection (courtesy: FastRoute NSDI slides [54]).

Non-interruptive: The system only redirects new flows and
thus existing flows stay with the current server without being
interrupted during the redirection.
Flexible: The use of no-redirect flag allows T-SAC to redirect
to any servers without having the problem of servers redi-
recting to each other. This is in contrast to FastRoute [4],
which to address the problem only allows redirection from
an outer layer to an inner layer, that is, from an edge server
to a regional hub or from a regional hub to the central hub,
not the other way around or between peers (Fig. 17). T-SAC
may first redirect to a server within the same server group,
e.g., from Wellington to Auckland, and then if impossible,
redirect to the regional or the central hub, e.g., from Auckland
to Sydney or Los Angeles (Fig. 6).

Why Not to Redirect Existing Flows? Firstly, it is unlikely
that T-SAC would need to redirect existing flows. Our redirec-
tion is proactive, pre-empting the load threshold being broken.
Before the server gets overloaded, the redirection of the new
flows would already start if the server was at the risk of
being overloaded. It shows in Fig. 10 that even with sudden
bursts of traffic, the load of the current server stays around
the threshold. Secondly, it is not trivial to redirect existing
flows without breaking them [42]. It involves the transfer of
TCP state information, which is a complex process, making the
system unscalable. Research shows that only a small fraction
of users need to be redirected [5]. The cost of redirecting
existing flows cannot be easily justified. T-SAC only needs to
redirect new flows to keep the load of the server under control.
This is much more practical than redirect existing flows.

Retrieving Content From Multiple Servers: For applications
that support the use of concurrent TCP sessions, T-SAC
allows to fetch content from multiple servers simultaneously
– concurrent TCP sessions can be established with different
cache servers. This may potentially improve the performance
of web browsers and streaming applications such as DASH.

SDN and NFV Scalability: The traffic redirection could have
been done by the switch. However, this could potentially add
a significant amount of load to the data plane. The use of the
NFV node essentially offloads the redirection functionality as
well as potentially a large number of flow entries from the
switch. This results in a simple and scalable data plane.

It is the ISP/CDN operators’ decision in regard to what
and how much traffic to be handled by an NFV node for the

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

2770 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

redirection process. This can be easily done by manipulating
the forwarding rules in the OpenFlow switches. Moreover,
for a particular flow the NFV node only handles the TCP
SYN and ACK packets. The data packets go straight from the
server to the user. In addition, the NFV nodes do not need to
communicate with each other. This means that the scalability
issues of the NFV node are controllable, and even with a single
NFV node there are no issues such as single point of failure
(the node would only handle a fraction of traffic; a failure
would only affect this fraction of traffic which could then be
reestablished through native anycasting).

Incremental Deployment and Flexible Placement: The
nature of NFV means that the NFV Redirection Nodes can
be easily spun up or shut down and placed strategically in
the network. By manipulating the forwarding rules in the
OpenFlow switches, we can manage the load of the NFV
nodes. For instance, assuming that there was only a single
NFV node deployed, we would only forward the amount of
traffic that the single node could handle. The flows forwarded
to the NFV node might be redirected to potentially a more
suitable server and thus receive better QoS. The flows not
forwarded to the NFV node would be handled by native
anycasting and directed to the “closest” server. This means that
T-SAC supports incremental deployment. This is in contrast to
PIAS [7] or FastRoute [4], which needs full deployment (a suf-
ficient number of nodes) before their system can function.

In theory, the NFV nodes can be placed anywhere in the net-
work between the switch and the server. In two extreme cases,
the NFV nodes may be collocated with every switch or server.
Collocating with the switch makes it harder to get server
information in a cost-effective and timely manner, but it is
more efficient in terms of redirecting flows among the servers.
Collocating with the server has the advantage of easy access
to server information but is less efficient when redirecting to
another server is needed. In reality, it is a trade-off between
these two extreme cases. CDN or ISP edge is the natural choice
of placement. In our implementation, we chose CDN edge for
the convenience of access to server information.

Why Is T-SAC Scalable? Based on the discussion on SDN
and NFV scalability, it is unlikely that the data plane of the
SDN switches or the NFV redirection nodes may get stressed.
The redirection functionality is moved from the data plane to
the NFV node. The load of the NFV node can be managed /
controlled by manipulating the forwarding rules in the Open-
Flow switch. The load is further reduced as the NFV node only
needs to handle the SYN and ACK packets, not the data traffic.
Furthermore, the NFV nodes do not need to communicate
with each other. Even so, the work in [44] has shown that
NFV platform is capable of achieving production-level perfor-
mance for carrier-grade NAT operations, a functionality used
by T-SAC.

Based on the discussion on incremental deployment and
flexible placement, there is no need to have a full deployment
of the NFV nodes or the SDN switches upfront. Starting from
a single programmable switch and NFV node, T-SAC can start
diverting traffic within its capacity, only handling the amount
of traffic it can handle. The rest of the traffic is handled by
native anycasting.

Furthermore, T-SAC is capable of diverting traffic between
potentially any servers. Based on the discussion on server
groups in Section III-A1, there can be multiple levels of server
groups, for instance, three levels – an intra-PoP server group,
a nation-wide inter-PoP server group and a global inter-PoP
server group. T-SAC may first start redirecting traffic within
the intra-PoP server group, then the nation-wide server group,
and finally the global server group. This layering approach of
server groups not only improves the scalability of the system
but also user experience as T-SAC will first attempt to divert
traffic to a server close to the user, and then gradually move
on to other servers if needed. In comparison, the layering
approach in FastRoute [4] is also designed for scalability, but,
it does not have the level of flexibility that T-SAC has.

VII. RELATED WORK

Diverting traffic from an anycast IP address to a unicast
IP address [7]–[9] or another anycast address [4] has been
commonly used for creating scalable systems. We are par-
ticularly interested in FastRoute [4], as it aims to create
a scalable anycast routing architecture for CDNs, and is
currently deployed in production.

A. FastRoute

FastRoute [4] is a scalable anycast routing architecture
developed by Microsoft for the Bing CDN to redirect traf-
fic from overloaded servers. In FastRoute CDN servers are
grouped into three layers (Fig. 17), namely, edge servers,
regional hubs and the central hub from outer layer to inner
layer. Each layer has a group of CDN servers and its anycast
address. Each CDN server is collocated with a load-aware
DNS server. When a server is overloaded, upon a DNS request
new flows are redirected to its neighbouring inner layer.
FastRoute and T-SAC are similar in that only new flows are
redirected – existing flows stay with the current server without
being interrupted.

However, T-SAC addresses a number of issues that
FastRoute has.
1. To avoid the CDN servers redirecting to each other

(see Fig. 11), FastRoute only allows redirection from an
outer layer to its neighbouring inner layer, that is, from
an edge server to a regional hub or a regional hub to
the central hub, not the other way around or between the
servers within the same layer. This results in inefficient
use of server capacity. By adding a no-redirect flag, T-SAC
allows redirection potentially between any servers without
having the problem of the servers redirecting to each other.

2. FastRoute relies on a greedy heuristics for the redirec-
tion [55]. The fraction of traffic being redirected is propor-
tional to current load− overload threshold. This means
that FastRoute may face a dilemma: redirect not fast enough
in the presence of sudden bursts of traffic, such as Flash
Crowds [51], or unnecessarily redirect too much traffic. In
T-SAC, traffic is redirected in a proactive, dynamic and
smooth manner based on server dynamics.

3. FastRoute relies on load-aware DNS servers to redi-
rect, and thus inherits the DNS-based problems (see
Section II-A) [20], [41].

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

FU et al.: TAMING THE WILD: A SCALABLE ANYCAST-BASED CDN ARCHITECTURE (T-SAC) 2771

4. The redirection granularity of FastRoute is at LDNS level,
that is, all the new flows from the users behind the LDNS
will be redirected. Ours is at flow level.

5. FastRoute relies on the self-correlation between the cache
server and its collocated DNS server, that is, DNS queries
and subsequent user traffic to cache servers need to land on
the same FastRoute node. This correlation does not always
hold.

6. FastRoute only uses anycast addresses, giving CDN/ISP
operators no control on which server the users are con-
nected to. It also inherits the route flapping problem of
anycast.

7. FastRoute does not support incremental deployment.
If there was only one FastRoute node, all the anycast traffic
to the CDN would have to be handled by this single node.

B. Other Studies

The work in [8] proposes a scalable CDN architecture using
push-based notification. When a user request is sent to the
anycast address of the CDN servers, the system chooses a
server and explicitly asks the user to use the unicast address
of the selected server. The architecture requires modifications
to the client side, and does not specifically address the issue
of traffic redirection among the servers.

PIAS [7] is a global anycast overlay, aiming to be scalable
and replace the native anycast. In general, PIAS is similar
to Mobile IP [56]. IAP (Ingress Anycast Proxy) and JAP
(Join Anycast Proxy) in PIAS resembles Home Agent (HA)
and Foreign Agent (FA) respectively in Mobile IP. PIAS uses
IP address + port number as the address of an anycast
group. When IAP receives a packet for an anycast group
for the first time, it enquires a Rendezvous Anycast Proxy
(RAP), which selects a JAP based on a set of selection
criteria such as proximity and load. The JAP then selects the
most suitable anycast server to handle the traffic. Both JAP
and anycast servers use unicast IP addresses while IAP uses
anycast addresses. The JAP is cached by the IAP for future
use. A tunnel is established from the IAP to the JAP. The
JAP decapsulates the packet and performs DNAT rewriting
its destination from the anycast group address to the unicast
address of the server. The role of RAP is similar to a DNS
server. In the simplest form, a single PIAS proxy can act as
RAP, IAP and JAP. If there was only one such an overlay proxy
all anycast traffic would have to be handled by this single
proxy. For this reason, tens of thousands of PIAS proxies have
to be deployed at once to make it work.

In contrast T-SAC can coexist with the native anycast. The
NFV Redirection Node is not an overlay proxy. If there was
only one such a node, the NFV node would only handle the
traffic ISP/CDN providers want it to handle. All the other
traffic would be handled by native anycasting. This means
that T-SAC supports incremental deployment of the NFV
Redirection Nodes. Another key difference is that in PIAS the
redirection from one server to another will break existing TCP
sessions. If the serving JAP is overloaded, the RAP identifies
a new JAP and then all existing flows have to be re-established
with the new JAP. Moreover, PIAS is not capable of flow-level
redirection as port numbers are part of anycast addresses.

According to a blog article on CloudFlare’s architecture [3],
load balancing with TCP flows gets trickier (in comparison
to UDP), as session states have to be maintained. There is no
much detail provided. We suspect that the trickiness is about
the scenarios that load balancing with TCP flows often results
in the TCP sessions being broken, or maintaining TCP session
states is not a trivial task [42]. While there are some load
balancing solutions adopted by CDN operators, unfortunately
these efforts are not well documented in public literature. The
most relevant and well documented research is FastRoute [4].
Nevertheless, our architecture is focused on diverting traffic
in a proactive, dynamic, smooth, non-interruptive and flexible
manner.

MIMA, an architecture proposed in [9] is able to divert traf-
fic among the servers in anycast-based CDNs. While MIMA
provides a promising platform, its redirection capability is
rather limited. MIMA can only redirect at a fixed ratio. In the
event of high flow arrival rate the redirection may not be able
to offload quickly enough. In the event of low flow arrival
rate, MIMA may unnecessarily offload traffic to other servers.
Combined with the hysteresis-based redirection in MIMA,
the amount of traffic handled by the current server may rapidly
fluctuate between the hysteresis limits, making it difficult to
achieve an equilibrium load level (see Fig. 9). In contrast,
T-SAC redirects traffic in a proactive, dynamic and smooth
manner. The redirection only starts when the server is at the
risk of being overloaded. The Redirection Ratio is adjusted
based on server dynamics. This ensures that only the right
amount of traffic is redirected without unnecessarily offloading
to other servers. MIMA has a mechanism similar to the no-
redirect flag in our architecture. However, it does not address
the flapping problem of the flag, adding unnecessary overhead
to the system.

SoDA (Software Defined Anycast) proposed in [30] enables
anycast routing based on a thin layer of SDN functionality.
SoDA balances the load of CDN proxy clusters by moving
load balancing functionality into the ISP network. In SoDA,
the SDN-based redirection at the edge router rewrites the
anycast IP address of a proxy cluster into the anycast IP
address of another proxy cluster. The traffic in both directions
(client to server and server to client) needs to go through the
edge router for the NAT operations, that is, DNAT and SNAT,
respectively. The NAT operations may break long-lived TCP
sessions if redirecting to a different proxy clusters happens
before the TCP sessions complete. However, it shows that the
amount of traffic affected by session losses is extremely low.
Although it is a simulation based observation, it is backed
up by real-world measurement shown in [31]. It is also worth
noting that if the granularity of the load balancing increases the
amount of traffic being affected by session losses will increase.
Similarly, our initial work in [41] also adopted DNAT and
SNAT operations at an edge router for redirecting traffic in
DNS-based CDNs.

ISP and CDN operators have been collaborating, and the
ISP-CDN collaboration problem has been well studied [40],
[42], [57]–[59]. Moreover, the IETF ALTO working group [60]
has proposed the Application-Layer Traffic Optimization
(ALTO) protocol, which enables network operators to support

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

2772 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

application-level traffic engineering [61], [62]. This includes
providing an interface between ISPs and CDNs to facilitate
ISP-CDN collaboration. More recently, content providers tend
to employ multiple CDNs to serve their content. This allows
the switching between CDNs, that is, the serving CDN can
be selected based on costs, performance or availability. This
is essentially the concept of Meta-CDNs, also known as CDN
broker or Multi-CDN selectors [12], [63]. Meta-CDN is an
infrastructure that enables routing between CDNs with the
routing logic provided by content providers. Cedexis [64],
a prominent Meta-CDN, works primarily the same way as
a DNS-based CDN, redirecting the requesting user to the
CDN selected for content delivery [12]. The selected serving
CDN will then follow its own server selection mechanism
and identify the suitable cache server. Our architecture is
designed to route traffic within a CDN, thus complementary
to Meta-CDN. An extension of our architecture, however, can
be used to realize Meta-CDN. The work in [12] presents
a broad assessment on the operation of Meta-CDN in the
wild.

VIII. CONCLUSIONS

In this paper we proposed T-SAC, a scalable anycast-based
CDN architecture that enables precise and fine-grained control
on how traffic is routed. T-SAC leverages SDN, NFV, as well
as the combination of unicast and anycast for traffic redirection
among the cache servers.

We designed a set of mechanisms including a load-based
traffic redirection method and a 1-bit no-redirect flag, to ensure
that the traffic redirection is performed in a proactive, flexible,
dynamic, smooth and non-interruptive manner. Redirection is
activated when the server is at the risk of being overloaded.
Only the right amount of traffic is redirected to maintain
the performance of the current server without unnecessarily
offloading to other servers. Traffic can be potentially redirected
to any servers that are suitable to handle additional traffic. This
is achieved by using a single-bit no-redirect flag. Only new
flows are redirected. The existing flows stay with the current
server without being interrupted. The anycast route flapping
problem is mitigated because of the use of the server’s unicast
IP address. The redirection is completely transparent to the
users. The proposed architecture only requires a small amount
of state information: the load of the server to be offloaded and
the no-redirect flag of the servers that are the candidates to
receive the redirected traffic.

Capitalizing on the programmability of SDN/NFV and the
flexibility of virtualization, T-SAC requires very few changes
to existing ISP/CDN networks: an NFV Redirection Node
and an SDN switch that can forward anycast traffic to the
NFV node. The SDN switch is offloaded by the NFV node,
resulting in a simple and scalable data plane. By manipulating
the forwarding rules in the switch, the load of the NFV node
is manageable. No communications are needed between the
NFV nodes and the nodes only handle the TCP SYN and
ACK packets. Thus, the scalability issues of the NFV node
are controllable. The nature of NFV makes it convenient
to spin up an NFV node and place it strategically in the
network. The architecture can coexist with native anycasting

and thus supports incremental deployment. T-SAC is simple
yet scalable and effective, suitable for practical deployment.

REFERENCES

[1] Cisco Visual Networking Index: Forecast And Methodology,
2016–2021. Accessed: Sep. 25, 2018. [Online]. Available: https://
www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/complete-white-paper-c11-481360.html

[2] M. Prince. A Brief Primer on Anycast. Accessed: Sep. 25, 2018.
[Online]. Available: https://blog.cloudflare.com/a-brief-anycast-primer/

[3] Load Balancing Without Load Balancers. Accessed: Sep. 25, 2018.
[Online]. Available: https://blog.cloudflare.com/cloudflares-architecture-
eliminating-single-p/

[4] A. Flavel et al., “FastRoute: A scalable load-aware anycast rout-
ing architecture for modern CDNs,” in Proc. USENIX NSDI, 2015,
pp. 381–394.

[5] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and J. Padhye,
“Analyzing the performance of an anycast CDN,” in Proc. ACM IMC,
2015, pp. 531–537.

[6] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai network:
A platform for high-performance Internet applications,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

[7] H. Ballani and P. Francis, “Towards a global IP anycast service,” in
Proc. ACM SIGCOMM, 2005, pp. 301–312.

[8] H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, and
J. Van Der Merwe, “A practical architecture for an anycast CDN,” ACM
Trans. Web, vol. 5, no. 4, pp. 17:1–17:29, Oct. 2011.

[9] J. Lai and Q. Fu, “Man-in-the-middle anycast (MIMA): CDN user-server
assignment becomes flexible,” in Proc. LCN, 2016, pp. 451–459.

[10] ETSI. Network Functions Virtualisation. Accessed: Sep. 25, 2018.
[Online]. Available: https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/
NFV_White_Paper3.pdf

[11] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[12] O. Hohlfeld, J. Rüth, K. Wolsing, and T. Zimmermann, “Characterizing
a meta-CDN,” in Proc. PAM, 2018, pp. 114–128.

[13] RYU SDN Framework. Accessed: Sep. 25, 2018. [Online]. Available:
https://osrg.github.io/ryu/

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The click modular router,” ACM Trans. Comp. Syst., vol. 18, no. 3,
pp. 263–297, Aug. 2000.

[15] Mininet Overview. Accessed: Sep. 25, 2018. [Online]. Available:
http://mininet.org/overview/

[16] Amazon Web Services. Accessed: Sep. 25, 2018. [Online]. Available:
https://aws.amazon.com/

[17] Node.JS. Accessed: Sep. 25, 2018. [Online]. Available:
https://nodejs.org/

[18] H. Niki. GNU Wget. Accessed: Sep. 25, 2018. [Online]. Available:
https://www.gnu.org/software/wget/

[19] Dash Industry Forum. Accessed: Sep. 25, 2018. [Online]. Available:
http://dashif.org/

[20] J. Lai, Q. Fu, and T. Moors, “Using SDN and NFV to enhance
request rerouting in ISP-CDN collaborations,” Comput. Netw., vol. 113,
pp. 176–187, Feb. 2017.

[21] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the electric bill for Internet-scale systems,” in Proc. ACM
SIGCOMM, 2009, pp. 123–134.

[22] H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian, “Optimizing cost
and performance for content multihoming,” in Proc. ACM SIGCOMM,
2012, pp. 371–382.

[23] F. Chen, R. K. Sitaraman, and M. Torres, “End-user mapping: Next gen-
eration request routing for content delivery,” in Proc. ACM SIGCOMM,
2015, pp. 167–181.

[24] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari, Client
Subnet in DNS Queries, document RFC 7871, May 2016.

[25] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in con-
tent delivery,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 3,
pp. 52–66, Jul. 2015.

[26] Cloudflare. Accessed: Sep. 25, 2018. [Online]. Available:
https://www.cloudflare.com

[27] Amazon. Accessed: Sep. 25, 2018. [Online]. Available:
https://aws.amazon.com/route53/faqs/

[28] Google Cloud Platform. Accessed: Sep. 25, 2018. [Online]. Available:
https://cloud.google.com/load-balancing/

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

FU et al.: TAMING THE WILD: A SCALABLE ANYCAST-BASED CDN ARCHITECTURE (T-SAC) 2773

[29] D. Giordano, D. Cicalese, A. Finamore, M. M. M. Mellia,
D. Z. Joumblatt, and D. Rossi, “A first characterization of anycast traffic
from passive traces,” in Proc. IFIP TMA, 2016, pp. 1–8.

[30] M. Wichtlhuber et al., “SoDA: Enabling CDN-ISP collaboration with
software defined anycast,” in Proc. IFIP Netw., 2017, pp. 1–9.

[31] M. Levine, B. Lyon, and T. Underwood. (2006). TCP Anycast—Don’t
Believe the FUD. Operational Experience With TCP and Anycast.
Accessed: Sep. 25, 2018. [Online]. Available: https://www.nanog.org/
meetings/nanog37/presentations/matt.levine.pdf

[32] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” in Proc. ACM SIGCOMM Conf. (SIGCOMM), 2013, pp. 3–14.

[33] Cord Project. Accessed: Sep. 25, 2018. [Online]. Available:
https://opencord.org/

[34] D. Cicalese, D. Z. Joumblatt, D. Rossi, M.-O. Buob, J. Augé, and
T. Friedman, “Latency-based anycast geolocation: Algorithms, soft-
ware, and data sets,” IEEE J. Sel. Areas Commun., vol. 34, no. 6,
pp. 1889–1903, Jun. 2016.

[35] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“SNAP: Stateful network-wide abstractions for packet processing,” in
Proc. ACM SIGCOMM, 2016, pp. 29–43.

[36] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
Verifying network-wide invariants in real time,” in Proc. USENIX NSDI,
2013, pp. 49–54.

[37] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACM SIGCOMM, 2012,
pp. 13–24.

[38] H. J. Stuart, “The exponentially weighted moving average,” J. Qual.
Technol., vol. 18, no. 4, pp. 203–210, 1986.

[39] K. Cho, H. Jung, M. Lee, D. Ko, T. Kwon, and Y. Choi, “How can
an isp merge with a CDN?” IEEE Commun. Mag., vol. 49, no. 10,
pp. 156–162, Dec. 2011.

[40] B. Frank et al., “Pushing CDN-ISP collaboration to the limit,”
ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 2, pp. 34–44,
2013.

[41] J. Lai, Q. Fu, and T. Moors, “Rapid IP rerouting with sdn and NFV,”
in Proc. IEEE Globecom, Dec. 2015, pp. 1–7.

[42] M. Wichtlhuber, R. Reinecke, and D. Hausheer, “An SDN-based
CDN/ISP collaboration architecture for managing high-volume flows,”
IEEE Trans. Netw. Service Manag. vol. 12, no. 1, pp. 48–60,
Mar. 2015.

[43] A. K. F. Ahmed, Z. Shafiq, and A. X. Liu, “Optimizing Internet transit
routing for content delivery networks,” in Proc. IEEE ICNP, Nov. 2016,
pp. 1–10.

[44] J. Martins et al., “Clickos and the art of network function virtualization,”
in Proc. USENIX NSDI, 2014, pp. 459–473.

[45] R. Stoenescu et al., “In-net: In-network processing for the masses,” in
Proc. EuroSys, 2015, p. 23.

[46] H. Ballani et al., “Enabling end-host network functions,” in Proc.
ACM Conf. Special Interest Group Data Commun. (SIGCOMM), 2015,
pp. 493–507.

[47] Big Buck Bunny. Accessed: Sep. 25, 2018. [Online]. Available:
http://dash.edgesuite.net/akamai/bbb_30fps

[48] Dash.JS. Accessed: Sep. 25, 2018. [Online]. Available:
https://github.com/Dash-Industry-Forum/dash.js/

[49] Chromium Project. Accessed: Sep. 25, 2018. [Online]. Available:
https://www.chromium.org/

[50] REANNZ ISP Network. Accessed: Sep. 25, 2018. [Online]. Available:
https://reannz.co.nz/
services/networking/network/

[51] P. Wendell and M. J. Freedman, “Going viral: Flash crowds in an open
CDN,” in Proc. ACM IMC, 2011, pp. 549–558.

[52] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang, “QDASH:
A QoE-aware DASH system,” in Proc. ACM MMSys, 2012, pp. 11–22.

[53] A. Bentaleb, A. C. Begen, and R. Zimmermann, “SDNDASH: Improving
QoE of HTTP adaptive streaming using software defined networking,”
in Proc. ACM MM, 2016, pp. 1296–1305.

[54] FastRoute NSDI Slides. Accessed: Sep. 25, 2018. [Online]. Available:
https://www.usenix.org/sites/default/files/conference/protected-
files/nsdi15_slides_flavel.pdf

[55] A. Sinha, P. Mani, J. Liu, A. Flavel, and D. Maltz, “Distributed
load management algorithms in anycast-based cdns,” Comput. Netw.,
vol. 115, pp. 1–15, Mar. 2017.

[56] C. E. Perkins, “Mobile IP,” IEEE Commun. Mag., vol. 35, no. 5,
pp. 84–99, May 1997.

[57] I. Poese, B. Frank, G. Smaragdakis, S. Uhlig, A. Feldmann, and
B. Maggs, “Enabling content-aware traffic engineering,” SIGCOMM
Comput. Commun. Rev., vol. 42, no. 5, pp. 21–28, Sep. 2012.

[58] I. Poese, B. Frank, S. Knight, N. Semmler, and G. Smaragdakis, “PaDIS
emulator: An emulator to evaluate CDN-ISP collaboration,” in Proc.
ACM SIGCOMM Conf. Appl., Technol., Archit., Protocols Comput.
Commun. (SIGCOMM), 2012, pp. 81–82.

[59] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang, “Cooperative
content distribution and traffic engineering in an isp network,” in Proc.
11th Int. Joint Conf. Meas. Modeling Comput. Syst. (SIGMETRICS),
2009, pp. 239–250.

[60] Information Assurance Working Group. Application-Layer Traf-
fic Optimization. Accessed: Sep. 25, 2018. [Online]. Available:
https://datatracker.ietf.org/wg/alto/about/

[61] R. Alimi et al., Application-Layer Traffic Optimization (ALTO) Protocol,
documrent RFC 7285, Sep. 2014.

[62] M. Stiemerling, S. Kiesel, M. Scharf, H. Seidel, and S. Previdi,
Application-Layer Traffic Optimization (ALTO) Deployment Consider-
ations, document RFC7971, Oct. 2016.

[63] M. K. Mukerjee, I. N. Bozkurt, D. Ray, B. M. Maggs, S. Seshan, and
H. Zhang, “Redesigning cdn-broker interactions for improved content
delivery,” in Proc. 13th Int. Conf. Emerg. Netw. Exp. Technol. (CoNEXT),
2017.

[64] Cedexis. Accessed: Sep. 25, 2018. [Online]. Available:
https://www.cedexis.com/

Qiang Fu received the Ph.D. degree in telecom-
munications engineering from The University of
Queensland, Australia. He is currently a Senior
Lecturer in network engineering with the School of
Engineering and Computer Science, Victoria Uni-
versity of Wellington, New Zealand. His research
interests include Internet architecture and protocols,
wireless and mobile systems, and network measure-
ment and security.

Bradley Rutter received the B.E. degree (Hons.)
in network engineering from the Victoria University
of Wellington in 2017. He is currently a Network
Engineer with Datacom, Wellington, New Zealand.

Hao Li (S’13–M’16) received the B.S. and Ph.D.
degrees in computer science from Xi’an Jiaotong
University in 2010 and 2016, respectively. He is cur-
rently an Assistant Professor with the Department of
Computer Science and Technology, Xi’an Jiaotong
University. His main research interests include com-
puter networking systems, network measurement
and monitoring, and software-defined networking.

Peng Zhang received the Ph.D. degree in computer
science from Tsinghua University in 2013. He is
currently an Associate Professor with the Depart-
ment of Computer Science and Technology, Xi’an
Jiaotong University, China. He has been a Visiting
Student at The Chinese University of Hong Kong
and Yale University. His research interests include
network security and software-defined networking.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

2774 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

Chengchen Hu received the Ph.D. degree from
Tsinghua University, Beijing, China, in 2008. From
2008 to 2010, he was an Assistant Research
Professor with Tsinghua University. Later, he joined
the Department of Computer Science and Tech-
nology, Xi’an Jiaotong University (XJTU), Xi’an,
China, where he served as an Associate Professor
first and a Professor since 2016 and the Department
Head from 2016 to 2017. Since 2017, he has been on
leave from XJTU and became the Principal Engineer
and Director leading Xilinx Research Labs Asia

Pacific, Singapore.
His main research interests include network measurement, cloud data center

networking, and software-defined networking. He severed in the organization
committee and technical program committee of several conferences, e.g.,
INFOCOM, IWQoS, GLOBECOM, ICC, ANCS, and Networking. He was
a recipient of a fellowship from the European Research Consortium for
Informatics and Mathematics, Microsoft "Star-Track" Young Faculty Program,
New Century Excellent Talents in University awarded by the Ministry of
Education, China.

Tian Pan (S’10–M’14) received the B.S. degree
from Northwestern Polytechnical University, Xi’an,
China, in 2009, and the Ph.D. degree from the
Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, in 2015.
He was a Post-Doctoral Researcher with the
Beijing University of Posts and Telecommunications
from 2015 to 2017, where he has been an Assis-
tant Professor since 2017. His research interests
include router architecture, software-defined net-
working, programmable data plane, and machine
learning for network applications.

Zhangqin Huang received the B.E., M.S., and Ph.D.
degrees in computer science from Xi’an Jiaotong
University in 1986, 1989, and 2000, respectively.
From 1989 to 2001, he was a Lecturer and an Asso-
ciate Professor at Xi’an Jiaotong University. From
2001 to 2003, he carried out post-doctoral research
at the Eindhoven University of Technology, The
Netherlands. Since 2003, he has been a Professor
with the Beijing University of Technology, where he
currently serves as an Executive Vice Director of the
Embedded Software System Institute and the Head

of the Embedded System Department, National Model Software College. He is
also a Professor at the Beijing University of Technology. His research interests
include system hardware and software co-design, wireless communication
protocols, SoC, IoT, and Internet architectures.

Yibin Hou received the Ph.D. degree in computer
science from the Eindhoven University of Technol-
ogy, The Netherlands, in 1986. He is currently a
Professor with the School of Software Engineering,
Beijing University of Technology, and the Director
of the Beijing Research Institute for Internet of
Things, Beijing, China. He was a Professor with
the Department of Computer Science, Xian Jiaotong
University, from 1991 to 2002, and the Dean of the
School of Software Engineering, Beijing University
of Technology, from 2002 to 2016. His research

interests include software engineering, embedded systems, and Internet of
Things.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 19,2021 at 01:32:31 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

