
Towards a Fast Regular Expression Matching
Method over Compressed Traffic

Xiuwen Sun, Hao Li, Xingxing Lu, Dan Zhao, Zheng Peng, Chengchen Hu
Department of Computer Science and Technology

Ministry of Education Key Lab for Intelligent Network and Network Security

Xi’an Jiaotong University

Abstract—Nowadays, Deep Packet Inspection (DPI) becomes a
critical component of the network traffic detection applications.
For comprehensive analysis of traffic, regular expression match-
ing as the core technique of DPI is widely used. However, web
services tend to compress their traffic for less data transmission,
which challenges the regular expression matching to achieve
wire-speed processing. In this paper, we propose Twins, a fast
regular expression matching method over compressed traffic that
leverages the returned states encoding in the compression to
skip the bytes to be scanned. In our evaluation results, Twins
can skip about 90% compression data and can achieve 1.5Gbps
throughput, which gains 2.7∼3.4 performance boost to the state-
of-the-art work.

Index Terms—Deep Packet Inspection, Regular Expression
Matching, Multi-Pattern Matching, Compressed Traffic.

I. INTRODUCTION

Deep Packet Inspection (DPI) technique has been promoted

from the simple string matching to semantics-based analysis

to better serve the emerging scenarios including network

optimization, security, big data analysis [1], [2], etc. In partic-

ular, the regular expression (RegEx) can describe higher-level

semantics than plain string, and therefore its matching methods

become vital for realizing a DPI system.

However, today’s web server tends to compress their con-

tents beforehand, so as to reduce the transmission overhead for

improving the user experience. It heavily impacts traditional

RegEx matching, aka, Naive method, that only works for

the uncompressed content. To be specific, due to the 20%

compression ratio of the compressed traffic [3], [4], it requires

a 5× speed-up for Naive method to maintain its original

performance.

In general, compressed traffic matching (CTM) consists of

two independent stages: decompression and matching. The

first stage is fast enough and not critical [5], so the second

stage determines the performance of the whole process. The

principle of accelerating the matching stage is to leverage

the hidden information of the compressed traffic, e.g., the

flags added by the compression algorithm, according to which

many of the traffic can be skipped with a quick glance of

the pre-stored information. Note that the processing on the

hidden information will also bring extra cost. As a result,

the performance of CTM depends on two factors: (1) the

number of bytes that can be skipped, and (2) the extra cost for

identifying such bytes, both of which can be largely improved

for previous works. For example, the state-of-the-art work

ARCH [6] skips 79% of the traffic that Naive scanned, while

theoretically more than 90% bytes encoded in compression

segments can be skipped according to the analysis in Section

IV. Besides, the previous works incur large extra cost, so they

can barely achieve the wire-speed processing. For example,

ARCH only achieves 450Mbps throughput according to our

evaluation.

Therefore, there is high potential to increase the perfor-

mance of CTM by skipping more bytes with less extra cost.

In this paper, we propose Twins method to achieve the above

goals. The basic idea is to leverage the locality principle lying

in compression format, i.e., the hidden information of scanning

the identical strings are mostly the same, so that Twins can

skip more bytes by just checking the previous scan results.

To be specific, the contributions of this paper are:

1) We propose a model to evaluate the performance of

CTM by considering the aforementioned two factors to

reveal the design space of CTM.

2) We present a novel method Twins to achieve the wire-

speed RegEx matching for CTM.

3) We prototype Twins, which can achieve more than

1.5Gbps throughput, bringing a 2.7∼3.4× performance

boost to ARCH.

II. DESIGN SPACE OF REGEX MATCHING OVER

COMPRESSED TRAFFIC

A. Design Principle

As mentioned, the basic principle of accelerating CTM is

to leverage the hidden information of compressed data and

skips the bytes of pointer when matching the pattern(s). It is

achievable because the traffic is compressed by minimizing

the redundant contents, and therefore such information of

redundancy can be utilized for fast skipping.

Specifically, more than 90% of the web sites use gzip [7]

as their default compression encoding format [4]. gzip uses

DEFLATE [8] as its compression method, which is a com-

bination of the LZ77 [9] algorithm and Huffman coding.

During compression, LZ77 tries to find repeated maximum

occurrences substring with references to the earlier data by

employing a sliding window and replace them by a pair of

< length, distance >, where length is the length of the

substring and the distance is the distance between the substring

and the corresponding reference. To unify the terms, the pair

978-1-5386-2542-2/18/$31.00 c© 2018 IEEE

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 16,2021 at 06:13:12 UTC from IEEE Xplore. Restrictions apply.

41 20 a b c 3 c
a

aa

a

(a) The DFA constructed by “abcc”

Depth: 1123400 0011234 00

State: 1123400 0011234 00

String: aabcc
<5,7>xx yyaabcc zz

distance length

(b) Inspected string and hidden info.

Fig. 1. The example of DFA and inspected string with corresponding stored
hidden information. The substring “aabcc” between ‘y’ and ‘z’ is coded as
<5,7>, which represents a pointer, and the bytes not in pointer are literals.
State line stores the returned states by scanning the bytes above them. Depth
line represents the parameter depth.

is called pointer and the corresponding substring is called

referred string. The positional relation of the terms is shown

in Fig. 1(b). After that, the compressed data, which contains

literals and pointers, are encoded by Huffman coding.

In our survey, we find the pointer ratio (the ratio of bytes

represented by pointers) is more than 91%. For example, in

Fig. 1(b), the uncompressed traffic size is 16B and the com-

pressed traffic size is 13B by encoding the second substring

“aabcc” to a pair of “<5,7>”. Only 5 bytes represented by

pointer, thus, the pointer ratio is 5/16 and the compression

ratio is 13/16.

B. Performance Evaluation Model

For RegEx matching based on finite state automaton (FSA),

it usually compiles RegExs to a non-deterministic finite au-

tomata (NFA) first. Then, the NFA is converted to a corre-

sponding deterministic finite automata (DFA) and the DFA is

minimized. At last, it finds patterns accepted by this DFA.

Consider a simple example shown in Fig. 1. The DFA is

constructed by string pattern “abcc”. The parameter Depth is

the shortest length from the current active state to the root

state of DFA and could represent the length of pattern’s prefix.

We keep it as the hidden information during the process of

scanning. While scanning the string “aabcc” in pointer, we

get the depth of the last pointer byte first, i.e., 4. Then, the

matching goes backwards 4 bytes and starts from the second

‘a’. It would find the pattern “abcc” and skip the scanning of

the first ‘a’. So, the time of matching one byte can be saved

and the time of processing and indexing the stored parameter

depth becomes the extra cost. If the extra cost is low enough,

the throughput of CTM can be improved.

Formally, we use ts to denote the time consumption of the

process that one byte is matched by FSA. For a certain amount

of transmitted traffic bytes D (compressed or uncompressed),

we can get the throughput of uncompressed matching as Tu =
D/Dts = 1/ts.

We use tc to denote the extra cost time for skipping one

byte, Rc to represent the compression ratio and Rs to denote

the skipped ratio, which is the ratio of skipped bytes using

by accelerated algorithm out of the decompressed traffic.

Obviously, the maximum of skipped ratio equals to pointer

ratio for CTM methods, but Rs = 0 for naive method. As a

result, the throughput of CTM can be calculated as follow.

Tc =
D

ts(1−Rs)D/Rc + tcRsD/Rc

=
Rc

(1−Rs)ts +Rstc

(1)

The parameter Rc relies on the characteristics of traffic and

Rs is determined by the CTM methods, both of which can

be regarded as the fixed values. So, to improve the processing

throughput, the method is expected to minimized ts and tc.

C. Limitations of Prior Works

Now we could evaluate the existing CTM methods by

using the above equation and obtain an ideal throughput

improvement compared to Naive method.

Naive method skips nothing and brings no extra cost, so

Rs = 0, tc = 0 and its throughput can be calculated as

Tnaive = Rc/ts according to Eq. (1). Compared with the

uncompressed matching, the throughput of Naive method is

only determined by the compression ratio of the processed

traffic. With the 20% compression ratio as we mentioned

before, the throughput of Naive method is only 20% of the

uncompressed matching’s.

For any other methods, the throughput promotion than Naive

method can be described as Eq. (2). So, the promotion is

determined by Rs and tc/ts, namely the ratio of skipped bytes

and the extra cost of skipping one byte to the time consumption

of matching this byte. While tc = 0, we can get an ideal

promotion that Pideal = 1/(1 − Rs). Thus, Pideal = 10 with

90% of the pointer ratio and Pideal = 5 with 80% of the

pointer ratio.

P =
Tc

Tnaive
=

ts
(1−Rs)ts +Rstc)

=
1

1− (1− tc/ts)Rs

(2)

A method would get a significant performance boost with

a larger Rs and a smaller tc/ts. It may approach wire-speed

processing rate only when ts is small enough either. ARCH

has skipped 79% bytes of the decompressed traffic, which is

not enough for 91% pointer ratio. Furthermore, its overhead is

so high for calculating Input-Depth and incurring a redundant

process in its algorithm that the throughput of matching is not

enough to meet the requirement of the wire-speed. Therefore,

we propose a method Twins to pursue the two goals and

elaborate the detail in the next section.

III. DESIGN OF TWINS

A. Basic Idea

Following the above analysis, one key point of further

improving the performance of CTM is to minimize the extra

cost when skipping the input. In other words, skipping a

byte must be faster than scanning it. However, the modern

DFA implemented by the 2-dimensional array transition table

can scan a byte with only a few memory accesses, and it

is extremely difficult, if not impossible, to take even fewer

memory accesses for skipping a input byte.

2

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 16,2021 at 06:13:12 UTC from IEEE Xplore. Restrictions apply.

In contrast, Twins attempts to improve the efficiency of the

skipping process, i.e., skipping more bytes by only checking

one, so that the total overhead can be reduced. This is possible

due to the following two observations: (1) the content of a

pointer and its referred string are identical, and (2) given an

input byte, it is very possible that the next state is the same

state, regardless of the current state.

Based on the two observations, we can make a hypothesis of

locality principle for compressed data that in most cases, the
returned states are the same as the referred strings and their
pointers. Therefore, there lies a chance that using returned

states as the hidden information. The bytes in pointer can be

skipped, while finding the current returned state in pointer is

equal to the previous stored one.

For example, in Fig. 1(b), the returned states are stored as

the hidden information. When DFA begins to scan the bytes

in the pointer, the current active state is “0” and equals to

the stored state before its referred string. It will return the

same states (“11234”) of scanning the bytes (“aabcc”) in the

referred string and pointer. Because DFA returns the same state

when it scans the same string with a same active state. Thus,

the scanning of bytes in this pointer can be skipped and the

scanning of bytes followed the pointer can be continued with

the stored state (‘4’) in referred string.

B. Algorithm

Twins inspects the uncompressed data after decompression

and stores the returned states as hidden information. After

that, it accelerates inspection of pointer bytes with the help

of the stored states. The function CompressedMatching in

Algorithm 1 shows the CTM routine on inspecting literals and

pointer bytes in traffic. It invokes FSA procedure to check each

literal and processes pointer bytes by Twins.

The locality principle is just like a pair of twin babies,

most of their characteristics are same, thus we call the method

Twins. The correctness of Twins can be supported by Theo-

rem 1 in textbook [10], which is described as follow:

Theorem 1. Given a FSA A = (Q,Σ, δ, q0, F), δ̂ is the
extended transition function. For any symbol a ∈ Σ and string
w ∈ Σ∗, if p = δ̂(q, w), then δ̂(q, wa) = δ(p, a).

Informal description is that the next state of FSA is deter-

mined by current state and the next input symbol, without the

influence of previous scanned string.

According to Theorem 1, if the returned states of scanning

the bytes before pointer and referred string are equal. All

the returned states of scanning pointer bytes must be same

to the states of scanning referred string. For example, if

qk = qm in Fig. 2, then qx = σ̂(qk, w0, · · · , wnax) =
σ̂(qm, w0, · · · , wnax) = σ(qs, ax). It could continue the

scanning with qj and all of the pointer bytes would be skipped

without re-scanning.

When scanning a byte in pointer, if the returned state equals

to the state with the same offset in its referred string, it can

skip pointer bytes behind this position. As in Fig. 2, we assume

qk �= qm. The method continues to scan the pointer bytes and

w0 wnam akw0 wn ax

qi qjqm qkqr qs qx

String:

State:

Fig. 2. Inspected data and stored states for Twins.

Plaintext: xxabbabcdyyabbzzaabccd
Compression: xxabbabcdyy<3,9>zza<3,12>

Fig. 3. Input data of example. There are two colored <length, distance>
pairs in the compressed data to represent pointer.

Fig. 4. DFA for ‘(ab + c) | (bc + d)’. The green circle state is start state
and double-circle states are the accepting state. We omit transitions leading
to state 0 for convenience.

State: 122122 00

abbEx.1 abb zz

(a)
12 00

ab yy

(b)
State:

Ex.2

22

bb dy za

60 01

xx

00 123123

abcabc cd

56

Fig. 5. Examples of matching process of Twins. State line represents returned
states of scanning the bytes above them. Red strings are matched patterns and
blue states are copied from the referred string to the pointer.

get qi = qr after scanning the first byte w0 in pointer. So, the

scanning of the following bytes behind w0 can be skipped.

Therefore, Twins stores the states returned by FSA while

checking each byte. When processing the pointer bytes, Twins

continues to scan them until finding the returned state equals

to the stored one at the same offset in its referred string. At

this time, Twins stops scanning and copies the states from the

referred string to the pointer behind this position. If there are

any accepting states, Twins records the state and position as

matching information. At last, it continues to scan the byte

following pointer with qj (in Fig. 2) as the current state.

The detail of Twins is shown as Algorithm 1. We will

elaborate the algorithm with an example in the next.

C. Examples

We use the compressed data in Fig. 3 as input traffic and

the DFA in Fig. 4 to present the details of Twins on matching

pointer bytes. There are two pointers in this example and we

denote them as P1 and P2.

Each sub-figure in Fig. 5 corresponds to the matching pro-

cess of the two pointers. The first line is part of decompressed

traffic and the second line represents states of checking the

bytes above them.

Ex.1: The state (‘0’) at the position in front of P1 is equal to

the one (‘0’) in front of its corresponding referred string. So,

Twins only needs to copy states (‘122’) of the referred string

to P1, and checks the accepting state during the process of

copying. There is no pattern in P1, it returns the last state

(‘2’) and skips scanning of 3 bytes.

3

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 16,2021 at 06:13:12 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Twins Method

definition : byteInfo - {symbol, state}
byteList - array of byteInfo
len - length of pointer
dist - distance between referred to pointer
state - state of checking prior pointer byte

input : Trf1...T rfn - compressed traffic
1
2 function CompressedMatching(Trf1...T rfn)
3 curState ← q0;
4 for i ← 1 to n do
5 if Trfi is not pointer(len, dist) then

//scan literals in traffic
6 curState=FSAScanByte(Trfi, i, curState);
7 byteInfo.state = curState;
8 byteList.Add(byteInfo);
9 else

//scan pointer by Twins algorithm
10 byteList.Add(byteList[i− dist : i− dist+ len]);
11 curState=TwinsScan(i, len, dist, curState);

12
13 function TwinsScan(i, len, dist, state)
14 offset ← (i− dist);
15 for curPos ← 0 to len do

//scan bytes in pointer
16 pos ← i+ curPos;
17 if state == byteList[offset+curPos-1].state then

//same position has same state in
pointer and referred string

18 for k ← curPos to len do
19 byteList[i+ k].state =

byteList[offset+ k].state;
20 if FSA.accept(byteList[i+ k].state) then
21 Record byteInfo.state and i+ k;

22 return byteList[i+ len− 1].state;

23 else
24 state=FSAScanByte(

byteList[pos].symbol, i, state);
25 byteList[pos].state = state;

26
//have scaned the whole bytes of pointer

27 return state;

28
29 function FSAScanByte(symbol, i, state)
30 state = FSA.lookup(state, symbol);

//store a matching record
31 if FSA.accept(state) then
32 Record state and i;

33 return state;

Ex.2: The state (‘1’) at the position in front of P2 is not

equal to the one (‘2’) before its referred string. Twins would

have to scan the bytes in P2 and return a state (‘1’) of scanning

the first byte, which is same to the stored state on the same

offset in referred string. So, it copies the following states (‘23’)

of the referred string to P2 and finds a matched pattern “abc”

by checking the copied states. Then, Twins returns state “3”

and continues to scan the bytes behind P2. After that, pattern

“abccd” would be found while scanning the following bytes.

Twins skips scanning of 2 bytes on processing P2.

TABLE I
CHARACTERISTICS OF EXPERIMENTAL DATA SETS

Alexa.com Alexa.cn
Count of Pages 434 13747

Compressed Size (MB) 15.54 226.95

Decompressed Size (MB) 70.24 1190.99

Pointer ratio 91.21% 91.92%

Average pointer length (B) 14.89 19.84

D. Discussion

• Estimation of extra memory consumption

Twins accelerates the speed of matching by keeping returned

states as the hidden information. It only need 32K-entries

for storing them, because the maximum distance between the

pointer and its referred string is 32768 B, which is specified by

DEFLATE. It is enough to store states by 32K×4B memory,

which would present more than 4 billion states for DFA. So,

the requirement of memory space is scale invariant for any

DFA scanning engine.

Compared with hundreds or thousands million bytes mem-

ory usage of DFA, thousands-bytes extra cost for Twins is

more insignificant. Moreover, it also needs to keep some

parameters in ARCH method and its DFA states, such as

status, Input-Depth, Simple/Complex state. Twins takes less

overhead than ARCH on the extra memory consumption and

the comparison of them are shown in Section IV.

• Estimation of extra time consumption

From Algorithm 1 and the example above, we can learn that

Twins utilize copying states instead of scanning these bytes

again. To be simplified, it only needs twice memory accesses

which is smaller than the consumption of FSA scanning one

input symbol. This is the reason why Twins could obtain better

performance than the previous works.

• Processing on encrypted traffic

Today’s web traffic are often encrypted to protect the data

confidentiality and integrity and there are some works [11],

[12] that focus on DPI over encrypted traffic. Twins does

not concern the matching of encrypted traffic. But, it can be

embedded in the systems on processing decryption traffic.

IV. EVALUATION

A. Settings

Before evaluation, we have collected traffic by accessing

the Alexa top sites shown in Table I and can be access in

[13]. Especially, all the raw traffic data are compressed which

are collected through browsing home pages of Alexa.com [14]

TOP 500 sites and Alexa.cn [15] top 20000 sites, used as the

input in our experiments.

To have an intuitionistic comparison with ARCH, we im-

plement Twins over RegEx processor at [16]. The processor

provides a DFA-based implementation to perform RegEx

matching with an organization of 2-dimensional matrix tran-

sition table. It is also used as a base-line algorithm to exhibit

the Naive method. We also implement the Simple/Complex

4

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 16,2021 at 06:13:12 UTC from IEEE Xplore. Restrictions apply.

520 524 522
429 435 427

1175
1301

1212

Snort24 Snort31 Snort34
0

300

600

900

1200

1500

T
hr
ou
gh
t(
M
bp
s)

Naive ARCH Twins

(a) Alexa.com data set

460 462 461440 448 439

1426
1535 1457

Snort24 Snort31 Snort34
0

300

600

900

1200

1500

1800

T
hr
ou
gh
t(
M
bp
s)

Naive ARCH Twins

(b) Alexa.cn data set

Fig. 6. Evaluation results over two data sets and three RegEx sets.

method in ARCH and that is the only algorithm which have

been evaluated by ARCH.

With the same reason for intuitionistic comparison, we also

take three RegEx sets, i.e., the Snort24, Snort31, Snort34,

which were taken from Snort and published at [16]. Then,

a same server (Xeon E5-2630 2.2GHz and 64G RAM) is used

for evaluation. All the implementations are single-threaded

programming and running over a single core.

B. Performance

Twins and ARCH have matched the same number of

patterns as Naive method does which is shown in Table III.

Fig. 6 shows the throughput of them over the two sets of

compressed traffic and three RegEx sets. Obviously, Twins

is more efficient than ARCH and Naive in all the data

and RegEx sets. Compared to Naive and ARCH, it achieves

2.3∼3.3 times and 2.7∼3.4 times performance improvement

respectively. Moreover, the throughput of Twins has achieved

more than 1.5Gbps, that means there is potential to perform

wire-speed RegEx matching over compressed traffic with a

parallel implementation.

Considering the evaluation model in Eq 2, tc of Twins is

smaller than ts, which leads to a smaller value of tc/ts. It

gives Twins a good performance improvement compared to

Naive. But, it is not possible for ARCH because the extra cost

of skipping pointer bytes is larger than scanning them. ARCH

would perform better than Naive in some scenarios that the

scan engine is implemented by compression DFA, such as

D2FA [17], A-DFA [18]. In these cases, the ts may be larger

than the tc of ARCH, while the throughput of matching would

be reduced.

At last, we evaluate the memory overhead of the matching

engines that are implemented by the three RegEx sets. The

results show in Table II. From the table, we can find that Twins

TABLE II
MEMORY SIZE OF THE SCANNING ENGINES BY THREE REGEX SETS

RegEx Set Naive
(KB)

ARCH
(KB)

Twins
(KB)

Snort24 11360 11380 11360

Snort31 6872 6892 6872

Snort34 12676 12688 12676

TABLE III
SKIPPED RATIO OVER THE TWO DATA SET

RegEx Set Patterns ARCH (%) Twins (%)

Alexa.com

Snort24 32886 78.29 89.69

Snort31 0 78.10 90.82

Snort34 259 78.15 89.70

Alexa.cn

Snort24 558514 81.76 91.21

Snort31 0 82.01 91.81

Snort34 18059 81.60 91.22

incurs little extra memory than Naive and the size of the extra

memory is smaller than ARCH’s. Compared to the memory

size of Naive, the extra memory used by Twins or ARCH is

negligible. Moreover, it is a fixed value for a specific matching

engine and distinguishes from the traffic size.

C. Analysis

For quantitative analyzing the evaluation results, we com-

pare Twins and ARCH with another indicator, skipped ra-
tio (Rs). Table III shows the skipped ratio of them on

processing the traffic with various RegEx sets. It is clear that

Twins skips more bytes than ARCH in all the sets. Particularly,

Twins skips about 90% bytes on both data sets and almost

approaches the upper limits which can be calculated by the

pointer ratio of the two data sets (91.35% and 91.92%, shown

in Table I).

Moreover, compared the skip ratio and throughput of ARCH

over Alexa.cn data set to Twins over Alexa.com data set, there

is small difference on the skip ratio, but large difference on

their throughput. So, we can find that ARCH gains more extra

cost for skipping pointer bytes than Twins with approximately

the same skip ratio. Actually, ARCH has to calculate Input-
Depth parameter and mark Check, Uncheck and Match flag as

the status for each scanned byte, which spends more time than

Twins. Therefore, the more bytes are skipped and the lower

extra cost is gained, the higher performance will be achieved.

V. RELATED WORK

A. With gzip/DEFLATE

ACCH [3] is based on the Aho-Corasick algorithm [19]

for compressed traffic matching and skips matching partial

bytes when the pointer does not contain complete pattern.

However, if not, it has to scan these bytes again. SPC [20]

employs the same basic idea as ACCH to accelerate multi-

string matching over compressed traffic for Wu-Manber al-

gorithm [21]. COIN [4] eliminates the redundant process of

ACCH and gets better performance than ACCH. SOP [22] was

proposed to reduce the memory usage on pattern matching

after decompressing traffic, however the speed is relatively

lower than even ACCH without any optimization on cutting the

5

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 16,2021 at 06:13:12 UTC from IEEE Xplore. Restrictions apply.

matching redundancy. The two papers studied in [23] and [24]

aims to match Huffman-encoded data, but they only applied

to single-pattern matching rather than multi-pattern matching.

All the methods above are concerned to accelerate string

matching over compressed traffic. Except for them, ARCH [6]

provides RegEx matching and are described before and thus

is omitted here. Sun [25] presents a method which is the first

study to perform RegEx matching over compressed traffic.

However, it relies on the compression DFA which have re-

duced its number of path pairs significantly. That limits its

using scenarios.

B. With other compression methods

The paper [26] achieved multi-pattern matching over com-

pressed data with LZW, but it cannot work on LZ77 com-

pression algorithm and thus cannot support inspections over

HTTP traffic. In [27], the authors applied the Boyer-Moore

algorithm [28] to compressed traffic as well as the pattern

for fast matching. However, the compressing method is also

a single-pattern matching and fails to inspect the web traf-

fic nowadays. In addition, Google proposed a compression

method called SDCH [29], which is available primarily in

Google’s related servers and browsers but has not been widely

used by other web sites as shown in our experiments. The

usage of [30], which can make decompression-free inspection

on the traffic compressed by SDCH is also limited since it

cannot be extended to LZ77.

VI. CONCLUSION

In this paper, we have presented Twins for RegEx matching

on compressed traffic. Twins stores states returned by scanning

each byte of traffic, so as to skip more bytes than the

state-of-the-art approach, while introducing less extra cost.

The comparisons of Twins with related works draw a sig-

nificant improvement in speed with real traffic from Alexa

top sites. Actually, Twins almost approaches the upper limit

on skipping compressed data. Specifically, Twins achieves

1.5Gbps throughput, which enables the potential of wire-speed

matching over compressed traffic matching.

VII. ACKNOWLEDGEMENT

This work is supported by the National Key Research

and Development Program of China (2017YFB0801703), the

NSFC (61702407, 61672425) and the Fundamental Research

Funds for the Central Universities.

REFERENCES

[1] J. Fan, C. Guan, K. Ren, Y. Cui, and C. Qiao, “Spabox: Safeguarding
privacy during deep packet inspection at a middlebox,” IEEE/ACM
Transactions on Networking, 2017.

[2] C. Hu, H. Li, Y. Jiang, Y. Cheng, and P. Heegaard, “Deep semantics
inspection over big network data at wire speed,” IEEE Network, vol. 30,
no. 1, pp. 18–23, 2016.

[3] A. Bremler-Barr and Y. Koral, “Accelerating multipattern matching
on compressed http traffic,” IEEE/ACM Transactions on Networking,
vol. 20, no. 3, pp. 970–983, 2012.

[4] X. Sun, K. Hou, H. Li, and C. Hu, “Towards a fast packet inspection
over compressed http traffic,” in IEEE/ACM International Symposium
on Quality of Service, 2017, pp. 1–5.

[5] D. Hogawa, S.-i. Ishida, and H. Nishi, “Hardware parallel decoder of
compressed http traffic on service-oriented router,” in Proceedings of
the International Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA). WorldComp, 2013, p. 1.

[6] M. Becchi, A. Bremler-Barr, D. Hay, O. Kochba, and Y. Koral, “Acceler-
ating regular expression matching over compressed http,” in INFOCOM,
2015 Proceedings IEEE. IEEE, 2015, pp. 540–548.

[7] L. P. Deutsch, “rfc 1952: Gzip file format specification version 4.3,”
https://www.rfc-editor.org/rfc/rfc1952.txt, May 1996.

[8] ——, “rfc 1951: Deflate compressed data format specification version
1.3,” https://www.rfc-editor.org/rfc/rfc1951.txt, May 1996.

[9] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on information theory, vol. 23, no. 3,
pp. 337–343, 1977.

[10] J. E. Hopcroft and J. D. Ullman, Introduction To Automata Theory,
Languages, And Computation. China Machine Press, 2007.

[11] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep
packet inspection over encrypted traffic,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 213–226, 2015.

[12] T. Gupta, H. Fingler, L. Alvisi, and M. Walfish, “Pretzel: Email
encryption and provider-supplied functions are compatible,” in Proceed-
ings of the Conference of the ACM Special Interest Group on Data
Communication. ACM, 2017, pp. 169–182.

[13] “Compressed traffic data sets,” https://github.com/xiuwencs/depict.

[14] “Alexa top 500 global sites,” http://www.alexa.com/topsites/.

[15] “Alexa top china sites,” http://www.alexa.cn/siterank/.

[16] “Regular expression processor,” http://regex.wustl.edu.

[17] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Al-
gorithms to accelerate multiple regular expressions matching for deep
packet inspection,” in ACM SIGCOMM Computer Communication Re-
view, vol. 36, no. 4. ACM, 2006, pp. 339–350.

[18] M. Becchi and P. Crowley, “An improved algorithm to accelerate regular
expression evaluation,” in Proceedings of the 3rd ACM/IEEE Symposium
on Architecture for networking and communications systems. ACM,
2007, pp. 145–154.

[19] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.
333–340, 1975.

[20] A. Bremler-Barr, Y. Koral, and V. Zigdon, “Shift-based pattern matching
for compressed web traffic,” in High Performance Switching and Routing
(HPSR), 2011 IEEE 12th International Conference on. IEEE, 2011,
pp. 222–229.

[21] S. Wu, U. Manber et al., “A fast algorithm for multi-pattern searching,”
1994.

[22] Y. Afek, A. Bremler-Barr, and Y. Koral, “Space efficient deep packet in-
spection of compressed web traffic,” Computer Communications, vol. 35,
no. 7, pp. 810–819, 2012.

[23] S. T. Klein and D. Shapira, “Pattern matching in huffman encoded texts,”
in Data Compression Conference, 2001 Proceedings DCC. IEEE, 2001,
pp. 449–458.

[24] A. Daptardar and D. Shapira, “Adapting the knuth-morris-pratt algorithm
for pattern matching in huffman encoded texts,” in Data Compression
Conference, 2004 Proceedings DCC. IEEE, 2004, p. 535.

[25] Y. Sun and M. S. Kim, “Dfa-based regular expression matching on
compressed traffic,” in Communications (ICC), 2011 IEEE International
Conference on. IEEE, 2011, pp. 1–5.

[26] T. Kida, M. Takeda, A. Shinohara, and M. Miyazaki, “Multiple pattern
matching in lzw compressed text,” in Data Compression Conference,
1998 Proceedings DCC. IEEE, 1998, pp. 103–112.

[27] Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa,
“A boyer–moore type algorithm for compressed pattern matching,” in
Annual Symposium on Combinatorial Pattern Matching. Springer, 2000,
pp. 181–194.

[28] R. S. Boyer, “A fast string searching algorithm,” Communications of the
Acm, vol. 20, no. 10, pp. 762–772, 1977.

[29] J. Butler, W.-H. Lee, B. McQuade, and K. Mixter, “A proposal for shared
dictionary compression over http,” Sep, vol. 8, p. 17, 2008.

[30] A. Bremler-Barr, S. David, D. Hay, and Y. Koral, “Decompression-
free inspection: Dpi for shared dictionary compression over http,” in

INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp. 1987–1995.

6

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 16,2021 at 06:13:12 UTC from IEEE Xplore. Restrictions apply.

