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ABSTRACT
How to debug large networks is always a challenging task.
Software Defined Network (SDN) offers a centralized con-
trol platform where operators can statically verify network
policies, instead of checking configuration files device-by-
device. While such a static verification is useful, it is still
not enough: due to data plane faults, packets may not be
forwarded according to control plane policies, resulting in
network faults at runtime. To address this issue, we present
VeriDP, a tool that can continuously monitor what we call
control-data plane consistency, defined as the consistency
between control plane policies and data plane forwarding
behaviors. We prototype VeriDP with small modifications
of both hardware and software SDN switches, and show that
it can achieve a verification speed of 3 µs per packet, with a
false negative rate as low as 0.1%, for the Stanford backbone
and Internet2 topologies. In addition, when verification fails,
VeriDP can localize faulty switches with a probability as
high as 96% for fat tree topologies.

CCS Concepts
•Networks → Network measurement; •Hardware →
Error detection and error correction;

Keywords
Software Defined Network; consistency; verification

1. INTRODUCTION
Networks are prone to faults. Meanwhile, most operators

still debug network faults in an ad-hoc way: checking
configurations device-by-device with simple tools like ping,
traceroute, SNMP, etc. As a result, it is highly-demanding
and time-consuming for operators to pinpoint the root caus-
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es. A network debugging toolkit that can automatically de-
tect, locate, and repair network faults is highly desired [57].

Software Defined Network (SDN) decouples control func-
tions away from the data plane, so that operators can con-
figure/program the network from a centralized point. This
centralized control offers new opportunities for automating
the network debugging process. Many tools have been
developed to verify the correctness of network configuration
in SDN [36, 37, 35, 58]. Since these tools generally debug
network configurations at the controller side, we will term
them as control plane verification tools.

Though the above tools are useful for reducing errors in
the configuration process, they assume these configurations
will be reflected in packet forwarding behaviors. As will
be shown later, even if configurations are error-free at the
control plane, packets forwarding can still be faulty at
the data plane. Reasons for these faults include: lack of
acknowledgement from switches [50, 46, 40], switch soft-
ware bugs [57, 34], premature switch implementation [46],
external modification [18, 47], etc (see Section 2.2).

To detect such faults, data plane verification tools have
been developed. ATPG [57] sends probe packets to test the
data plane, while it solely checks reception of probe packets,
without inspecting the paths took by the probe packets.
This prevents ATPG from verifying policies (e.g., waypoint,
access control) that are dependent on paths. Monocle [41]
generates probe packets to test the existence of rules at
switches. However, due to the slow probe generation
process (at a scale of seconds), Monocle can only check
a relatively steady network configuration and cannot work
under frequent network updates or reconfigurations. In
addition, probe packets may be treated differently from
real traffic, thereby leading to inaccurate judgements (see
Section 3.1).

Given the limitations of both control plane and data plane
verification tools, we think a missing part in the current
SDN architecture is a tool that can ensure the operator’s
configurations will correctly reflect at packet forwarding
behaviors. To this end, this paper proposes VeriDP, a
tool that can continuously monitor the control-data plane
consistency, i.e., whether packet forwarding behaviors agree
with the network configurations. By ensuring such consis-
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tency, VeriDP enables operators to focus on configuration
correctness.

VeriDP uses path table as the abstract of control plane
configurations, and tests whether packet forwarding behav-
iors are conforming to the path table. A path table is a
data structure that records forwarding paths between any
two ports in the network. Each path entry consists of (1) a
forwarding path, which consists of a sequence of hops, in the
form of ⟨input port, switch ID, output port⟩, (2) a set of
all packets, which can be forwarded along the path, and (3) a
tag, which is a compression of the path information. VeriDP
generates the path table based on the network topologies and
rules installed by the controller. When a packet traverses
through the network, each switch generates/updates the tag
of the packet the same way as the tag in the path table is
computed. Before the packet leaves the network, a report
encapsulating the header and tag of the packet is sent to the
controller for verification. If the forwarding path is correct,
the reported header will match an entry in the path table, and
the reported packet tag should be the same with the one of
the matched entry.

We face the following two challenges when realizing
VeriDP. First, we need an efficient method to construct
the path table, so that (1) it should allow fast lookups in
order to scale to large networks, (2) it can be updated
incrementally to accommodate frequent rule updates, and
(3) it should encode packet headers with efficient methods
without consuming too much memory. Second, we need a
tag compression method which allows localization of faulty
switches, when inconsistency is detected. Thus, simple
hash-based tag compression is not possible.

To address the above challenges, we leverage Binary
Decision Diagram (BDD) to encode packet headers, and use
Bloom filter for tag compression. In addition, we design an
incremental path table update algorithm that only updates a
small portion of path table. In summary, our contribution is
two-fold:

• We propose VeriDP, the first tool (to the best of our
knowledge) that can monitor the control-data plane
consistency in SDN. VeriDP can achieve a false neg-
ative rate as low as 0.1% for inconsistency detection,
and an accuracy as high as 96% for faulty switch
localization. The verification speed is as fast as 3 µs
per packet for the Stanford backbone and Internet2
topologies.
• We prototype VeriDP with small modifications of both

hardware and software SDN switches. We use exten-
sive experiments to show that VeriDP incurs a minimal
overhead on data-plane packet processing.

As a first step towards monitoring control-data plane
consistency, VeriDP is limited in the following aspects: (1)
it cannot handle packet rewrites that will change headers
of packets when they are forwarded, (2) it cannot detect
packet drops due to hardware failures, and (3) it requires
modification (even small) of switches.

Operator Intent (I)

Logical Rules (R)

Phyiscal Rules (R )

Packet Forwarding (F)

Compilation

Virtualization/
Installation

Enforcement

Controllers

Switch

Data
Plane

Control 
Plane

firmware

hypervisor

Figure 1: The translation process from operator intent
to packet forwarding in SDN.

In the rest of this paper, we will first give more back-
ground on the control-data plane consistency issue (§2), and
present an overview of VeriDP (§3). Then, we give details
on the design and implementation of VeriDP (§4 and §5), and
evaluate its performance (§6). After discussing some related
work (§7), we conclude the paper (§8).

2. BACKGROUND AND MOTIVATION
In this section, we will first present some background

on SDN. Specifically, we clearly define how an operator’s
intent is mapped to packet forwarding behaviors in SDN.
Then, we show some cases under which the data plane
becomes inconsistent with the control plane. Following
that, we show the consequences that can be caused by such
inconsistency. The reason that we separately discuss the
causes and consequences of control-data inconsistency is
that a single case of inconsistency can result in multiple
consequences. For example, a missing rule at a switch may
cause blackholes, loops, or access violation.

2.1 All the Way from Operator Intent to For-
warding Behavior

The purpose of an SDN is to translate a network operator’s
intent into packet forwarding behaviors [30]. Figure 1
illustrates such a translation process, which consists of four
stages: operator intent (I), logical rules (R), physical rules
(R′), and packet forwarding (F ).

At the first stage, an operator specifies her intent (I) in
terms of high-level policies (we will use intent and policy
interchangeably in the rest of paper). For example, she
may want packets from hosts inside a department directly
reach a database server, while packets from hosts outside the
department should go through a firewall before reaching the
server. Many SDN programming languages (Frenetic [28],
Pyretic [44], Merlin [53], etc.) and controllers (Ryu [9],
ONOS [21], etc.) allow operators to specify such high-level
intent. Though the operator’s intent could be quite diverse,
some intent is invariant, including pairwise reachability,
backhole-freedom, loop-freedom, etc.
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At the second stage, a compiler (often a built-in compo-
nent of a controller) should be used to translate the high-level
operator intent into device-specific logical rules (R) that can
be understood by forwarding devices (i.e., switches). By
logical, we mean that these rules are complied based on a
logic view of the network by the controller, and have not yet
been installed at switches.

At the third stage, the controller will install the compiled
rules through some southbound protocols like OpenFlow.
The network may use virtualization platforms (e.g., FlowVi-
sor [52], OpenVirtex [15], etc.) to translate the rules, before
they are sent to switches. We will term the rules installed by
switches as physical rules (R′). Note that R = R′ may not
hold, due to reasons like switch software bugs.

At the fourth stage, switches process and forward incom-
ing packets according to the installed rules R′. At this point,
the operator intent finally translates into packet forwarding
(F). Assuming everything goes well, the packet forwarding
behaviors should exactly reflect the operator’s intent, i.e.,
I = R = R′ = F .

Most previous tools try to verify whether I = R, assum-
ing I as a set of basic invariants, i.e., I ← {reachability,
blackhole-freedom, loop-freedom}. We will refer to them
as control plane verification tools. For other tools, ATPG
verifies I = F (also assuming I as set of basic invariants),
and Monocle verifies whether R = R′. In contrast, VeriDP
checks whether R = F .

2.2 Control-Data Plane Inconsistency: The
Causes

There could be many reasons that data plane forwarding
behaviors deviate from the operator intent at the control
plane. The following lists four possible reasons.

Lack of data plane acknowledgement. SDN advocates a
fine-grained dynamic control over switches, meaning con-
trollers have to frequently update the data plane states.
Currently, update in SDN is “open-loop” in nature, without
effective data plane acknowledgement mechanisms. Then,
network updates may be out of order, or even fail to
take effect, without being noticed by the controller. This
will result in that the controller and switches can have
inconsistent views, where the controller thinks a rule has
taken effect, while the switch fails to install it [41]. Note
that it is challenging to design such an acknowledgement
mechanism [40]. The Barrier command provided by
OpenFlow attempts to enable controllers to confirm when
switches have installed rules [8]. However, measurements
show that switches may respond to Barrier too early
before the rules are actually installed in the flow table, in
order to save cost [50, 46].

Switch software bugs. According to a survey among
network operators, switch/router software bug is one of the
most possible reasons for network failures [57]. For exam-
ple, [34] provides a concrete bug where switches wrongly
manages hardware-software-hybrid flow tables. Since the

size of hardware flow table is relatively small, most SDN
switches use software flow tables. However, rule placement
strategies are prone to faults, due to cross-rule dependen-
cy [34]. The authors showed that the Pronto-Pica8 3290
switch, which can hold up to 2000 rules in hardware flow
table, simply placed all extra rules at software flow table.
This simple placement strategy respects no dependency
across rules, and was shown to cause forwarding behaviors
that are inconsistent with controller’s policies [34].
Premature switch implementation. Currently, the im-
plementation of SDN switches is quite premature, with
some mandatory features not supported by some switches.
Without noting that, rules complied by the controller may
not translate into the forwarding behaviors. For example,
according to a recent measurement, the HP ProCurve 5406zl
switch lacks support for rule priority [46]. If two rules
with different priorities have overlapped matching fields but
different actions, the packet may be wrongly forwarded
according to the low-priority rule.
External rule modifications. Besides the SDN controller,
a rule can also be modified by an external source. For
example, a careless operator may install a new rule that
overrides previous one through data plane configuration
tools like dpctl [2]. An attacker can gain the access to
the switch OS and modify a forwarding rule to redirect
traffic elsewhere [18]. These actions may not be noticed by
the controller, resulting in a faulty data plane configuration.
Worse still, [47] showed that ONIE [6], the boot loader
for 3rd-party switch OS, can be exploited by an attacker to
gain persistent control over SDN switches, even after OS re-
installation.

In sum, apart from misconfigurations, faults can also
come from the data plane. These faults are out of the
scope of many existing verification tools (e.g., Veriflow [37])
that function at the control plane. Note that we are not
considering inconsistency caused by network updates [49],
as they only cause transient failures.

2.3 Control-Data Plane Inconsistency: The
Consequences

In the following, we show how control-data plane incon-
sistency may break the operator’s intent. We will list some
common intent, including basic invariants, access control,
waypoint traversal, and traffic engineering.
Basic Invariants. As mentioned earlier, all networks should
satisfy some basic invariants including reachability, blackhole-
freedom, loop-freedom, etc [37]. Due to control-data plane
inconsistency, even these invariants are satisfied at the con-
trol layers, they may be violated when packets are forward-
ed. For example, when a forwarding rule is not successfully
installed, or wrongly modified by an external source, the
corresponding hosts may no longer be reached. These
invariants can be checked by sending probe packets in the
network, as in ATPG [57].
Access control. Besides basic invariants, there are also
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Flow Rules at S1:

R1 in_port=1: port 2
R2 in_port=3: port 2
R3 dst_ip=10.0.1.1: port 1
R4 dst_ip=10.0.2.1: port 3

Middlebox

H2: 10.0.2.1

S11 2
3

H1: 10.0.1.1

Figure 2: Middlebox traversal. The security policy of
H1→Middlebox→ H2 is violated.

Link capacity = 1Gbps
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S2
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Figure 3: Traffic engineering. Path S1 → S3 → S4 can
be congested if traffic engineering rules fail at S1.

custom policies that may vary from network to network.
For example, an operator may specify some access control
policies to prevent some set of hosts from talking with each
other. These policies will translate into ACL rules that are
installed by switches. If these ACL rules are missing in the
flow table, say due to bad rule replacement strategies, the
access control intent will be violated.

Waypoint traversal. An operator may also require some
packets to traverse a set of middleboxes in sequence when
being forwarded inside the network. Take Figure 2 as
an example, where rules at switch S1 indicate that traffic
from the client H1 to the server H2 must go through the
middlebox. Now, consider the high-priority rules R1 and/or
R2 fail. Then the middlebox chaining policy is violated, and
the firewall is bypassed.

Traffic engineering. A traffic engineering policy may
require packets to be forwarded over multiple links or
tunnels according to some specific distribution. As shown
in Figure 3, rules at switch S1 evenly distribute traffic
from S1 to S4 between two paths S1 → S2 → S4 and
S1 → S3 → S4. Now, consider that the rules fail at switch
S1, resulting in that all traffic goes through the second path.
Then, this traffic engineering policy is violated, resulting in
sub-optimal performance.

3. DESIGN OVERVIEW
In this section, we will first discuss several design options,

and then present the design of VeriDP.

3.1 Design Options
First, we consider the following two approaches for check-

ing control-data plane consistency.

Checking flow tables. For this approach, the controller
can periodically check the healthy of rules at switches’ flow
tables. Frequently dumping all rules from switches is clearly
inefficient, and will place burden on switches. To address
this problem, Monocle [41] generates probe packets to test

the existence of rules. However, the probe generation is too
slow (at a scale of several seconds) to keep up with frequent
network updates.
Checking packet forwarding behaviors. Instead of check-
ing flow tables, ATPG [57] directly looks at packet for-
warding behaviors. Specifically, ATPG lets end hosts send
probe packets into the network, and checks whether they
are correctly received. Violation of reachability policies
like black holes and loops can thus be detected. However,
ATPG cannot detect violation of the other three types of
inconsistency as listed in Section 2.3. Checking them
requires we inspect not only the correct reception of packets,
but also the paths traversed by packets.

Given the limitations of checking flow tables or packet
receptions, we decide to check whether packet forwarding
paths are consistent with control-plane configurations. With
this decision made, a remaining question is should we inject
probe packets and verify their forwarding paths, or should
we sample real traffic from the data plane for verification?
In the following, we will discuss this issue.
Probes or real traffic. First, using probe packets, we
can only verify whether the forwarding paths of probe
packets agree with the configurations. However, it does not
necessarily mean that the real traffic will also follow the
same paths. For example, consider an ACL rule R1 that
only permits HTTP traffic from IP address 10.0.0.1:

R1 src ip = 10.0.0.1, dst port = 80 : Allow

A probe packet with source address 10.0.0.1 and destination
port 80 can trigger this rule. However, even the packet is
successfully received, it may not mean the rule is correctly
configured at the switch. For example, consider the above
rule is prioritized by an ill-inserted rule R2:

R2 src ip = 10.0.0.1, dst port = ∗ : Allow

The probe packet can still be received, while non-HTTP
traffic, e.g., SSH, from 10.0.0.1 will also be allowed, vi-
olating the controller’s policy. The reason that the probe
packet cannot detect such violation is that it can only verify
the control-data plane consistency with respect to a single
packet. To capture all possible inconsistency, we need to
exhaust all possible packets, which is clearly infeasible.
Given the limitations of probe packets, we decide to sample
real traffic from the data plane for verification.

3.2 VeriDP Architecture
As shown in Figure 4, VeriDP consists of a server along-

side the SDN controller, and a pipeline for each switch in the
network. The server intercepts the bidirectional OpenFlow
messages exchanged between the controller and switches, in
order to construct the path table, which records all paths for
each input and output port pair. The pipeline is responsible
for sampling, tagging, and reporting packets to the server.
With the path table, the server verifies the reported packets
sent from switches, and when the verification fails, it tries to
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Figure 4: System architecture. The shaded components
belong to VeriDP; those within the dashed rectangle are
the components that VeriDP monitors.

localize the faulty switches. The dashed rectangle represents
the domain that VeriDP monitors, i.e., VeriDP is expected
to detect the faults caused by the components inside the
domain. The monitor domain includes: (1) the OpenFlow
agent that terminates the OpenFlow channel, and (2) the
OpenFlow pipeline that manages the hardware flow table
and forwards packets based on table lookups.

3.3 VeriDP Pipeline
VeriDP distinguishes among three different types of switch-

es: entry switches, exit switches, and internal switches.
Entry and exit switches are edge switches that are directly
connected with end hosts or middleboxes, and internal
switches are aggregate and core switches that sit inside the
network, interconnecting edge switches.

The VeriDP pipeline is responsible for generating tags
for packets at entry switches, updating tags for packets at
internal switches, and reporting packet headers and tags to
the controller at exit switches. Entry switches’ pipelines
will perform sampling and all other switches are maintained
stateless; exit switches’ pipelines should report packets to
the server (some internal switches should also conditionally
report packets); all switches should tag packets that are
sampled by entry switches.

The pipeline is implemented in a switch’s fast path,
separated from the OpenFlow pipeline. The reason for such
separation is to prevent faults caused by flow tables from
propagating into the tagging module. Since a typical switch
can contain a cascade of flow tables, each of which may hold
thousands of flow entries, flow entries used for tagging may
be overridden by other rules, replaced when flow table is full,
and even incorrectly modified/deleted by applications.

The pipeline processing is shown in Algorithm 1. The
entry switch initializes the packet tag to zero, and the TTL

Algorithm 1: Tag(s, x, y, p)
Input: s: the switch ID; x/y: the local input/output port ID of packet

p, which is received from the OpenFlow pipeline.
1 if ⟨s, x⟩ is an edge port then
2 p.tag ← 0; // initialize the tag
3 p.ttl← MAX PATH LENGTH; // initialize the ttl

4 p.tag ← p.tag ⊔ BF(x||s||y); // update the tag
5 p.TTL← p.TTL− 1; // decrement the ttl
6 if ⟨s, y⟩ is an edge port or y = ⊥ or p.TTL = 0 then
7 SendReport(inport, ⟨s, y⟩, p.header, p.tag);

to the maximum path length (Line 1-3). Each switch updates
the tag as:

tag ← tag ⊔ BF(input port||switch ID||output port)

, where switch ID is the identifer of the switch; input port
/output port is the local input/output port ID of the packet;
BF(x) is a k-bit Bloom filter holding a single element x; ⊔
represents the bit-by-bit OR operation.

Initially, we were tempted to use hash-based tagging,
i.e., replace the BF with a hash function, and use the bit-
by-bit OR instead of bit-by-bit XOR. Later, we found that
this tagging method prevents us from localizing the faulty
switch. On the other hand, by exploiting the information
contained in Bloom filter, we can achieve a high localization
probability (refer to Section 4.3 for details).

Besides tag updating, the switch also decrements the TTL
by one (Line 4-5). When the packet is output to an edge
port connected with an end host, or output to the dropping
port ⊥, or its TTL value hits zero, the switch sends a tag
report to the server (Line 6-7). A tag report is a 4-tuple
⟨inport, outport, header, tag⟩, where inport/outport is the
entry/exit port of the packet; header is a portion of packet
header (e.g., TCP 5-tuple); tag is the tag of the packet.
Besides sending tag reports, the exit switch should also
pop the tag from the packet, and deliver the packet to its
destination host.

One thing to note is that switches should send tag reports
for dropped packets. This is necessary to ensure the visibility
of verification server into blackholes and loops. Here, we
consider two cases of packet drops: (1) the packet does
not match any forwarding entry, and (2) the packet matches
some forwarding entries, but the entries do not specify any
output ports. On the other hand, we do not consider packet
drops due to hardware failures, which will totally prevent the
failed switch from sending any tag reports.

3.4 VeriDP Server
The VeriDP server is responsible for parsing and verifying

tag reports sent by switches. Central to the VeriDP server is
the path table, which maps a pair of ⟨inport, outport⟩ to
a list of paths that enter the network at inport and exit at
outport. Each path is again a pair of ⟨headers, tag⟩, where
headers is a set of headers allowed for the path, and tag is
the tag representing the path.
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Table 1: Part of the path table for Figure 5. [·] represents BF(·), and ⊔ represents bit-by-bit OR.
inport outport headers tag

⟨S1, 1⟩ ⟨S3, 2⟩
src ip = 10.0.1.1, dst ip = 10.0.2.1, dst port = 22 [1||S1||3] ⊔ [1||S2||3] ⊔ [3||S2||2] ⊔ [1||S3||2]
src ip = 10.0.1.1, dst ip = 10.0.2.1, dst port ̸= 22 [1||S1||4] ⊔ [3||S3||2]

⟨S1, 2⟩ ⟨S3,⊥⟩
src ip = 10.0.1.2, dst ip = 10.0.2.1, dst port = 22 [2||S1||3] ⊔ [1||S2||3] ⊔ [2||S2||2] ⊔ [1||S3||⊥]
src ip = 10.0.1.2, dst ip = 10.0.2.1, dst port ̸= 22 [2||S1||4] ⊔ [3||S3||⊥]

H1 10.0.1.1

H3 10.0.2.1
H2 10.0.1.2

R1 dst_ip=10.0.1.1: port 1

R2 dst_ip=10.0.1.2: port 2

R3 dst_port=22: port 3

R4 dst_ip=10.0.2/24: port 4

  R8 src_ip=10.0.1.2: drop

  R9 dst_ip=10.0.2.1: port 2

  R10 dst_ip=10.0.1/24: port 1

R5 in_port=1: port 3   

R6 dst_ip=10.0.1/24: port 1

R7 dst_ip=10.0.2/24: port 2

S1
1

2

3

4

S2
1

3

2

S3
1

3
2

Figure 5: A simple example for path table construction.
The network consists of three switches and a total of 10
rules.

For a concrete example, consider the toy network in
Figure 5. Rule 3 redirects all SSH traffic to S2, and Rule 4
forwards all other packets towards 10.0.2/24 to S3. Rule 5
directs all traffic from port 1 to the middlebox. Rule 8 at
switch S3 drops all traffic from H2. Other rules are plain
forwarding rules ensuring connectivity. Table 1 shows a part
of the path table for this network.

Here, we assume there are no packet rewrites, i.e., packet
headers remain the same when packets are forwarded in
the network. In this way, when a packet is about to exit
the network, the VeriDP server can verify the packet’s
forwarding path against its header. We acknowledge this is a
limitation of the current design, and may be resolved in the
future.

4. DESIGN DETAILS

4.1 Path Table Construction
A first problem for constructing path table is how to

represent header sets. A straightforward way is to use
wildcard expressions, just as in Header Space Analysis [36].
However, even wildcard expressions are widely used for
representing suffix, they are very inefficient for representing
arbitrary header sets. For example, the header set for
dst port ̸= 22 in the second row of Table 1 is a union of
16 wildcard expressions. In addition, wildcard expressions
have a poor support of set operation like union, conjunction,
and complement. For a typical network consisting of tens of
switches, each of which has thousands of flow rules, a huge
number of wildcard expressions will be needed to represent
the whole packet sets. According to [33], characterizing the

Algorithm 2: Traverse(inport, ⟨s, x⟩, h, p, t)
Input: inport: the entry port tuple; ⟨s, x⟩: the current port tuple;
h: the current header set; p: the current path; t: the current tag;
Px,y : the predicate for admitted packets from port x to port y;

1 foreach port y ∈ {1, 2, . . . , n,⊥} do
2 h′ ← h ∧ Px,y // packets forwarded to port y
3 if h′ ̸= ∅ then
4 p′ ← p||⟨x, s, y⟩ // update the path
5 t′ ← t ⊔ BF(x||s||y) // update the tag
6 if ⟨s, y⟩ is an edge port then
7 PathTable(inport, ⟨s, y⟩).AddPath(h′, p′, t′);
8 else
9 ⟨s′, y′⟩ ← Link(⟨s, y⟩) // go to next hop

10 Traverse(inport, ⟨s′, y′⟩, h′, p′, t′);

Stanford backbone network (16 switches) needs 652 million
wildcard expressions.

Inspired by the previous work [56], we decide to use the
Binary Decision Diagram (BDD) [22] to represent header
sets. BDD is an efficient data structure for Boolean expres-
sions, and has a better support of set operations. With BDD,
we can expect to significantly reduce the size of path table.

In the following, we will show how to construct the
path table from a network configuration. First, we show
how to specify the configuration of a single switch in the
network. A switch s with ports numbered from 1 to n can
be specified by a bunch of transfer predicates Px,y, where
x ∈ {1, 2, . . . , n} and y ∈ {1, 2, . . . , n,⊥}. Only those
packets with headers satisfying predicate Px,y can transfer
(i.e., be forwarded) from port x to port y. Transfer predicate
is a general abstraction of switch configuration, which can
be parsed from both traditional and OpenFlow switches.

For now, we will assume transfer predicates of all switch-
es are already computed, and show how to construct the
path table. Later on, we will come back and explain how to
generate the transfer predicates from switch configurations.
Algorithm 2 summarizes the process of path table construc-
tion. From each port, denoted as inport, of each switch,
we inject a header set h initialized to all-match (i.e., a BDD
of True), and a tag t initialized to zero. Then, we call
Traverse(inport, h, p, t), with the current path p being
empty. When the header h is received at a port ⟨s, x⟩, we
intersect h with the transfer predicate Px,y (Line 2). If the
intersection is non-empty, we update the path p and the tag
t (Line 4-5). If y is an edge port, we insert a new entry into
the path table (Line 6-7); otherwise, we move on to the next-
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Algorithm 3: Verify(inport, outport, header, tag)
Input: inport/outport: the input/output port of the packet;

header: the header of the packet; tag: the tag of the packet.
Output: True (pass), or False (fail).

1 foreach p ∈ PathTable(inport, outport) do
2 if header ≺ p.headers then
3 if tag = p.tag then
4 return True; // the path is correct

5 return False; // the path is wrong

6 return False; // the packet should not reach here

hop, and recursively call the algorithm with the new header
and tag (Line 8-10).

Now we go back and show how to generate transfer
predicates from switch configuration files. Specifically,
we consider the Cisco configuration files for the Stanford
backbone network [36]. The configuration files specify
forwarding rules, in-bound ACLs, out-bound ACLs, VLAN,
etc.

First, we use Algorithm 1 and 2 in [56] to transform the
configuration files into port predicates for each switch. The
port predicates consist of: (1) in-bound ACL predicate P in

x

for each port x: only packets satisfying P in
x are allowed to

be received from port x, (2) out-bound ACL predicate P out
y

for each port y: only packets satisfying P out
y are allowed to

be output to port y, and (3) forwarding predicate P fwd
y for

each port y: only packets satisfying P fwd
y will be forwarded

to port y. Then, we can compute the transfer predicates as:

Px,y = P in
x ∧ P fwd

y ∧ P out
y , y ̸= ⊥

Px,⊥ =qP in
x ∨

(
P in
x ∧ P fwd

⊥

)
∨
(
P in
x ∧ ∨y

(
P fwd
y ∧qP out

y

))
, where P fwd

⊥ =q
(
∨yP fwd

y

)
Intuitively, the three terms of Px,⊥ represent three reasons
that a packet is dropped: (1) filtered by the in-bound ACL,
(2) not forwarded to any port, and (3) filtered by the out-
bound ACL.

4.2 Tag Verification
The tag verification process is quite simple, as shown

in Algorithm 3. On receiving a tag report of the form
⟨inport, outport, header, tag⟩, the server looks up in the
path table with index ⟨inport, outport⟩, and possibly finds
a list of paths. For each path p, it tries to match header
with the header set of path p (Line 1-2). If matched, tag is
compared with the tag of path p. The verification succeeds
if these tags are equal (meaning that the packet followed the
right path), or fails otherwise (Line 3-6). If no matched path
is found (meaning that the packet should not have reached
here), then the verification also fails (Line 7).

Let us turn back to Figure 5, and assume H1 sends a
packet to port 22 of H3. The packet should take the path
of S1 → S2 → Middlebox → S2 → S3, and the tag
should be [1||S1||3]⊔ [1||S2||3]⊔ [3||S2||2]⊔ [1||S3||2]. With
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Figure 6: Distribution of the number of paths per inport-
outport pair in the Stanford backbone and Internet2
networks.

(⟨S1, 1⟩, ⟨S3, 2⟩) as the index, the server would find two
paths: one for dst port = 22 and the other for dst port ̸=
22. The header of the packet would match the packet set of
the first path. If the tag of the packet is the same with that
of that path, the verification succeeds. Now consider that
R3 fails, the packet will take the path of S1 → S3. The tag
would then be [1||S1||4]⊔ [3||S3||2], disagreeing with that of
the path, and the verification fails.

Note that there may be multiple paths for an inport-
outport pair, and each path corresponds to a specific header
set. Thus, we should assume that the number of paths
for an inport-outport pair should not be too large, so that
the linear search used in Algorithm 3 is feasible. To
validate this assumption, we construct the path table with the
configuration files of the Stanford backbone network [4] and
Internet2 [11]. As shown in Figure 6, the number of paths
per inport-outport pair is relatively small, thereby validating
the feasibility of linear search for these two networks.

4.3 Fault Localization
When the tag is different from the one in the path table, we

know the path took by the corresponding packet is inconsis-
tent with the control plane configuration. We are interested
in which switches are to blame for such inconsistency, that
is, localizing those switches that have faults in flow tables.

Take Figure 7 as an example, where Src sends a packet to
Dst. Each switch has four ports numbered 1 through 4, and
a “drop” port ⊥. The correct path is ⟨1, S1, 2⟩, ⟨1, S2, 2⟩,
⟨1, S4, 3⟩, while switch S1 is faulty and outputs the packet
to a wrong port 4 instead of the right one 2, resulting in the
actual path being ⟨1, S1, 4⟩, ⟨1, S3, 3⟩, ⟨1, S6,⊥⟩. Even S6
drops the packet, we cannot simply blame S6 since the fault
occurs at an upstream switch, i.e., S1.

To localize the faulty switches, we will first present
a strawman approach, outline its limitation, and finally
introduce the fault localization algorithm used by VeriDP.

Strawman Approach. Define a hop as a 3-tuple of the
form ⟨input port, switch ID, output port⟩. That is, a hop
encodes the forwarding behavior of a switch on a packet,
including from which port the packet is received, and to
which port the packet is forwarded. A path is then a ordered
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Algorithm 4: PathInfer(header, inport, outport, tag)
Input: inport/outport: the input/output port of the packet;

header: the header of the packet; tag: the tag of the packet.
Output: pathset: the set of all possible paths for the packet.

1 pathset← {}; // all possible paths
2 path← GetPath(inport, header); // the original path
3 com path← {}; // common part with original path
4 foreach hop ∈ path do
5 com path.push hop(hop);
6 if BF(hop) ⊓ tag ̸= BF(hop) then
7 break; // the path deviates from hop

8 while ¬com path.is empty() do
9 dev hop← com path.pop hop();

10 s← dev hop.switch;
11 x← dev hop.input port;
12 foreach output port y of switch s do
13 dev path← {⟨x, s, y⟩};
14 inport′ ← Link(⟨s, y⟩);
15 path′ ← GetPath(inport′, header);
16 foreach hop ∈ path′ do
17 if BF(hop) ⊓ tag ̸= BF(hop) then
18 break; // dismiss this path

19 dev path.push hop(hop);
20 if hop.output port = outport then
21 pathset← pathset∪ (com path+dev path);
22 break; // found a valid path
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Figure 7: An example for fault localization. Each switch
has four ports, and a port “⊥” representing packet
drops. The path configured by the controller is S1 →
S2 → S4. S1 falsely forwards the packet to port 4, and
the path actually took by the packet is S1→ S3→ S6.

list of hops. We refer to the path computed according to
network policies as the correct path, and the one actually
traversed by the packet as the real path. The idea of our
strawman approach is to first compute the correct path, and
then for each hop of the correct path, test whether it also
belongs to the real path. The test is based on the tag of the
packet, which is a Bloom filter encoding all hops of the real
path. If the switch has no faults, then the hop will forward
the packet correctly, and this hop will pass the test; otherwise
the switch should have forwarded the packet to a wrong port,
and this hop will fail the test with large probability. Finally,
the first hop that fails the test can be identified as a faulty
switch.

One problem with the above strawman approach is that
the false positives of Bloom filter may raise high localization

error. Returning to the example in Figure 7, the hop
⟨1, S1, 2⟩ may falsely pass the set test due to false positives
of Bloom filter, and the next hop ⟨1, S2, 2⟩ may fail the
test. Then, we will falsely identify S2 as the faulty switch.
Indeed, this problem can be mitigated if we reduce the false
positive of Bloom filter by using more bits for Bloom filter.
However, this would incur a large overhead on the header
space.

The fault localization algorithm. To reduce the localiza-
tion error without increasing header space overhead, we
leverage the fact that most switches in the network are
functioning well except some faulty ones. Thus, if a switch
is identified as faulty, then we are expected to find a valid
path from this switch towards the destination by looking
up in downstream switches’ flow tables. Specifically, we
enumerate all possible output ports of the faulty switch, and
from each of these output ports, we continue to test whether
the next hops can pass the set testing.

Let us return to the example in Figure 7 and suppose we
suspect that S2 is faulty. First, we enumerate all its output
ports and know that only ⟨1, S2, 3⟩ can pass the test. Then,
we continue to look up in S5’s flow table, and know the next
hop is ⟨1, S5, 3⟩. However, this hop fails the test, meaning
that S2 cannot be the faulty switch since there is no valid
path from it to the destination. Then, we backtrace to the
last hop of S2, i.e., S1, and perform a similar process. This
time, we can successfully find a valid path, which is just the
real path of the packet.

The above method is summarized as Algorithm 4, which
consists of two phases: (1) constructing the first half of
the real path that is common with the correct one, and (2)
constructing the second half of the real path that is different
from the correct one. The first phase puts as many hops
as possible into the common path com path. The second
phase backtraces to a previous hop in com path each time,
and tries to construct a valid path dev path from one of its
outports. When a valid dev path is found, the concatenation
of com path and dev path is put into the list of all possible
paths pathset. This process continues until the com path
becomes empty. Section 6 will evaluate the probability that
Algorithm 4 can find the real path.

4.4 Path Table Update
When the controller adds, deletes, or modifies a rule at

a switch, we need to update the path table to reflect that
change, in order to keep synchronized with the data plane.
Rather than re-compute the whole path table, we show how
to update the path table incrementally, such that only a small
portion of the path table needs to be updated.

For simplicity, we only consider forwarding rules match-
ing IP prefixes, while neglecting the in-bound and out-bound
ACL rules, However, note that the incremental update can
also be performed with ACL rules. Then, the transfer
predicate Px,y can be reduced to Py = P fwd

y , where P fwd
y

is the port predicate for output port y. In addition, we only
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Figure 8: An example of forwarding rules organized as a
tree.

consider rule addition and deletion, since rule modification
can be regarded as deleting the old rule and then adding a
new rule. The incremental path table update process consists
of two phases: port predicate update and path entry update.

Port predicate update. This stage is an adaption of the port
predicate update algorithm in [56]. It takes the newly added
or deleted rule as input, and updates the port predicates
accordingly.

First, define an IP forwarding rule as a 3-tuple R =
⟨prefix,match, outport⟩, where prefix is the IP prefix
to be matched, match is the IP addresses that will actually
be matched, and outport is the output port of the matched
packets. The difference between prefix and match will
manifest in the following.

Similar to [56], we organize the forwarding rules as a
forest: a rule Rj is a child of another rule Ri, if Ri.prefix
contains Rj .prefix. Figure 8 gives an example of such a
forest. By longest match, the rule R with prefix R.prefix =
10.1.0.0/8 will match R.match = 10.1.0.0/8\(10.1.1.0/16
∨10.2.1.0/16).

Different from [56], we add a virtual drop rule with zero
prefix length, i.e., 0.0.0.0/0, and transform the forest into a
tree, as shown in Figure 8. This will greatly simplify our
treatment of transfer predicates for drop ports.

Then, the transfer predicate for output port x, i.e., Px, can
be calculated as:

Ri.match = Ri.prefix ∧ (∨Rj is a child of RiqRj .prefix)

Px = ∨Ri.outport=xRi.match

Suppose a rule Ri with Ri.outport = x is added, and
let Rj be its parent with Rj .outport = y. Then, two port
predicates need to be updated as:

Px ← Px ∨Ri.match

Py ← Py∧qRi.match

Similarly, if Ri is deleted, two port predicates need to be
updated as:

Px ← Px∧qRi.match

Py ← Py ∨Ri.match

Path entry update. With port predicates updated, we are
ready to update the path table. We only consider the addition
of a new rule Ri, and deletion is much the same. Let ∆ =
Ri.match, and view a transfer predicate as a set of headers.
When Ri is added, Px grows by adding ∆, and Py shrinks by

t0 t0+T
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s t0+T
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s+T
f

a

4 621   753 8

Figure 9: An example for sampling.

subtracting ∆. Then the path table update naturally consists
of two parts:

• For each path that passes port y, we should update
its header set by subtracting ∆. Let the path be p,
then its header set should be updated by p.headers←
p.headers\∆, If p.headers becomes False, then we
delete the path from the path table.

• This part is a little more complicated since we need to
not only update existing paths, but also add new paths
if there are. Let S be the switch where the rule is to
be added, then we need to consider each header set
that has reached the switch S in the recursive search
of Algorithm 2. Let h be such a header set, and
p = (hop1, hop2, . . . , hopn) be the path traversed by
this header set before reaching switch S. Then, we
should first compute h ← h ∧ ∆, then output h to
port x of switch S, and continue the recursive search.
If h reaches an edge port without being False, then
we check whether the resultant path is already in the
path table. If there is such a path q, then we update its
header set by q.header ← q.headers ∨ h; otherwise,
we create a new path with header set h, and add it into
the path table.

4.5 Traffic Sampling
Tagging and verifying every packet in the network can

incur a large overhead. In this paper, we use a simple method
which samples packets based on flows at entry switches.
Each flow f is associated with a parameter T f

s > 0, termed
the sampling interval. The entry switch S of f maintains
the last sampling instant tf . For each packet received by S
at time t, if t − tf > T f

s , S marks the packet and updates
tf ← t.

In order to determine the sampling interval, we introduce
another per-flow parameter T f

a , defined as the maximum
inter-packet-arrival time for flow f . We aim to have a
detection latency (from the time that a fault occurs and that it
is detected) less than a threshold τ . To achieve this goal, T f

s

should be set to satisfy T f
s ≤ τ − T f

a . To see why, consider
the worst-case example in Figure 9. Packet 3 is sampled
at time t0, then a fault is experienced by the next back-to-
back Packet 4 and all the following packets. Packet 7 arrives
just before time t0 + T f

s , and is thus not sampled. After
maximum inter-packet-arrival time T f

a , Packet 8 arrives and
is sampled, and the fault can be detected. By now, T f

s + T f
a

has elapsed since fault is first experienced by Packet 4. This
is just the longest possible elapsed time to detect a fault.
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5. IMPLEMENTATION
Bloom filter. For Bloom filter operations, we use the
approaches described by Kirsch and Mitzenmacher [38].
First, three hashes are constructed as gi(x) = h1(x)+ih2(x)
for i = 0, 1, 2, where h1(x) and h2(x) are the two halves of
a 32-bit Murmur3 hash of x [12]. Then, we use the first 4
bits of gi(x) to set the 16-bit Bloom filter for i = 0, 1, 2. A
similar approach is used by Cassandra [10].
Packet format. For each data packet, VeriDP inserts three
additional fields: marker, tag, and inport. Here,
marker is a single bit carried in the IP TOS field, indicating
whether the packet is sampled for verification; tag is a 16-
bit Bloom filter encoding the path traversed by the packet,
which is carried in the first VLAN tag; inport is a 14-bit
identifier of the entry port (8 for switch ID and 6 for port ID),
which is carried in the second VLAN tag1. Tag reports (sent
by destination switches) are encapsulated with plain UDP
packets.
VeriDP server. The VeriDP server is responsible for con-
structing the path table based on network configurations,
verifying tag reports and localizing faulty switches based on
the path table. For path table construction, we first generate
transfer predicates (represented with BDDs) from OpenFlow
rules. Then, we run Algorithm 2 to generate all possible
paths, and calculate a tag for each path. We implement the
tag verification based on Algorithm 3. When iterating over
possible paths for the inport-outport pair of a packet, we
need to determine whether the header of the packet belongs
to the header set of the path (i.e., header ≺ p.headers,
Line 2). To test this, we first generate a BDD representation
for the packet header, and then intersect this BDD with the
header set (which is also a BDD). The packet header belongs
to the header set if the intersection is not False.
VeriDP pipeline (Software). We implement the VeriDP
pipeline with Open vSwitch [7]. The VeriDP pipeline
functions after all actions have been executed on a packet,
and before the packet is sent to the output port. We currently
use the TCP 5-tuple to identify a flow, and associate with
each flow a sampling instant (refer to Section 4.5). We
simply use a hash table to store the sampling instants of all
active flows.
VeriDP pipeline (Hardware). We implement the VeriD-
P pipeline with ONetSwitch [32, 31], a hardware pro-
grammable switch that we built (available online at [13]).
As shown in Figure 10, we implement both the VeriDP
and OpenFlow pipeline with the FPGA resource. Due to
the limited resource of FPGA, we use an array to record a
limited number of active flows. Besides a sampling instant,
each flow entry also contains a last-hit instant, which helps
us identify active flows.

6. EVALUATION
1Double VLAN tags are supported by 802.1ad [1]; each tag has a 2-byte
Tag Control Information (TCI), which is used to carry our data.

Table 2: Path table statistics.
Setup # entries # paths avg. path len. time (s)

Stanford 26K 77K 4.85 4.32
Internet2 43K 50K 2.89 3.22

FT(k = 4) 448 448 3.79 0.10
FT(k = 6) 4176 4176 4.23 0.26

6.1 Experiment Setup
We use both emulated and real switches for experiments.

Otherwise specified, we emulate networks with Mininet [5],
consisting of Open vSwitch (OVS [7]) instances, and use
Floodlight as the controller [3]. The verification server
runs on a desktop with an Intel Core i7 CPU 3.6GHz and
32GB Memory. We use the following four topologies for
experiments.

• Stanford backbone. The Stanford backbone network [4]
consists of 16 Cisco routers and 10 layer-2 switches. A
portion of the topology is shown in Figure 11. Overall,
there are 757,170 forwarding rules and 1,584 ACL
rules.
• Internet2. The Internet2 topology [11] consists of 9

Juniper routers. As the ACL rules are not publicly
available, we only use the 126,017 IPv4 forwarding
rules.
• Fat tree. We emulate fat tree topologies which repre-

sent medium-sized networks. In prior to experiments,
we let the emulated hosts ping each other in order to
populate the switches’ flow tables with shortest-path
forwarding rules.
• Single ONetSwitch. We use a single ONetSwitch that

implements both OpenFlow and VeriDP to test the
overhead of VeriDP on data plane.

For Stanford and Internet2, we translate the configuration
files to equivalent OpenFlow rules, and install them at Open
vSwitches with Floodlight. The translation algorithm is
customized based on [57], which was originally written for
the Beacon controller.

Since there are loops in the Stanford and Internet2 topolo-
gies, we remove all the loops in prior to generating the
path table. Specifically, when searching for all paths using
Algorithm 2, if a port is visited for the second time for a
path, we will not continue to search that path. Thus, initially
the control plane and data plane are inconsistent: the control
plane is loop-free, while the data plane contains loops. The
path table statistics are summarized as Table 2.

6.2 Function Test
For function test, we generate faults in the emulated

Stanford backbone network, and test whether VeriDP can
detect these faults and pinpoint the faulty switches.

Black hole. In Figure 11, there is a flow (red solid line) from
boza to coza with destination address 172.20.10.33. Similar

28



Parser

Exact 

Match
Match 

Arbiter

Wildcard

Match 

parsed 

fields

instr

Header

Remover

Packet 

Processor

pktInput 

Arbiter

1GE
RxQ

1GE
RxQ

1GE
RxQ

1GE
RxQ

CPU
RxQ

CPU
RxQ

CPU
RxQ

CPU
RxQ

1GE
TxQ

1GE
TxQ

1GE
TxQ

1GE
TxQ

CPU
TxQ

CPU
TxQ

CPU
TxQ

CPU
TxQ

8 RxQs 8 TxQs

pktHeader

Adder

tag
report

payload

in
s
tr

instr

h
e
a

d
e
r

header

pkt

Output

Aribiter

header

OpenFlow Pipeline

VeriDP

pipeline

Figure 10: Hardware implementation of the VeriDP pipeline based on ONetSwitch.

bozacozb coza yoza yozb

L2-SW L2-SW L2-SW L2-SWL2-SW L2-SWL2-SW L2-SW

bozb sozbsoza

correct path: boza->bbra->coza
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Figure 11: Function test on the Stanford backbone
network (only part of the topology is shown).

to ATPG, we deliberately create a fault by modifying the
action of the forwarding rule in boza that matched dst ip =
172.20.10.32/27 with a drop action. Then, the flow will be
dropped at boza. VeriDP immediately detects the fault, and
localizes the faulty switch boza.
Path deviation. We continue to create a fault that causes the
previous flow to deviate from the original path, by modifying
the same rule. This time, we replace the action to forward
towards bbrb, resulting in another path from boza to coza
(red dash line). VeriDP immediately detects the fault, and
recover the real path, thereby localizing the faulty switch
boza.
Access violation. To simulate an access violation, we delete
an ACL rule in sozb that denies all packets with destination
address 10.0.0.0/8. Then, we send packets with destination
address 10.63.16.0/20 from sozb, and they are received at
cozb (the yellow dash dot line). VeriDP successfully detects
the fault and reconstructs the path took by the flow.
Loop. Recall that we removed all loops when generating the
path table at the control plane, while the data plane still uses
the original configuration that contains loops. We will test
whether VeriDP can detect these loops. We inject a flow with
destination address 172.26.4.152 from boza, which loops
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Figure 12: False positive rate vs. Bloom filter size.

between yoza and yozb (green dash line). Since the host
with address 172.26.4.152 is connected to a port of yoza,
then each time yoza receives the packet, it will forward the
packet to that port. Since the port is an edge port (connected
with non-routers), then multiple tag reports would be sent
to the VeriDP server. Only the first tag report passes the
verification, while all others fail.

6.3 Detection and Localization Performance

Detection accuracy. The inconsistency detection of VeriDP
has no false positives. The reason is simple: if the forward-
ing path of a packet is the same with that in the path table,
then the tag will be exactly the same, and the verification
will pass. False negatives happen when a packet traverses a
path different from the one in the path table, while satisfying
two conditions: (1) the packet arrives at the destination port,
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Table 3: Probability of successful fault localization when
verification fails for fat tree k = 4 and k = 6.

Setup # failed verif. # recovered paths localization prob.

FT (k = 4) 2,527 2,505 99.2%
FT (k = 6) 7,148 6,902 96.6%

and (2) the tag of the packet is the same with the one in the
path table. The reason why condition (1) is necessary is that
if the packet arrives at a wrong port (including drop ports),
the packet header will definitely not match the header set of
any path for the input-output pair, and thus the verification
will fail.

To evaluate the detection accuracy, we randomly select
paths in the path table, and generate a packet for each path.
Then, for each packet we randomly select a switch on its
forwarding path, and output the packet to a port different
from the original one, in order to simulate a fault. Let n
be the number of total packets we select, n1 be the number
of packets that arrive at the destination port, and n2 be the
number of packets that arrive at the destination port and the
tag is same with that in the path table. Then, we define the
absolute false negative rate as n2/n, and the relative false
negative rate as n2/n1. To evaluate the impact of Bloom
filter size on false negative rate, we vary the Bloom filter
size from 8 bits to 64 bits, and measure the false negative
rate for Stanford, Internet2, and fat trees (k = 4).

As shown in Figure 12, the absolute false negative rate
is rather small for k = 6. Specifically, the absolute false
negative rate is only around 0.1% for Stanford backbone
network. The relative false negative rate is higher, but also
decreases to zero for k larger than 32.

Localization accuracy. We continue to evaluate the lo-
calization accuracy using fat tree topologies. First, we
select a random rule from a random switch, and change
its output port to a different one. Then, we let all hosts
ping each other, collect the tag reports, and perform tag
verification. If the verification fails, we try to recover the
actual path took by the ping packet. Table 3 reports the
number of failed verifications, the number of recovered
paths, and the localization probability. We can see that our
fault localization algorithm can recover the real paths took
by packets with a high probability when verification fails:
99.2% and 96.6% for fat tree k = 4 and k = 6, respectively.

6.4 Verification Time
We measure the time to verify a tag report, with the Stan-

ford backbone and Internet2 topology. For each topology,
we generate a test packet for each path in the path table.
Then, we inject these test packets into the network and
collect the tag reports. After that, we run the verification
algorithm for each tag report for 104 times, and record the
time. Figure 13 shows the verification time for a single tag
report, which is calculated by taking an average over the
104 verifications. We can see that the verification time is
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Figure 13: The time to verify a tag report on VeriDP
server.
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Figure 14: The time to add a new rule to a router of
Internet2.

in-between 2 and 3 µs, which translates into a verification
throughput of up to 5×105 per second. Since the verification
is still single-threaded without optimization, we expect a
higher throughput with multi-threading in the future.

6.5 Path Table Update Time
We continue to evaluate the incremental update algorithm

using the Internet2 topology, which consists of 9 switches.
First, we populate the flow tables of 8 switches with Open-
Flow rules. For the remaining switch, we install rules into
its flow table one-by-one, and measure the time to update
the path table. There are more than 28,000 rules for this
switch in total. The update time for each rule is shown in
Figure 14. We can see that for most rules, the time to update
the path table is less than 10ms. This update time should be
sufficient, considering the time to update the data plane is at
a scale of several milliseconds [34, 50].

6.6 Dataplane Overhead
Our implementation of VeriDP on the FPGA-based hard-

ware switch (i.e., ONetSwitch) can process packets at a line
speed (1Gbps). To measure the processing delay, we send
packets to one port of the switch, receive them from another
one, and record the CPU cycles c used in this process. As
the FPGA has a frequency of 125MHz, the delay can be
calculated as T = c× 0.008µs.

Table 4 reports the delay of the native OpenFlow pipeline
(T1), the delay of the VeriDP sampling module (T2) and its
overhead (T2/T1), the delay of the VeriDP tagging module
(T3) and its overhead (T3/T1). We can see that the delay of
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Table 4: Processing delay of the VeriDP pipeline and native
OpenFlow pipeline on the hardware SDN switch.

Packet Size (Bytes)

128 256 512 1024 1500

Native (µs) 4.32 7.33 19.89 26.21 36.68
Sampling (µs) 0.15 0.14 0.14 0.14 0.15

Overhead 3.52% 1.96% 0.74% 0.55% 0.41%
Tagging (µs) 0.27 0.26 0.27 0.26 0.27

Overhead 6.29% 3.60% 1.37% 1.01% 0.74%

VeriDP sampling and tagging modules are around 0.15µs
and 0.27µs, respectively. For packet size of 512 Bytes,
the overhead of these two modules is 0.74% and 1.37%,
respectively. Note that tagging is necessary for each hop,
while sampling is only performed by entry switches. Thus,
non-entry switches only incur the tagging overhead.

7. RELATED WORK
Recently there have been many verification tools proposed

for SDN. Some tools debug controller softwares or appli-
cations [24, 51, 55, 20, 26, 19], while others check the
correctness of network policies [16, 43, 36, 35, 37, 56, 60,
58, 17, 42, 27, 48]. A limitation with these tools is that
they can only ensure network correctness (i.e., controller
softwares or network policies) at the controller side, while
cannot guarantee the correctness of switch configurations
(i.e., rules at flow tables), or data plane behaviors (i.e., packet
forwarding). As shown in previous work [46, 41], data plane
configurations may deviate from those on the control plane.

Data plane testing tools [57, 41] try to check the correctness
of rules at switches’ flow tables. ATPG [57] generates
the minimum number of probe packets that can trigger all
rules in the network, and verifies whether all these probe
packets can be sent and received by end hosts. Since
ATPG only checks packet receptions, it can only verify that
pairwise reachability are ensured by rules of switches, while
cannot verify other properties like middlebox traversals
that require inspections on packet trajectories. Moreover,
real packets may experience different forwarding behaviors
with probe packets, making the verification results less
convincing. Monocle [41] tests whether a rule is in a
switch’s flow table by sending a probe packet to the switch
and checking which port the packet is output to. The probe
packet should be constructed in such a way that it can only
trigger the rule under test, while not being affected by other
rules in the switch. A similar approach, RuleScope [23],
also monitors the flow table integrity by sending probes.
The difference is that it can detect priority swaps of rules
as well. There are several problems with Monocle and
RuleScope. First, the probe generation process is slow:
Monocle costs around 43 seconds to generate probes for
10K real rules; RuleScope uses more than 300 seconds to
generate probes for 320 synthetic rules. As a result, they
can only verify relatively steady configurations and would

have issues tracking down frequent data-planes updates or
reconfigurations. In addition, similar to ATPG, the probe
packets may experience different forwarding behaviors with
real production packets.

Packet trajectory tracers [59, 45, 54, 14] try to record
packet trajectories by letting switches imprint specific in-
formation into packet headers. However, packet trajectories
by themselves are not very useful unless we know whether
they are correct. In contrast, VeriDP not only traces packet
trajectories, but also enables the controller to reason about
whether the trajectories are compliant with high-level poli-
cies. Moreover, they either require a large number of rules
at switches [59, 45], or highly depend on the datacenter
structures [54]. Different from the above approaches, Net-
Sight [29] records detailed forwarding information of real
packets using postcards. However, since each packet will
trigger a postcard at each hop, NetSight will incur a huge
volume of postcards traffic on the data plane.

Switch software debuggers [39, 25] use symbolic execu-
tion to test the software components of SDN switches. They
only carry out static testing of switch software codes, while
cannot detect hidden bugs that only show at runtime, i.e.,
flow table or packet forwarding faults. In contrast, VeriDP
can potentially capture these runtime bugs by constantly
monitoring the policy incompliance of switches.

8. CONCLUSION AND FUTURE WORK
This paper presented VeriDP, a new tool to monitor the

consistency of control plane and data plane in SDN. VeriDP
used the path table abstraction at the control plane and packet
tagging at the data plane, in order to detect inconsistency.
The Bloom-filter-based tagging method allowed VeriDP to
pinpoint the faulty switches that caused the inconsistency.
We implemented VeriDP on both software and hardware
switches to demonstrate its feasibility, and used real network
topologies and policies to test its functions.

Our future work includes: (1) incorporating header rewrites
into the current VeriDP framework, in order to support ac-
tions that need to modify packet headers, and (2) designing
a method that can automatically repair the flow table of
a faulty switch, in order to resolve the inconsistency with
minimal human interaction.
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reliable fib update acknowledgments in sdn. In ACM
CoNEXT, 2014.

[41] M. Kuzniar, P. Peresini, and D. Kostic. Monocle:
Dynamic, fine-grained data plane monitoring. In ACM
CoNEXT, 2015.

[42] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman,
and G. Varghese. Checking beliefs in dynamic
networks. In USENIX NSDI, 2015.

[43] H. Mai, A. Khurshid, R. Agarwal, M. Caesar,
P. Godfrey, and S. T. King. Debugging the data plane
with Anteater. In ACM SIGCOMM, 2011.

[44] C. Monsanto, J. Reich, N. Foster, J. Rexford,
D. Walker, et al. Composing software defined
networks. In USENIX NSDI, 2013.

[45] S. Narayana, J. Rexford, and D. Walker. Compiling
path queries in software-defined networks. In
HotSDN, 2014.

[46] P. Peresini, M. Kuzniar, and D. Kostic. What You
Need to Know About SDN Flow Tables. In PAM,
2015.

[47] G. Pickett. Staying persistent in software defined
networks. In Black Hat Briefings, 2015.

[48] G. D. Plotkin, N. Bjørner, N. P. Lopes,
A. Rybalchenko, and G. Varghese. Scaling network
verification using symmetry and surgery. In ACM
POPL, 2016.

[49] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In ACM
SIGCOMM, 2012.

[50] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and
A. W. Moore. OFLOPS: An open framework for
OpenFlow switch evaluation. In Passive and Active
Measurement, pages 85–95, 2012.

[51] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or,
J. Lai, E. Huang, Z. Liu, A. El-Hassany, S. Whitlock,
et al. Troubleshooting blackbox SDN control software
with minimal causal sequences. In ACM SIGCOMM,
2014.

[52] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. M. Parulkar. Can the
production network be the testbed? In OSDI, 2010.
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