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a b s t r a c t 

Nowadays, regular expression matching becomes a critical component of the network traffic detection 

applications, which describes the fine-grained signature of traffic. Web services tend to compress their 

traffic for less data transmission, which is a great challenge for regular expression matching to achieve 

wire-speed processing. In this paper, we propose Twins , an efficient regular expression matching method 

over compressed traffic, which leverages the returned states encoding in the compression to skip repeated 

scanning. We also present an evaluation model to elaborate the factors that influence the performance 

of compressed traffic matching methods. Our evaluations demonstrate that Twins could skip ~ 90% com- 

pression data and can achieve 1.2 Gbps throughput with a single CPU core. It gains 2.2–3.0 times perfor- 

mance boost than the state-of-the-art works. With a parallel implementation using multiple CPU cores, 

the throughput could be up to 10 Gbps. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

Deep Packet Inspection (DPI) technique has been promoted

rom the simple string matching to semantics-based analysis for

etter serving the emerging scenarios including network opti-

ization, security, big data analysis, etc [1,2] . Regular expressions

RegExs) can describe higher-level semantics than plain strings.

herefore, RegEx matching becomes vital for realizing a DPI sys-

em. 

Today’s web services tend to compress their contents before

ransmitting them, so as to reduce the transmission volume and

atency. It heavily impacts traditional RegEx matching, aka, Naive

ethod, which only works for the raw, i.e., uncompressed con-

ent. For example, with the modern compression algorithm, the

ompressed traffic can expect a 20% compression ratio [3] , which

eans the Naive method has to make a 5 × speed-up for main-

aining its original performance. 

The compressed traffic matching (CTM) is then proposed, which

onsists of two independent stages: decompression and match-

ng. Since the decompression takes only 3.5% of the time of run-

ing the string matching [3] and its throughput can achieve more

han 10 Gbps for an ASIC design [4] , the first stage is fast enough

nd not critical. Therefore, the second stage determines the perfor-

ance of CTM. 
∗ Corresponding author. 
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The principle to accelerate the matching stage is to leverage the

idden information of the compressed traffic, e.g. , the flags added

y the compression algorithm. By having a quick glance at those

nformation, many of the traffic can be skipped without byte-to-

yte matching. Note that the processing on the hidden informa-

ion will also bring extra cost. As a result, the performance of

TM depends on two factors: (1) the number of bytes that can be

kipped, and (2) the extra cost for identifying such bytes. We find

hat both can be largely improved for previous CTM works. For ex-

mple, one of the previous works ARCH [5] only skips about 79%

f the traffic that Naive method scanned, while theoretically more

han 90% bytes encoded in compression segments can be skipped

ccording to the analysis in Section 5 . Besides, the previous

orks incur large extra cost, so they can barely achieve the high-

peed processing. As a result, the state-of-the-art works ARCH and

OIN [6] can not achieve 500 Mbps throughput according to our

valuation. 

In this paper, we propose Twins to tap the potential of skipping

ore bytes with less extra cost. The basic idea is to leverage the

ocality principle lying in compression format, i.e., the hidden infor-

ation of scanning the identical strings are mostly the same, so

hat the method can skip more bytes by just checking the previous

canning results. 

In the preliminary version of this paper [7] , Twins achieves

ore than 1.2 Gbps throughput and brings more than 2.6 × per-

ormance boost to ARCH. In this paper, we further optimize Twins

y generalizing its algorithm, which provides faster and more

https://doi.org/10.1016/j.comnet.2019.106996
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.106996&domain=pdf
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Fig. 1. The examples of DFA and A-DFA, which are constructed with the same 

RegExs “(ab + c) | (bc + d) ”. The state 0 is the start state and double-circle states 

are the accepting state. 
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stable performance over different RegEx sets in the high speed

cases. Besides, we implement a parallel version of Twins to enable

the wire-speed RegEx matching over compressed traffic. We also

elaborate how the methods affect the performance by the evalua-

tion model through multiple experiments. 

To be specific, the contributions of this paper are: 

(1) We propose a model to evaluate the performance of CTM by

considering the aforementioned two factors, which reveals

the design space of CTM. 

(2) We present Twins, which can skip about 90% bytes of the

decompressed traffic with minor extra overhead. 

(3) We build the prototypes of Twins with a single CPU core,

which can achieve more than 1.2 Gbps throughput, boosting

2.2–3.0 times on throughput than the previous works. We

also implement a parallel version, which can exceed 10 Gbps

with 13 CPU cores over the real traffic and RegEx sets. 

The reminder of this paper is as follows. We present the de-

sign space and propose an evaluation model for CTM methods in

Section 2 . We present the basic idea, algorithm and example of

Twins in Section 3 and also introduce the optimized algorithm in

this section. Then, we introduce the implementations of the meth-

ods in Section 4 . The evaluation and experiment analysis are de-

scribed in Section 5 . Related works are listed in Section 6 . Finally,

we conclude this paper in Section 7 . 

2. Design space of compressed traffic matching 

2.1. Regular expression matching with finite state automata 

We revisit the de facto structure used in RegEx matching, i.e.,

the finite state automata (FSA), before we extend it to the context

of CTM. The FSA-based method usually compiles RegExs to a non-

deterministic finite automaton (NFA) first. Then, the NFA is con-

verted to a corresponding deterministic finite automaton (DFA) and

the DFA is minimized. At last, the method finds patterns accepted

by this DFA. 

In practice, the DFA is organized as a two-dimensional matrix in

the memory. Each time the RegEx matching engine reads an input

character, and it inquires the matrix once for the next state based

on the current state and the input character [8] . Thus, the engine

only travels N states when matching an input string with length

of N . 

However, the number of states and transitions in the DFA could

be explosively growing when converting NFA to DFA, leading to

unacceptable memory cost with the rapid growth of patterns in

various applications. Therefore, many studies aim to reduce the

space consumption of DFA, e.g. , D 

2 FA [9] , A-DFA [10] , namely

compression/scalable FSAs [8] . These works can build a much

smaller DFA, but at a cost of sub-optimal matching speed in real

time. 

To have a convenient comparison, we use the same exam-

ple shown in Fig. 1 which comes from COIN [6] . In the exam-

ple, Fig. 1 (b) shows an A-DFA constructed with the same RegExs

“(ab + c) | (bc + d)” in Fig. 1 (a). The A-DFA only has 13 transitions

rather than 27 in the DFA. The red arrows show the traverse paths

of scanning a string “abccd” by the DFA and A-DFA. It is clear that

the path “01235456” of the A-DFA is longer than “012356” of the

DFA. 

While matching the compressed traffic, the simplest CTM

method, i.e., Naive method, decompresses it first, and then uses

the constructed FSA to scan the decompressed bytes one by one.

The decompression stage would enlarge the volume of the data to

be scanned, which impacts the performance of matching. 
.2. Design principle of CTM 

As mentioned, the basic principle of accelerating CTM is to

se the hidden information of compressed data to skip more

ytes when matching the pattern(s). It is achievable because

he traffic is compressed by minimizing the redundant contents,

nd such information of redundancy can be utilized for fast

kipping. 

Specifically, more than 90% (434/460) of the Alexa Top 500 sites

11] use gzip [12] as their default compression encoding format.

zip uses DEFLATE [13] as its compression method, which is a com-

ination of the LZ77 [14] algorithm and Huffman coding. During

he compression, LZ77 tries to find repeated maximum occurrences

ubstring with references to the earlier data by employing a slid-

ng window. Next, LZ77 replaces them by a two-tuple of < length,

istance > , where the length is length of the substring and the

istance is distance between the substring and the corresponding

eference. To unify the terms, the two-tuple is called pointer and

he corresponding substring is called referred string . The positional

elation of the terms is shown in the first line of Fig. 3 . 

After that, the compressed data, which contains pointers and

iterals (namely the raw content), is usually encoded by dynamic

uffman codes. So, the encoding data is continuous bit stream

ith variable length and cannot be split in units of bytes. That is

hy the works of CTM have to decode the traffic before pattern

atching. As mentioned, the decompression which contains Huff-

an decoding and LZ77 decompressing is not critical, so we do not

oncern it in this paper. 

Undoubtedly, the literals have to be scanned and the bytes

epresented by pointers are redundant in the raw content, which

eans, if properly used, the previous scanned results can help the

ownstream matching on the pointers, i.e., the decompressed traf-

c can be skipped. In our survey, we find the ratio of bytes repre-

ented by pointers, which is named pointer ratio ( R p ), is very high

 ≥ 90%). Now, we show the calculation of the two mentioned ra-

ios with an example in Fig. 3 , which ignores the influence of Huff-
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Fig. 2. DFA constructed with string “abcc” and transitions to state 0 are omitted. 

Fig. 3. The example of inspected string with corresponding stored hidden informa- 

tion for string pattern “abcc”. The substring “aabcc” between ‘y’ and ‘z’ is encoded 

as < 5, 7 > which represents a pointer, and the bytes not in the pointer are lit- 

erals. The shadow areas represent the referred string and the pointer respectively. 

Depth line represents the parameter Depth. State line stores the returned states of 

scanning the bytes above them. 
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an encoding and assumes that the pointer takes 3 bytes. Then,

he uncompressed traffic size is 16B and the compressed traffic size

s 14B by encoding the second substring “aabcc” to “ < 5, 7 > ”.

hus, the compression ratio is 14/16 and the pointer ratio is 5/16,

ecause only 5 bytes are represented by the pointer. 

Considering another two examples with Fig. 3 , which try to

atch a string pattern “abcc” with the DFA shown in Fig. 2 . Firstly,

hen Naive method processes the inspected string in the first line,

t scans the literals “xxaabccyy” first and meets the pointer later.

hen, it gets the original string “aabcc” from the referred string

nd continues to scan all the bytes. After scanning the last two

ytes “zz”, it finishes the processing. 

Secondly, we assume a simple CTM method (may not be cor-

ect) that uses a parameter Depth as the hidden information to

ccelerate scanning the pointer bytes. The Depth is the shortest

ength from the current active state to the root state of DFA and

ould represent the length of string pattern’s prefix. During the

rocessing, the method records the Depth for each scanned byte.

hen it meets a pointer, it copies Depths from the position of the

orresponding referred string to the position of the pointer, and

ets the Depth of the last byte in the pointer, i.e., 4. Then, it goes

ackwards 4 bytes, starts scanning from the second ‘a’ and would

atch a pattern “abcc”. 

Comparing with Naive method, this simple method skips the

canning of the first ‘a’ in the pointer. Here we reveal the potential

f saving time for matching one byte, and also incur some extra

ost, i.e., recording and copying the stored Depth. Therefore, the

esign goal of CTM is to skip as many redundant bytes as possible,

hile bringing the least extra cost. 

.3. Evaluating the performance of CTM 

Based on the analysis of CTM, we formalize the evaluation

odel now. Formally, we use t s to denote the time consumption

f scanning one byte by FSA. Therefore, for a certain amount of

ransmitted traffic bytes D (compressed or uncompressed), we can

et the throughput of uncompressed matching as T u = D/Dt s = 1 /t s .

We use t c to denote the time of extra cost for skipping one byte,

 c to represent the compression ratio and R s to denote the skipped

atio which is the ratio of skipped bytes to the decompressed traf-

c. Obviously, R s = 0 for Naive method and it can be used as the

aseline method. The maximum skipped ratio of the other CTM

ethods equals to the pointer ratio, which means the scanning of

ll the bytes represented by the pointers is skipped. As a result,
he throughput of CTM can be calculated as follow. 

 c = 

D 

t s (1 − R s ) D/R c + t c R s D/R c 

= 

R c 

(1 − R s ) t s + R s t c 
, 0 < R c ≤ 1 , 0 ≤ R s < 1 (1) 

The parameter R c relies on the characteristics of traffic and R s is

etermined by the CTM methods. Both of them can be regarded as

xed values. So, to improve the processing throughput, the method

s expected to minimize t s and t c . 

For the scalable FSAs, their parameters t s are larger than the

ne of conventional DFA. Therefore, it is difficult to satisfy the re-

uirement of high-speed matching for a CTM method based on

hese scalable FSAs. 

.4. Evaluating the previous works 

Now we could evaluate the existing CTM methods by using the

bove equation and obtain an ideal throughput improvement com-

ared to Naive method. 

Naive method skips nothing and brings no extra cost, so we can

reat it as a specific CTM method. Since R s = 0 , t c = 0 , its through-

ut can be calculated as T n = R c /t s according to the Eq. (1) . Com-

ared with the throughput of uncompressed matching ( T u ), the

hroughput of Naive method is only determined by the compres-

ion ratio of the processed traffic. With the 20% compression ratio

s we mentioned before, the throughput of Naive method is only

0% of the uncompressed matching’s. 

For any other methods, the throughput promotion over Naive

ethod can be described as Eq. (2) . So, the promotion is deter-

ined by R s and t c / t s , namely the skipped ratio and the extra cost

f skipping one byte to the time consumption of matching this

yte. 

 = 

T c 

T n 
= 

t s 

(1 − R s ) t s + R s t c 

= 

1 

1 − (1 − t c /t s ) R s 
, 0 ≤ R s < 1 (2) 

Suppose t c = 0 , we would get an ideal promotion that P ideal =
 / (1 − R s ) . Thus, P ideal = 10 with 90% of the pointer ratio and

 ideal = 5 with 80% of the pointer ratio. There is a similar result

hen t c � t s and the promotion is only determined by R s in this

ase. So, only a bit larger skipped ratio would provide a high po-

ential for improving the throughput. 

A method would get a significant performance boost with a

arger R s and a smaller t c / t s . It may approach high-speed matching

nly when t s is small enough either. We will show the influence of

erformance boost with different t s of RegEx matching engines in

ection 5 . 

The previous work ARCH uses some parameters including the

ategory of FSA state, Input-Depth and status as its hidden infor-

ation. The Input-Depth is similar to the Depth above and can

epresent the length of RegEx pattern’s prefix. The status is a flag

or each scanned byte, which marks the byte with Uncheck, Check,

atch . ARCH classifies the FSA states into two categories (Simple

nd Complex) during constructing the FSA. When scanning a byte,

t calculates Input-Depth according to the categories and updates

tatus for the scanned byte by Input-Depth. After that, when pro-

essing a pointer, it uses the status of the bytes in the correspond-

ng referred string to determine whether the pointer bytes could

e skipped and to locate the position for restarting new scanning. 

Since the content in the pointer and the corresponding referred

tring are the same, there is no need to recheck the pattern within

he pointer, if it has been matched in the referred string. However,

RCH can skip scanning partial bytes in the pointer only when

he referred string does not contain any pattern. If not, ARCH has
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Fig. 4. Inspected string and stored states of Twins. 
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to scan these bytes of the pattern in the pointer again. So, it re-

mains redundant scanning when the referred string contains any

complete pattern and only skips about 79% bytes of the decom-

pressed traffic (Alexa.com Top 500 sites in Dec. 2011) [5] , which is

not enough for the 91% pointer ratio. Furthermore, its overhead on

calculating its hidden information is so high that the throughput

would be slowed down. 

COIN divides the FSA states into four categories, i.e.Initial, Be-

gin, End, Normal , and uses the category of state and the sequence

number of Begin/End state as its hidden information. It skips scan-

ning by checking the categories and locates a complete pattern by

a pair of Begin/End state. Whether the pointer contains any com-

plete pattern or not, COIN can skip scanning some bytes in the

pointer. COIN can skip 85% bytes and achieve more than 20% im-

provement over ARCH [6] . However, it also incurs large extra cost

while finding the complete patterns. 

Therefore, the throughput of ARCH and COIN is not enough to

meet the requirement of high-speed. In the next section, we pro-

pose Twins to pursue the two goals to meet this requirement. 

3. Design of Twins 

3.1. Basic idea 

Following the above analysis, one key point of further improv-

ing the performance of CTM is to minimize the extra cost when

skipping the input. In other words, skipping a byte must be faster

than scanning it. However, the modern DFA implemented by the 2-

dimensional array transition table can scan a byte with only a few

memory accesses, and it is extremely difficult, if not impossible, to

take even fewer memory accesses for skipping an input byte. 

Therefore, Twins attempts to skip multiple bytes by only check-

ing once, so that the total overhead can be reduced. This is pos-

sible due to the following two observations: (1) the content of a

pointer and its corresponding referred string are identical, and (2)

most byte scanning will mismatch the pattern, leading to the same

returned states of the FSM, i.e., the start state. 

Based on the first observation, we can skip the rest bytes of the

pointer string, as long as we find an identical state returned by

the same-position byte in the pointer and referred string. This is

because, starting at a certain state, DFA behaves exactly the same

when scanning the same string. 

The second observation ensures that we can find such an iden-

tical returned state in the pointer and referred string in the first

few bytes. To be specific, we simply assume the mismatching for

each byte is an independent event with a probability of 0.6. This

is a conservative assumption, since our experiments on the real

traces and patterns suggest the mismatching rate for each byte can

reach 0.76. When scanning 1 byte in the pointer and referred string

respectively, the probability that both of them are mismatching is

0.6 2 . Thus, the probability that not finding identical state for this

byte is 1 − 0 . 6 2 . As a result, after scanning 6 bytes, the probabil-

ity that no identical state is found for same-position bytes is only

(1 − 0 . 6 2 ) 6 = 0 . 069 . Considering the average pointer length could

reach 15–20 as shown in Table 1 , we can expect a performance

boost by skipping most bytes in the pointer. 

Therefore, we can make a hypothesis of locality principle for

CTM that in most cases, the returned states are the same for the re-

ferred strings and their pointers . And, there lies a chance that using

returned states as the hidden information, which does not need to

modify the construction of FSA. 

For example, in Fig. 3 , when DFA begins to scan the bytes in

the pointer, the current active state is ‘0’ which is the same as the

stored one before its referred string. It will return the same states

(“11234”) of scanning the bytes (“aabcc”) in the referred string and

pointer. Thus, the scanning of bytes in this pointer can be replaced
y copying the states (“11234” with underline) from the referred

tring to the pointer and the scanning of bytes followed the pointer

an be continued with the last state (‘4’) in the referred string or

ointer. 

.2. Twins algorithm 

The name of Twins comes from the feature of the locality prin-

iple: most characteristics of the pointer and referred strings are

he same, like a pair of twin babies. 

The correctness of Twins can be easily ensured, because the

ext state of FSA is determined by current active state and the next

nput character, without the influence of previous scanned string,

s formally described in Theorem 1 . 

heorem 1. Given an FSA A = (Q, �, δ, q 0 , F ) , δ is the transition

unction eliminating a character and ˆ δ is the transition function that

liminates a string. For any character a ∈ � and string w ∈ �∗, if

p = 

ˆ δ(q, w ) , then ˆ δ(q, wa ) = δ(p, a ) , p, q ∈ Q. 

According to the theorem, when processing the bytes

 0 , w 1 , . . . , w n , a x shown in Fig. 4 , Twins checks whether there

s any identical returned state in the same-position between p y ,

 0 , q 1 , … , q n and p m 

, p 0 , p 1 , … , p n first. Then, it scans the

ext byte only when the current state is not the same as the

tored one before. Without loss of generality, we assume p y � = p m 

nd get q 0 = p 0 after scanning the first byte w 0 in Fig. 4 . So,

 x = 

ˆ δ(q 0 , w 1 , . . . , w n a x ) = 

ˆ δ(p 0 , w 1 , . . . , w n a x ) = δ(p n , a x ) . Twins

ould continue the scanning with p n , and the bytes w 1 , . . . , w n in

he pointer would be skipped without re-scanning. 

The detail of Twins is shown as Algorithm 1 and the function

ompressedMatching shows the CTM routine on inspecting the lit-

rals and pointer bytes of traffic. It invokes FSA procedure to check

ach literal and keeps the states of scanning them. 

When processing the bytes in a pointer by TwinsScan procedure,

wins continues to scan them until finding the current state equals

o the stored one at the same offset in its referred string. At this

ime, it stops scanning and copies the states behind this position

rom the referred string to the pointer. If there are any accepting

tates, Twins records the state and position as matching result. At

ast, it uses the last state ( q n in Fig. 4 ) as the current active state

nd continues to scan the following bytes behind the pointer. 

We will elaborate the algorithm with an example in the next

ubsection. 

.3. Examples 

We use the compressed data in Fig. 5 as input traffic and “(ab +
) | (bc + d) ” as RegEx pattern (the DFA form is shown in Fig. 1 (a))

o present the details of Twins on matching pointer bytes. There

re two pointers in this example and we denote them as P 1 and

 2. 

Each sub-figure in Fig. 6 corresponds to the matching process

f the two pointers. The first line is part of decompressed traffic

nd the second line represents states of checking the bytes above

hem. 

Ex.1 : The state (‘0’) at the position in front of P 1 is equal to

he one (‘0’) in front of its corresponding referred string. So, Twins

nly needs to copy states (“122” with underline) from the referred

tring to P 1, and checks the accepting state during the copying.
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Algorithm 1: Twins method. 

definition : byteList - array of decompressed traffic; 

stateList - array of returned states len - length 

of pointer; dist - distance between referred string 

to pointer q 0 - the start state of FSA 

input : T r f 1 . . . T r f n - compressed traffic 

output : matched patterns 

1 function CompressedMatching( T r f 1 . . . T r f n ) 

2 curState ← q 0 , i ← 0 ; 

3 for k ← 1 to n do 

// scanning literals 
4 if T r f i is not pointer(len, dist) then 

5 curState = FSAScanByte ( i, curState, T r f k ); 

6 stateList[ i ] = curState ; 

7 i ++; 

// processing pointers 
8 else 

9 byteList.Ad d (byteList[ i − dist : i − dist + len ]) ; 

10 curState = TwinsScan ( i, len, dist, curState ); 

11 // curState = OptTwinsScan ( i, len, dist, curState ); 

12 i = i + len ; 

13 function TwinsScan( i, len, dist, state ) 

14 offset ← ( i − dist − 1) ; 

15 for pos in [0 , len ) do 

// found same states at same offset 
16 if state == stateList[offset + pos] then 

17 for k ← pos to len do 

18 stateList[ i + k ] = stateList[ offset+ k + 1 ]; 

19 if F SA.accept(stateList[ i + k ]) then 

20 Record stateList[ i + k ] and i + k ; 

21 return stateList[ i + len − 1] ; 

// scanning bytes in pointer 
22 else 

23 state = FSAScanByte ( i, stat e, byt eList[ i + pos ] ); 

24 stateList[ i + pos ] = state ; 

// have scanned the whole pointer bytes 
25 return state ; 

26 function FSAScanByte( i, state, symbol) 

27 state = F SA.lookup(state, symbol); 

// storing matching result 
28 if F SA.accept(state ) then 

29 Record state and i ; 

30 return state ; 

Plaintext:           xxabbabcdyyabbzzaabccd
Compression:    xxabbabcdyy<3,9>zza<3,12>cd

Fig. 5. Input data of example. There are two colored < length, distance > pairs in 

the compressed data to represent the pointers. 
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here is no pattern in P 1, Twins returns the last state (‘2’) and

kips scanning 3 bytes (“abb”) in P 1. 

Ex.2 : The state (‘1’) at the position in front of P 2 is not equal to

he one (‘2’) before its referred string. Twins would have to scan

he bytes in P 2 and return a state (‘1’) of scanning the first byte,

hich is the same as the stored state at the same offset in the

eferred string. So, it copies the following states (“23” with under-

ine) from the referred string to P 2 and finds a matched pattern

abc” by checking the copied states. Then, Twins returns the state
3’ and continues to scan the bytes behind P 2. After that, the pat-

ern “bccd” would be found while scanning the following bytes.

wins skips scanning 2 bytes in P 2. 

.4. Configurable pre-scanning optimization 

We can find a conditional branch in the loop of Algorithm 1 be-

ween line 15 and 24. It may impact the performance of matching

ith a fast implementation of DFA. Because, the overhead of a bad

ranch prediction is high on deeply pipeline architectures with the

odern instruction set. So, trying to reduce the probability of mis-

rediction in the loop would boost the throughput of matching. 

To achieve this, we further optimize Twins by leveraging a con-

gurable pre-scanning. It could scan some pointer bytes before the

onditional branch, and then compares the current state to the

tored one. Taking Fig. 4 as an example again, as elaborated pre-

iously, Twins checks p y and p m 

before scanning the pointer bytes,

hile the optimized one may scan w 0 first, and then checks q 0 and

 0 . Obviously, the previous elaborated algorithm can be regarded

s a special case of Twins, which scans 0 bytes before the condi-

ional branch. 

Algorithm 2 lists the detail of Twins with scanning N bytes

efore the conditional branch. The loop between line 2 and 4 of

lgorithm 2 should be expanded to avoid producing a new condi-

ional branch and the value of N ranges from 0 to 3. 

Algorithm 2: Optimized twins algorithm. 

1 function OptTwinsScan( i, len, dist, state ) 
// pre-scanning N bytes 

2 for n in [0 , N) AND n < len do 

3 state = FSAScanByte ( i + n, state, byteList[ i + n ] ); 
4 stateList[ i + n ] = state ; 

// the following is similar as previous 
algorithm 

5 offset ← ( i − dist − 1) ; 
6 for pos in [ N, len ) do 

// found same states at same offset 
7 if state == stateList[offset + pos] then 

8 for k ← pos to len do 

9 stateList[ i + k ] = stateList[ offset+ k + 1 ]; 
10 if F SA.accept(stateList[ i + k ]) then 

11 Record stateList[ i + k ] and i + k ; 

12 return stateList[ i + len − 1] ; 

// scanning bytes in pointer 
13 else 

14 state = FSAScanByte ( i, stat e, byt eList[ i + pos ] ); 
15 stateList[ i + pos ] = state ; 

16 return state ; 

Twins would improve the accuracy of prediction by pre-

canning pointer bytes and the more pointer bytes are scanned, the

igher accuracy of prediction will be achieved. As long as the cost
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Table 1 

Characteristics of experimental data sets. 

Alexa.com Alexa.cn 

Count of Pages 434 13742 

Compressed Size (MB) 15.54 226.95 

Decompressed Size (MB) 70.24 1190.99 

Pointer ratio 91.21% 91.92% 

Average pointer length (B) 14.89 19.84 
of pre-scanning the bytes is smaller than that of mis-prediction in

branch, it would bring better performance than that does not pre-

scan any of these bytes. 

To illustrate the influence of the pre-scanning bytes and mis-

prediction on the performance of Twins, we use Twins-N to denote

Twins scans N bytes before the conditional branch. Then, we sup-

pose the number of literals and pointers of the input traffic as B 0 
and B 1 which are fixed value for a specific traffic. We also suppose

the number of bytes scanned in the conditional branch of Twins

(line 14 in Algorithm 2 or line 23 in Algorithm 1 ) as B 2 . It is clear

that B 2 will be decreased with the increasing of N . 

Therefore, the total number of scanned bytes of Twins-N is B =
B 0 + NB 1 + B 2 and that of Twins-N 

′ 
is B 

′ = B 0 + N 

′ 
B 1 + B 

′ 
2 
, where

N 

′ 
and B 

′ 
2 

are the number of bytes scanned before or in the con-

ditional branch respectively. Without loss of generality, we as-

sume N > N 

′ 
, then the cost of Twins-N to scan the extra bytes is

 s = (B − B 
′ 
) t s = (N − N 

′ 
) B 1 t s + (B 2 − B 

′ 
2 ) t s , and t s denotes the time

consumption of scanning one byte, which has been mentioned be-

fore. 

After that, we simply assume t m 

as the time wastage of pre-

dicting incorrectly once even it should be different in each time.

The saved time of Twins-N to reduce the mis-prediction would be

 m 

= (B 
′ 
2 − B 2 ) t m 

. 

At last, we define the ratio of bytes scanned in the conditional

branch to the decompressed traffic as mis-prediction ratio ( R m 

),

namely, B 2 / D or B 
′ 
2 /D . Now, we can get C s − C m 

= (N − N 

′ 
) B 1 t s −

(B 
′ 
2 

− B 2 )(t s + t m 

) and divide both sides of the equation by the size

of decompressed traffic D . Thus, 

C s − C m 

D 

= 

(N − N 

′ 
) B 1 t s − (B 

′ 
2 − B 2 )(t s + t m 

) 

D 

= (N − N 

′ 
) B 1 t s /D − (R 

′ 
m 

− R m 

)(t s + t m 

) 

In the equation, R m 

and R 
′ 
m 

are the mis-prediction ratio of

Twins-N and Twins-N 

′ 
respectively. Obviously, Twins-N would be

faster than Twins-N 

′ 
only if C s − C m 

< 0 , which means 

R 

′ 
m 

− R m 

> (N − N 

′ 
) 

B 1 

D 

t s 

t s + t m 

. (3)

Otherwise, it is not. The right side of Eq. (3) is determined by

N − N 

′ 
, t s and t m 

, because D / B 1 is the average pointer length and

B 1 / D must be a fixed value for a specific traffic. So, the reduc-

tion of R m 

is limited, which makes Twins-N difficult to maintain

the inequality while N > 1. It means Twins can hardly gain better

throughput by pre-scanning more than two bytes. We will illus-

trate that in Section 5 . 

4. Implementation 

In this section, we implement Twins based on different FSA

construction. Please note that Twins can also be used for the

Thompson’s NFA [15] by simulating a set of equivalent DFA. How-

ever, our goal is to promote the high-speed CTM, so we do not

consider the NFA-based Twins. 

As analysed in the evaluation model in Eq. (2) , the speedup of

CTM depends on t c / t s . Hence, we invoke two kinds of FSA con-

struction with different t s to evaluate the performance boost. Be-

sides, the two types of FSA are suitable for different scenarios by

considering the trade-off between matching speed and memory

cost. 

The first implementation is based on the conventional DFA,

which is organized as a two-dimensional matrix. As mentioned be-

fore, it only needs a few memory accesses to scan one character

and can be regarded as a fast implementation of FSA with a small

value of t s . 

The second one is based on A-DFA which is organized as a

linked list and is used by COIN and ARCH. Since A-DFA travels
ore states than DFA does and the elements in its list are not ad-

acent in memory, it would consume far more than a few memory

ccesses on scanning one character. We treat it as a slow imple-

entation of FSA with a large t s . 

In sum, we implement two prototypes of Twins, i.e., Twins

ased on DFA and A-DFA. Meanwhile, we also implement two pro-

otypes of COIN and ARCH based on the two FSAs for the evalu-

tion. The two types of FSAs are also used as the base-line algo-

ithms to exhibit the Naive method. 

At last, We use the RegEx processor proposed in [16] to con-

truct the conventional DFA and A-DFA. 

. Evaluation 

.1. Settings 

We collect two sets of traffic as the input in our experiments.

ll the raw traffic data are compressed and collected through

rowsing home pages of Alexa.com top 500 sites [11] and Alexa.cn

op 20,0 0 0 sites [17] . They can be accessed in [18] and their char-

cteristics are shown in Table 1 . For straightforward comparison

ith ARCH, we take three RegEx sets, i.e., the Snort24, Snort31 and

nort34, which were taken from Snort, used by ARCH and COIN,

ublished at [16] . 

Since the CTM methods have to decode the traffic before

atching, we evaluate the performance of matching decoded traf-

c. The throughput of each method is calculated with the size of

ompressed traffic and the time of matching decoded data. All the

xperiments are performed on a machine with Xeon E5-2630 v4

PU (2.2 GHz, 10 cores and 20 threads), 64 GB RAM. 

.2. Performance comparison 

At first, Twins and COIN, ARCH have matched the same number

f patterns as Naive method does, which is shown in Table 3 . Then,

e compare the throughput of Twins and the other methods. They

re single-thread programs and run over a single CPU core. 

Fig. 7 shows the throughput of implementations based on DFA

ver the two sets of compressed traffic and three RegEx sets.

ach group represents the throughput of the methods over a same

egEx set which is labeled in the horizontal axis. Twins-0 ~ Twins-

 represents the results of Twins on scanning 0 ~ 2 byte(s) be-

ore the conditional branch. Obviously, Twins gains more than 2.2

imes on throughput than COIN, ARCH and Naive method, over all

he data and RegEx sets. Moreover, the throughput of Twins can

chieve more than 1.2 Gbps, which means there is potential to per-

orm wire-speed RegEx matching over compressed traffic with a

arallel implementation. 

Considering the evaluation model in Eq. (2) , a smaller extra

ost t c of Twins brings a smaller value of t c / t s . It gives Twins bet-

er performance than Naive method. Twins achieves 2.2–2.7 times

hroughput compared to Naive method in Fig. 7 . In contrast, both

OIN and ARCH get worse results in this situation, because the

xtra cost of skipping pointer bytes is larger than scanning them,

hich makes t c / t s of COIN or ARCH bigger. 
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Fig. 7. Evaluation results based on DFA implementations over two data sets and three RegEx sets. 

Fig. 8. Evaluation results based on A-DFA implementations over two data sets and three RegEx sets. 
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Table 2 

Memory size of the matching engines based on DFA and A-DFA over 

the three RegEx sets (KB). 

RegEx Set Naive ARCH COIN Twins 

DFA Snort24 11,360 11,380 11,396 11,360 

Snort31 6872 6892 6928 6872 

Snort34 12,676 12,688 12,708 12,676 

A-DFA Snort24 2252 2268 2280 2256 

Snort31 1648 1664 1692 1652 

Snort34 2540 2552 2560 2544 

 

a  

w

5

5

 

m  
COIN or ARCH may outperform Naive method in some scenar-

os that the matching engine is implemented by slower FSAs, such

s A-DFA, XFA. In these cases, t s would be larger than t c , but the

hroughput of matching would be reduced. 

As evidence, Fig. 8 shows the throughput of implementations

ased on A-DFA. In this case, ARCH can achieve 4.0 times through-

ut compared to Naive method and COIN can achieve 5.2 times

o do that. But Twins-0 can gain 9.2 times throughput compared

o Naive method. Furthermore, it is 1.91–2.27 times to ARCH and

.48–2.22 times to COIN. However, their throughput cannot meet

he high-speed in this situation. 

At last, we evaluate the memory overhead with the three RegEx

ets. The results are shown in Table 2 . There is little difference of

wins on the memory consumption, when it scans various num-

er of bytes. Hence, we just invoke Twins-0 in the comparison.

rom the table, we can find that Twins incurs a little extra mem-

ry compared to Naive method and the extra memory is smaller

han that of COIN or ARCH. Compared to the memory consump-

ion of Naive method, the extra memory incurred by Twins is neg-

igible. Moreover, it is a fixed value and is independent of the

raffic and most matching engines, which will be discussed in
ection 5.5 . s  

Table 3 

The number of matched patterns and the skipped ratio 

and three RegEx sets (%). 

Data Set RegEx Set Matched patterns ARC

Alexa.com Snort24 20,781 78.6

Snort31 0 78.4

Snort34 259 75.9

Alexa.cn Snort24 357,907 82.4

Snort31 0 82.5

Snort34 18,059 81.1
As a result from the above experiments, not only can Twins

chieve better performance, it also saves the extra memory. We

ill analyse the causes of the higher throughput in the next. 

.3. Analysis 

.3.1. Comparison of Twins with COIN and ARCH 

For quantitatively analyzing the reason for the throughput pro-

otion, we compare Twins, COIN and ARCH with another metric,

kipped ratio ( R s ). Table 3 shows the skipped ratio of them on pro-
( R s ) of the compared methods over the two data 

H COIN Twins-0 Twins-1 Twins-2 

7 82.94 89.91 84.98 78.94 

1 84.30 90.82 85.05 78.95 

6 81.06 89.70 84.54 78.51 

2 85.77 91.28 87.23 82.65 

2 87.08 91.81 87.28 82.66 

9 85.37 91.22 87.06 82.48 



8 X. Sun, H. Li and D. Zhao et al. / Computer Networks 168 (2020) 106996 

Table 4 

Mis-prediction ratio ( R m ) of Twins over the two data and three 

RegEx sets (%). 

Data Set RegEx Set Twins-0 Twins-1 Twins-2 

Alexa.com Snort24 1.31 0.11 0.02 

Snort31 0.40 0.04 0.01 

Snort34 1.51 0.54 0.44 

Alexa.cn Snort24 0.65 0.07 0.01 

Snort31 0.12 0.01 0.01 

Snort34 0.71 0.23 0.19 
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cessing the traffic with different RegEx sets. It is clear that Twins-0

skips more bytes than COIN or ARCH does in all the sets. Particu-

larly, Twins-0 skips about 90% bytes on both data sets and almost

approaches the theoretical upper bound which can be calculated

by the pointer ratio of the two data sets (91.21% and 91.92%, shown

in Table 1 ). 

Comparing the skipped ratio in Table 3 and the throughput

in Fig. 7 , Twins-1 and Twins-2 gain significant higher throughput

than that of COIN and ARCH, even their skipped ratios are simi-

lar to that of COIN and ARCH. So, we can find that COIN or ARCH

incurs more extra cost than that of Twins on skipping the same

pointer bytes. Actually, ARCH has to calculate Input-Depth param-

eter and mark Check, Uncheck and Match flag as the status for

each scanned byte, which spends more time than Twins. COIN lo-

cates the complete patterns occurred in the pointers by finding the

paired Begin/End states, which also costs more time. Therefore, the

more bytes are skipped and the lower extra cost is incurred, the

higher performance will be achieved. That is exactly demonstrated

by the evaluation model. 

As to the results in Table 3 and Fig. 8 , both of the through-

put and pointer ratio of Twins-1 and Twins-2 are similar to that of

COIN and ARCH. It is ascribed to the case of t c � t s and the pro-

motion of throughput is mainly affected by the pointer ratio ( R s ),

which is deduced by Eq. (2) . 

5.3.2. Influence of pre-scanning optimization 

Now, we will analyse the influence of pre-scanning bytes on

Twins. In Fig. 7 , Twins-1 shows better performance than Twins-0.

But it is not sustained for the comparison of Twins-2 to Twins-1.

Moreover, there are exact opposite results between Twins-1 and

Twins-0 in Fig. 8 . 

To illustrate the reason, we calculate the mis-prediction ratios

( R m 

) of Twins which are shown in Table 4 . It is easy to find that

less than 2% traffic bytes are scanned while Twins processes point-

ers, which proves the correctness of our hypothesis of locality prin-

ciple in CTM. 

From the table, we can find the reductions of mis-prediction

from Twins-1 to Twins-2 (less than 0.1%) are smaller than the ones

of Twins-0 to Twins-1 (0.11% ~ 1.2%). When N − N 

′ = 1 , R 
′ 
m 

− R m 

≤
0 . 1% is hardly to confirm the inequality of Eq. (3) . So, Twins-1

could perform better performance than Twins-0, but Twins-2 could

not achieve that than Twins-1. Particularly, it needs more reduc-

tion of R m 

to hold the inequality of Eq. (3) with N − N 

′ 
> 1 . So,

the throughput of Twins-2 is not as good as that of Twins-0 in the

cases of Snort31 in Fig. 7 . 

In addition, Twins-0 and Twins-1 bring the opposite results be-

tween Figs. 7 and 8 . The main reason can be ascribed to the larger
Table 5 

Standard deviation of throughput of Twins bas

Data Set DFA 

Twins-0 Twins-1 Twins

Alexa.com 41.16 7.58 5.07 

Alexa.cn 22.49 3.26 9.04 
 s of the implementation of A-DFA. With a small t s of Eq. (3) in

ig. 7 , t s 
t s + t m would be smaller than 1, which ensures Twins-1 better

erformance than Twins-0. But with a large t s in Fig. 8 , t s 
t s + t m ≈ 1 ,

wins-1 could not reduce the mis-prediction ratio enough to hold

he inequality of Eq. (3) , even it eliminates all the scanning in the

ointers. It has to spend more time on scanning the extra byte in

ach pointer, which leads to the insignificance of saving the time

y improving the probability of accurate prediction. 

In another way, the pre-scanning optimization can reduce the

tandard deviation of the throughput among the three RegEx sets

ver a specific data set, which can be found in Table 5 . So, Twins

ould provide more stable performance over the same traffic and

ifferent RegEx sets, when it pre-scans some pointer bytes. 

In practice, we can consider the system requirements and es-

imate the characteristics of traffic and RegEx set to determine

hich implementation should be employed. When implemented

y a fast FSA, Twins can pre-scan one byte. Otherwise, it does

othing before comparing the states. 

.4. Parallel implementation 

Twins achieves more than 1.2 Gbps throughput with a single

ore. It is possible it can exceed 10 Gbps with multiple cores,

hich could satisfy the high-speed requirements of most DPI sys-

ems. To confirm it, we implement the parallel prototypes of DFA-

ased Twins (only Twins-0 and Twins-1) by using one core to as-

ign the traffic and the other cores to inspect part of the traffic

ndependently. 

As shown in Fig. 9 , we can find that all the results of different

raffic and RegEx sets exceed 10 Gbps with 13 cores. Besides, the

esult lines of the same traffic set in Fig. 9 (b) are close to each

ther. That proves, once again, the performance of Twins is more

table over different RegEx sets while it pre-scans some bytes. 

.5. Discussion 

.5.1. Estimation of extra memory consumption 

Twins accelerates the speed of matching by keeping returned

tates as the hidden information. It only needs 32K-entries to store

hem, because the maximum distance between the pointer and

ts referred string is 32,768 B, which is specified by DEFLATE. It

s enough to store states using 32K × 4B memory, which would

resent more than 4 billion states for DFA. So, the requirement of

emory space is invariant for most DFA matching engines. 

Compared with hundreds or thousands of million-bytes mem-

ry consumption of a DFA engine, thousands-bytes extra cost for

wins is fairly insignificant. Moreover, ARCH or COIN also needs

xtra space to keep some parameters in their algorithms and FSA

tates, such as the category of state, Input-Depth and status. Be-

ause of the influence of memory allocation algorithm, the com-

arison in Table 2 does not precisely reflect the difference in mem-

ry usage among Twins and the other methods. But from the anal-

sis above, we can learn that it is a common situation that Twins

ncurs less extra overhead than ARCH or COIN on the extra mem-

ry consumption. 
ed on DFA and A-DFA. 

A-DFA 

-2 Twins-0 Twins-1 Twins-2 

7.22 1.41 0.92 

2.38 0.56 0.57 
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Fig. 9. Throughput of parallel implementations based on DFA. Each line represents Twins performing the CTM over one traffic and one RegEx set. 
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.5.2. Estimation of extra time consumption 

From Algorithm 1 and the example above, we can learn that

wins utilizes copying states instead of scanning these bytes again.

o be simplified, it needs only 2 memory accesses which is smaller

han the consumption of scanning one input character. This is why

wins could obtain better performance than the previous works. 

Moreover, if all the states in the pointer can be copied at the

ame time, Twins can achieve better performance. For example in

ine 18 of Algorithm 1 , Twins copies states one by one. If there is

o overlap between the pointer and its referred string, this process

an be optimized by the memcpy function, i.e., copying states in

nits of blocks. 

.5.3. Matching encrypted traffic 

Today’s web traffic is often encrypted to protect the data con-

dentiality and integrity. There are some works [19,20] that focus

n DPI over encrypted traffic. Twins does not concern the match-

ng of encrypted traffic. But it can be embedded in the systems to

rocess the decrypted traffic. 

.5.4. Optimization of delay 

In this paper, we only use throughput as the major perfor-

ance metrics of CTM. When deploying Twins to a full DPI system

n practice, the delay should be considered as well, because the

oftware-based DPI system costs much more time (may up to sev-

ral milliseconds) on processing the received packets. In contrast,

he smart network interface card (Smart-NIC) can perform pattern

atching directly on the specific hardware, such as FPGA, prevent-

ng the processing delay from the system kernel. 

Our preliminary work shows that Twins on FPGA can achieve a

uch lower delay, i.e., 15 ns with 200 MHz clock frequency. How-

ver, the FPGA-based approaches is faced with the challenge of the

estricted resource to implement the FSA and to copy states from a

eferred string to a pointer efficiently. We leave this valuable work

n the future. 

. Related work 

.1. Regular expression matching 

The survey [8] concludes RegEx matching for DPI from appli-

ations, algorithms and hardware platforms. Considering FSA and

calable FSA, Thompson provides an algorithm for regular expres-

ion search and a method to translate regular expressions into

FAs in [15] . The subset construction, which converts any NFA into

n equivalent DFA, has been well described in the book [21] . Be-

ides D 

2 FA and A-DFA, there are also many other works on com-

ressing DFA states or transitions to solve the inflation problem of
FA, such as [22–26] . There are also existing parallel RegEx match-

ng solutions on various platforms including [27–30] . For the appli-

ations, Snort [31] is an open source network intrusion detection

nd prevention system, which employs string and RegEx matching.

ts rule sets are widely used in academia and industry. None of

hese literatures concern how to accelerate the compressed traffic

atching. 

.2. With gzip/DEFLATE 

ACCH [3] is based on the Aho-Corasick algorithm [32] for com-

ressed traffic matching and skips matching partial bytes when the

eferred string does not contain any pattern. However, if not, it has

o scan these bytes again. SPC [33] employs the same basic idea

f ACCH to accelerate multi-string matching over compressed traf-

c for Wu-Manber algorithm [34] . SOP [35] was proposed to re-

uce the memory usage of ACCH. However, its speed is relatively

ower than ACCH, because it does not provide any optimization on

utting the redundant matching, but incurs more overhead on re-

ompressing the traffic. 

All the methods above are concerned with the acceleration of

tring matching. Besides, ARCH [5] employs the same basic idea of

CCH and updates the calculation of a parameter to provide RegEx

atching over compressed traffic. COIN [6,36] eliminates the re-

undant scanning of ACCH and ARCH while processing the com-

lete patterns occurred in the pointers. It gets better performance

han them. Sun [37] presents another method to perform RegEx

atching over compressed traffic. However, it relies on the com-

ression DFA which have reduced its number of path pairs signifi-

antly. That limits its using scenarios and it has been discussed in

RCH. 

.3. With other compression methods 

The paper [38] provides multi-pattern matching in LZW com-

ressed data and the other two papers [39,40] only apply single-

attern matching to Huffman-encoded data. They are not suitable

or the inspection over compressed HTTP traffic which only sup-

orts LZ77 compression algorithm. The paper [41] applies Boyer-

oore (BM) algorithm [42] to compressed traffic for fast match-

ng. However, it fails to perform RegEx matching, because the BM

s just a single-string matching algorithm. In addition, Google has

roposed a compression method SDCH [43] , which is built upon

he VCDIFF [44] compression data format and available primar-

ly in Google’s related services, but has not been widely used by

ther web sites as shown in our experiments. The usage of [45] ,

hich can make decompression-free inspection over the traffic

ompressed by SDCH, is also limited since it cannot be extended

o gzip format. 
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7. Conclusion 

In this paper, we have presented Twins for accelerating RegEx

matching over compressed traffic. Twins stores returned states of

scanning each byte of traffic, so as to skip more bytes than the

state-of-the-art approaches, while incurring less extra cost as well.

We also propose a model to analyse the effect of the speed of dif-

ferent RegEx matching engines on the performance of compressed

traffic matching methods. 

The comparisons of Twins with related works draw a significant

improvement in speed with real traffic from Alexa top sites. Actu-

ally, Twins almost approaches the upper bound on skipping scan-

ning the compressed traffic. Specifically, Twins achieves more than

1.2 Gbps throughput over single core and exceeds 10 Gbps of par-

allel implementations, which enables the potential of wire-speed

matching over compressed traffic. 
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